Räknestuga. Tillämpad vågrörelselära FAF260. Kapitel 3 Vågrörelse Periodiska svängningar skapar vågor hos kopplade partiklar. Vågutbredning FAF260

Storlek: px
Starta visningen från sidan:

Download "Räknestuga. Tillämpad vågrörelselära FAF260. Kapitel 3 Vågrörelse Periodiska svängningar skapar vågor hos kopplade partiklar. Vågutbredning FAF260"

Transkript

1 FF60 Tillämpad vågrörelselära FF60 Räknestuga Vi kommer att erbjuda två extra övningstillfällen. Tisdagen den :e maj 0, H Torsdagen den 4:e maj 0, H (Tentamen måndagen den 8:e maj 8 3 i Viktoriahallen) 3 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget Periodisk svängning Svängningar genererar vågor y 0 F F Transversell Longitudinell 4 5 Kapitel 3 Vågrörelse Periodiska svängningar skapar vågor hos kopplade partiklar Vågutbredning t = 0 t = 0,5 T t = 0,50 T t = 0,75 T t = T 6 7 Lars Rippe, tomfysik/lth

2 FF60 Mänsklig våg Kapitel 3 Vi antar vågen utbreder sig längs x axeln. vståndet från jämviktsläget betecknas med s. Under en period, T, rör sig vågen en våglängd,, för vågens utbrednings hastighet, v, gäller därmed v=/t En typisk hejarklacksvåg rör sig med ungefär 0 platser per sekund. 8 9 Cirkulära vågor Kapitel 3 vståndet från jämviktsläget för en partikel beror på tiden, t, och på partikelns position längs x axeln. s är således en funktion av både x och t. För en våg som utbreder sig i positiv x riktning är t x s( x, t) sin T För en våg som utbreder sig i negativ x riktning är t x s( x, t) sin T 0 Superpositionsprincipen Kapitel 4: Interferens Superpositionsprincipen Interferens mellan två vågor Stående vågor Svävning Den resulterande störningen i en punkt där två eller flera vågor interfererar ges av summan av de enskilda vågornas påverkan. Lars Rippe, tomfysik/lth

3 FF60 Interferens mellan ljudvågor med samma frekvens Interferens mellan ljudvågor med samma frekvens S P x x S P x x s sin t x T Tongenerator Tongenerator s sin t x T Superpositionsprincipen: s sint t Med faskonstanterna: sin x x 4 5 Vågor med samma frekvens Vågor med samma frekvens s t sin s t s t sin sin s s s 6 7 Vågor med samma frekvens t sint sint s sin s s Vågor med samma frekvens t sint sint s sin s s Eftersom s och s har samma frekvens kommer s också att ha den frekvensen s s 8 9 Lars Rippe, tomfysik/lth 3

4 FF60 Kapitel 4 Motriktade vågor För två signalkällor med samma frekvens som emitterar i fas är amplituden för s(x,t) minimal ( = ) i de punkter, x, där avståndet från x till de två signalkällorna skiljer med (en halv + ett helt antal) våglängder S S x 0 Motriktade vågor Motriktade vågor v v v v s +s s +s 3 Stående vågor Svävningar - Hur vågor med olika frekvens adderas v v s +s / 8 9 Lars Rippe, tomfysik/lth 4

5 FF60 Vågfronter från en stillastående källa Vågfronter från en ljudkälla som rör sig åt höger i bilden 3 Vågfronterna rör sig ut från källan med vågens utbredningshastighet v 3 Detekterad frekvens när signalkälla och mottagare förflyttar sig (sid 80) f m f s f s sändarens frekvens v v v v f m av mottagaren registrerad frekvens v vågens utbredningshastighet i mediet v s sändarens hastighet v m mottagarens hastighet v s >0, när sändaren rör sig mot mottagaren v m >0, när mottagaren rör sig från sändaren m s Kapitel 6 Ljudtryck, fart och intensitet Kapitel 7 Hörsel och röst Kapitel 8 Reflektion av ljud Ljud Ljud en longitudinell tryckvåg Ljud är en vågrörelse Det är en longitudinell våg Den utbreder sig via tryckförändringar Lars Rippe, tomfysik/lth 5

6 FF60 Figuren visar ett cylindriskt utsnitt av en volym där en ljudvåg utbreder sig i x riktningen. Den del av materialet som har sitt jämviktsläge mellan x och x har förskjutits sträckan s på grund av ljudvågen Inkommande och reflekterade våg vid gränsyta bildar en stående våg 37 Fig 6.4, sid 95 p s x t x s( x, t) so sint x p( x, t) po cost p s v o o 38 Fig 8.3 Sid 7 Fig 8., sid 3 Kapitel 9 Musikinstrument och ljudåtergivning 39 Reflektion mot tätare medium fasförskjuter den reflekterade vågen 80 grader 40 Kapitel Elektromagnetiska vågor Elektromagnetisk plan våg Elektromagnetiska fält Hur elektromagnetiska fält kan genereras Elektromagnetiska konstanter,, Beräkning av intensiteten (=energin som transporteras per tids och ytenhet) hos elektromagnetiska fält E y t E x o o s s v t x c= m/s y 0 = permittiviteten för vakuum 0 = permeabiliteten för vakuum 4 4 Lars Rippe, tomfysik/lth 6

7 FF60 Elektromagnetiska vågor Elektromagnetiska storheter E elektriskt fält, B magnetisk flödestäthet c ljushastigheten i vakuum n brytningsindex, hastigheten v=c/n I intensiteten=energi/(tid och area) våglängden k vågvektorn= permittiviteten för vakuum permeabiliteten för vakuum r =permittivitetstalet= n r permeabilitetstalet = (för icke magnetiska material) Geometrisk optik reflektion och brytning Brytningsindex och optisk väglängd n c v L nx vak mat Kapitel Reflektion och brytning Fermats princip Ljus väljer att gå den snabbaste vägen från en punkt till en annan. Det vill säga den kortaste optiska väglängden Lars Rippe, tomfysik/lth 7

8 FF60 Brytningslagen, sid sin sin v v n n Brytningslagen är metoden att räkna ut de vinklar som ger den snabbaste vägen från till B B Exempel: Planparallell platta Reflektionslagen, sid 95 Infallsvinkeln = Reflektionsvinkeln 5 5 Begrepp inom geometrisk optik Stråle Stråle: nger i vilken riktning energin transporteras Vågfront: Yta i rymden där en våg har konstant fas Fungerar bra endast då våglängden är försumbart liten i förhållande till storleken på de optiska komponenterna Optisk axel Brytning i sfärisk yta Konvention: Ljus går från vänster till höger! n R n Lars Rippe, tomfysik/lth 8

9 FF60 Brytning i sfärisk yta Brytning i sfärisk yta Resultat: n n n n a b R n P n n n Optisk axel O C B Optisk axel O C B a R b a R b Brytning i sfärisk yta n n n n n a b R n Exempel: Reella och virtuella bilder n n O C B n n R 0 a 0 b 0 Reell bild Optisk axel O C B n B O C n n n R 0 a 0 b 0 Virtuell bild a R b n n B C O n n R 0 a 0 b 0 Virtuell bild Kapitel 3 Tunn lins Brytning i sfärisk yta,, se Fig 3. R n n n n a b R a avstånd från föremål till ytan b avstånd från bild till ytan R ytans radie Optisk axel R n luft B Lars Rippe, tomfysik/lth 9

10 FF60 Linser Konvex Samlingslins Växer på mitten Konkav Spridningslins Håller på att gå av Kapitel 3 Gauss linsformel a b f a avstånd från föremål till lins b avstånd från bild till lins f linsens fokallängd 6 6 vbildning Linsformeln ger avbildning mellan punkter på optiska axeln. Hur gör man för utsträckta föremål? + Standardstrålar.En stråle genom linsens centrum bryts inte..en stråle som är parallell med den optiska axeln före en positiv lins går genom linsens bildbrännpunkt. En stråle som är parallell med den optiska axeln före en negativ lins ser ut att komma från linsens bildbrännpunkt. F a a F b b 3.En stråle som går genom föremålsbrännpunkten hos en positiv lins är parallell med den optiska axeln efter linsen. En stråle på väg mot föremålsbrännpunkten hos en negativ lins är parallell med den optiska axeln efter linsen Optiska system optiska instrument Ögat Lars Rippe, tomfysik/lth 0

11 FF60 Ögat Regnbågshinna iris Hornhinna, n =,38 Främre kammaren, n =,34 Pupill Lins, n =,4,39 Glaskropp, n =,34 Synnerven Blinda fläcken Gula fläcken Synfel Sfäriska synfel kan korrigeras med sfäriskt slipade linser Rättsynt (emmetropi) F b Regnbågshinna iris Näthinna Närsynt (myopi) Långsynt (översynt, hyperopi) Ciliarmuskeln F b F b ~sfäriskt, d 5 mm Synkorrigering med glasögon Närsynthet Ser bra på nära håll, men dåligt på långt håll Korrigeras med negativ (konkav) lins - F b Synkorrigering med glasögon Långsynthet Ser bra på långt håll, men dåligt på nära håll Korrigeras med positiv (konvex) lins + F b F b F b Skärpedjup Pupillen Objektsförflyttning för vilken spridningen är mindre än b/000. a s 000 f b t Pupillens storlek ändras efter ljusförhållandena Mycket ljus Liten pupill Bländartal: f b t D Ökat skärpedjup 7 7 Lars Rippe, tomfysik/lth

12 FF60 Kikaren Ökar synvinkeln hos avlägsna objekt Kepler och Galileikikare Keplerkikaren Keplerkikaren Synvinkel Objektiv + Okular + Objektiv + Okular + F ob F ob F ok F ok F ob h F ob F ok F ok Galileikikaren Vinkelförstoring: f G f ob ok Objektiv + Okular - Sammanfattning optiska intrument Skärpedjup: a s 000 f bt Bländartal: f b t D F ob Vinkelförstoring: med optiskt instrument G utan optiskt instrument F ok F ob F ok Lupp/förstoringsglas: Mikroskop: Kepler /Galileikikare: d G f 0 5 cm f G M ob G ok f G f ob ok Lars Rippe, tomfysik/lth

13 FF60 Kapitel 6 Böjning och upplösning Huygens princip sid 89 Varje punkt på en vågfront utgör en källa för cirkulära elementarvågor Huygens princip sid 89 Varje punkt på en vågfront utgör en källa för cirkulära elementarvågor Varje elementarvåg har samma frekvens och utbredningshastighet som primärvågen i den punkten Huygens princip sid 89 Varje punkt på en vågfront utgör en källa för cirkulära elementarvågor Varje elementarvåg har samma frekvens och utbredningshastighet som primärvågen i den punkten Primärvågens position vid en senare tidpunkt kan konstrueras fram med hjälp av elementarvågorna 8 8 Figur., sid 90 Kapitel 6 Böjning och upplösning En plan våg vars utsträckning vinkelrät mot utbredningsriktningen är begränsad propagerar aldrig helt rakt fram utan sprids också i andra vinklar. Detta begränsar prestanda och upplösning hos alla system som sänder ut och detekterar vågor Plana vattenvågor passerar en spalt. När spaltöppningen börjar bli lika liten som våglängden liknar vågfronterna en elementarvåg efter passagen Lars Rippe, tomfysik/lth 3

14 FF60 Böjning Böjningsmönster (diffraktion) i cirkulär öppning med diameter D Böjningsminima då: bsin m m,... b För att beräkna intensiteten som skickas ut från spalten i riktningen kan vi dela upp spalten i mindre delar och summera amplituden för det elektriska fältet från varje del av spalten för att få det totala fältet 85i riktning. Intensiteten beräknas sedan från det resulterande totalfältet. 86 Den cirkulära öppningens diameter, D, ges av Dsin Där är våglängden och är vinkeln mellan en stråle från öppningen till centrum av ringmönstret och en stråle från öppningen till den innersta svarta ringen Fig 6.6 Sid 308 Babinets princip, Fig 6.9, sid 3 Youngs dubbelspaltförsök x För komplementära öppningar, t ex en tråd med radien r och en spalt med öppning b=r ger superpositionspricipen att för det elektriska fältet, E, på en skärm bakom öppningarna har vi E(bara tråd) + (E bara spalt) = E(inget i vägen för strålen) För de punkter på skärmen där intensiteten, I, när inget är i vägen för strålen är noll, så är E(inget i vägen för strålen) = 0, vilket medför E(bara tråd) = -(E bara spalt) Eftersom I E så är I(bara tråd) = I(bara spalt) utanför centralfläcken 87 Vi får konstruktiv interferens när väglängdsskillnaden x -x är ett helt antal våglängder 88 x Fig 7.5, sid 333 d sin m max Böjning vs. interferens Böjnings minima bsin m m heltal skilt från 0 b = spaltbredden 89 Vägskillnaden dsin till en avlägsen punkt, P, i riktning relativt normalen bestämmer relativa fasskillnaden mellan de två bidragen till det totala elektriska fältet i P och därmed intensiteten i P 90 Interferens maxima d sin m m heltal d = spaltavståndet Lars Rippe, tomfysik/lth 4

15 FF60 Fig 7.6, sid 334 Intensitetsfördelning Huvudmaxima då bidragen från alla spalterna adderas konstruktivt p =N N minima mellan två huvudmax =0,, 4 För spalter som ligger bredvid varandra bestämmer vägskillnaden (dsin i riktningen,, mot en avlägsen punkt, P, relativa fasskillnaden mellan bidragen till det totala elektriska fältet i P och därmed intensiteten i P. 9 Vi antar att bsin<<, så att alla bidragen inom en spalt är i fas 9 =90 =80 =70 N bimaxima mellan två huvudmaxima Intensitetsfördelning Intensitetsfördelning, 6 spalter Interferens sin N I Io sin d sin I 0 är intensiteten med spalt Böjning I I o sin bsin Böjning & interferens sin sin N I Io sin Med N spalter finns det N- minima och N- bimaxima Böjning och interferens sin sin N I Io sin spalt Lars Rippe, tomfysik/lth 5

16 FF60 spalter 3 spalter spalter 5 spalter Kapitel 8 Multipel interferens ntireflekterande skikt Dielektriskt skikt I 0 T I 0 R I 0 R T I 0 R T I 0 Luft n= n n d 4n T T I 0 Glas n 0 Reflektionen när ljus går från luft till glas kan elimineras genom att välja lämplig tjocklek och brytningsindex för det dielektriska skiktet. 0 Lars Rippe, tomfysik/lth 6

17 FF60 Tunna skikt Tunna skikt d n n n Fig 8.6, sid 358 min max 03 Ljus som reflekteras i en yta interfererar med ljus som gått andra vägar och reflekterats många gånger 04 nd cos m m = 0,,, Kapitel 0 Polariserat ljus Det elektromagnetiska fältet är en transversell våg där det elektriska fältet och den magnetiska flödestätheten är vinkelräta mot utbredningsriktningen Fig.8 Sid Polariserat ljus Kap 0 Det elektriska fältet är en vektor och för att helt karaktärisera ett elektriskt fält måste vi tala om dess riktning och eventuellt även om denna riktningen förändras med tiden Polariserat ljus Opolariserat ljus Planpolariserat ljus Framifrån Från sidan Opolariserat ljus innehåller lika mycket vertikalt och horisontalt polariserat ljus. Intensiteten för opolariserat ljus reduceras en faktor två när det passerar en polarisator. Lars Rippe, tomfysik/lth 7

18 FF60 Malus lag Blockerad riktning Inkommande polarisationsriktning Et Eo cos I I cos t o Plan, elliptisk och cirkulär polarisation Fig 0.4, sid 405 Genomsläppsriktning 09 är vinkeln mellan den inkommande polarisationsriktningen och polarisatorns transmissionsriktning När det elektro-magnetiska fältet består av två vinkelräta komponenter 0 med olika fas varierar det elektromagnetiska fältets riktning med tiden. Räknestuga Måndagen den 8:e maj 8 3 Vi kommer att erbjuda två extra övningstillfällen. Tisdagen den :e maj 0, H Torsdagen den 4:e maj 0, H (Tentamen måndagen den 8:e maj 8 3 i Viktoriahallen) Victoria hallen 8.00 till 3.00 (+5 min för CEQ) Får inte lämna salen första timmen Formelblad kommer att delas ut tillsammans med tentamen Ta med miniräknare 3 Ex tenta Uppgift Inledande frågor a) Är Fresnellinsen som kursansvarig håller i fotografiet positiv eller negativ? b) Ett enkelt experiment att testa om man är nyfiken på vilken frekvens det är på mikrovågorna hemma i sin mikrovågsugn är att studera hur smör börjar smälta i den. Bilden till höger är tagen precis efter att smöret börjat smälta (den roterande plattan var givetvis frånkopplad vid experimentet), avståndet mellan de smälta delarna är 6 mm från centrum till centrum, vilken frekvens har mikrovågorna? Ex tenta Uppgift Diskussionsuppgift Om man försummar jordens atmosfär blir dygnets mörka och ljusa del (överallt på jorden) exakt lika lång vid vårdagjämningen. Stämmer det även om vi tar hänsyn till atmosfären? Motivera ditt svar. 4 6 Lars Rippe, tomfysik/lth 8

19 FF60 Ex tenta Uppgift 8 En plan glasyta har belagts med ett skikt tantaloxid och ett skikt magnesiumfluorid för att den ska reflektera ljus som infaller längs normalen bättre än obehandlat glas. I figuren är infallsvinkeln ritad stor bara för tydlighetens skull. a) Vilken synlig våglängd reflekteras bäst av tantaloxidskiktet när d =75 nm? nge också vid vilka av reflektioner F som det sker fasförskjutningar. b) Hur tjockt ska magnesiumoxidskiktet (d ) minst I o I I I 3 vara för att samma våglängd ska reflekteras bra B C n luft =,00 även här? c) Beräkna hur stor del av ljuset som reflekteras i Mg d n =,35 D E F varje skikt (dvs. beräkna I, I och I 3 ) om Ta d n =,08 F intensiteten I o infaller längs normalen (ta bara O 5 n glas =,50 hänsyn till de reflektioner som finns med i bilden). Beräkna också hur stor den totala reflektionen blir. 8 Lars Rippe, tomfysik/lth 9

Så, hur var det nu? Tillämpad vågrörelselära FAF260. Cirkulär polarisation (höger) Cirkulär polarisation FAF260. Lars Rippe, Atomfysik/LTH 1

Så, hur var det nu? Tillämpad vågrörelselära FAF260. Cirkulär polarisation (höger) Cirkulär polarisation FAF260. Lars Rippe, Atomfysik/LTH 1 FF60 Tillämpad vågrörelselära FF60 Så, hur var det nu? 3 Plan, elliptisk och cirkulär polarisation Fig 0.4, sid 405 Cirkulär polarisation (höger) När det elektro-magnetiska fältet består av två vinkelräta

Läs mer

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens Hur funkar 3D bio? Lunds Universitet 2016 Laborationsrapporter Lunds Universitet 2016 Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260 Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion

Läs mer

FAFF Johan Mauritsson 1. Föreläsningar. Våglära och optik. Världens minsta film. Projekten

FAFF Johan Mauritsson 1. Föreläsningar. Våglära och optik. Världens minsta film. Projekten Våglära och optik FAFF30 JOHAN MAURITSSON Föreläsningar F10 Fraunhoferdiffraktion F11 Diffraktionsgitter F12 Fresneldiffraktion F13 Matrisrepresentation av polariserat ljus F14 Polariserat ljus F15 Repetition

Läs mer

Kikaren. Synvinkel. Kepler och Galileikikare. Vinkelförstoring. Keplerkikaren. Keplerkikaren FAF260. Lars Rippe, Atomfysik/LTH 1

Kikaren. Synvinkel. Kepler och Galileikikare. Vinkelförstoring. Keplerkikaren. Keplerkikaren FAF260. Lars Rippe, Atomfysik/LTH 1 Kikaren Synvinkel Ökar synvinkeln os avlägsna objekt 1 2 Vinkelörstoring Deinition: med optiskt instrument G utan optiskt instrument Kepler oc Galileikikare Avlägsna objekt (t. ex. med kikare): synvinkeln

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor. FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p) Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Vågrörelselära & Kvantfysik, FK2002 1 december 2011

Vågrörelselära & Kvantfysik, FK2002 1 december 2011 Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 34 - Optik 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Föreläsning 2 (kap , 2.6 i Optics)

Föreläsning 2 (kap , 2.6 i Optics) 5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen

Läs mer

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p) Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger

Läs mer

räknedosa. Lösningarna ska Kladdblad rättas. vissa (1,0 p) frånkopplad. (3,0 p) 3. Uppgiften går. Faskonstanten: 0

räknedosa. Lösningarna ska Kladdblad rättas. vissa (1,0 p) frånkopplad. (3,0 p) 3. Uppgiften går. Faskonstanten: 0 TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ettt nytt blad och skriv bara på

Läs mer

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för

Läs mer

Vågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den.

Vågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. Vågrörelselära Christian Karlsson Uppdaterad: 161003 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [14] 1 Elasticitet (bl.a. fjädrar)

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Institutionen för Fysik 2013-10-17. Polarisation

Institutionen för Fysik 2013-10-17. Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra

Läs mer

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook. CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

Vågrörelselära. Uppdaterad: [1] Elasticitet (bl.a. fjädrar) [15] Superposition / [2] Elastisk energi /

Vågrörelselära. Uppdaterad: [1] Elasticitet (bl.a. fjädrar) [15] Superposition / [2] Elastisk energi / Vågrörelselära Har jag använt någon bild som jag inte får Uppdaterad: 171017 använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Elasticitet (bl.a. fjädrar) [15] Superposition

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

Tentamen i Optik för F2 (FFY091)

Tentamen i Optik för F2 (FFY091) CHALMERS TEKNISKA HÖGSKOLA 2008-08-26 Teknisk Fysik 08.30-12.30 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så

Läs mer

Övning 9 Tenta från Del A. Vägg på avståndet r = 2.0 m och med reflektansen R = 0.9. Lambertspridare.

Övning 9 Tenta från Del A. Vägg på avståndet r = 2.0 m och med reflektansen R = 0.9. Lambertspridare. Övning 9 Tenta från 2016-08-24 Del A 1.) Du lyser med en ficklampa rakt mot en vit vägg. Vilken luminans får väggen i mitten av det belysta området? Ficklampan har en ljusstyrka på 70 cd och du står 2.0

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-05-04 Tentamen i Fotonik - 2015-05-04, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Polarisation Laboration 2 för 2010v

Polarisation Laboration 2 för 2010v Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus

Läs mer

= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm

= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm Bok Vågrörelse Fysik 3 Fysik 3, Vågrörelse Mekanisk vågrörelse Ljud Ljus Harmonisk kraft Ex [ F] [ k ] N / m [ x] Fjäder F -kx F -kx [ F] k fjäderkonstanten [ k ] [ x] - kraften riktad mot jämviktsläget

Läs mer

Repetitionsuppgifter i vågrörelselära

Repetitionsuppgifter i vågrörelselära Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor

Läs mer

Institutionen för Fysik Polarisation

Institutionen för Fysik Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat-, linjärt- och cirkulär polariserat ljus. Exempel på komponenter som kan

Läs mer

Tentamen i Våglära och optik för F

Tentamen i Våglära och optik för F Tentamen i Våglära och optik för F FAFF30, 2013 06 03 Skrivtid 8.00 13.00 Hjälpmedel: Läroboken och miniräknare Uppgifterna är inte sorterade i svårighetsgrad Börja varje ny uppgift på ett nytt blad och

Läs mer

Radiovågor. Tillämpad vågrörelselära FAF260. Astronomi. Mikrovågor. Mekaniska svängingar FAF260. Lars Rippe, Atomfysik/LTH 1. Lars Rippe Atomfysik

Radiovågor. Tillämpad vågrörelselära FAF260. Astronomi. Mikrovågor. Mekaniska svängingar FAF260. Lars Rippe, Atomfysik/LTH 1. Lars Rippe Atomfysik Radiovågor Tillämpad vågrörelselära FAF260 Lars Rippe Atomfysik ALMA-Atacama Large Millimeter Array Chajnantor platån i Atacama öknen i Chile på 5,000 m höjd Våglängder mellan 0.3 mm och 9.6 mm Astronomi

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 Hjälpmedel: Handbok, kopior av avsnitt om Fouirertransformer och Fourieranalys

Läs mer

Luft. film n. I 2 Luft

Luft. film n. I 2 Luft Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25 FAFA60-2016-05-10 Tentamen i Fotonik - 2016-05-10, kl. 08.00-13.00 FAFF25 Fysik för C och D, Delkurs i Fotonik FAFA60 Fotonik för C och D Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling

Läs mer

Vad är vågor? FAFF Johan Mauritsson 1. Tentamen. Våglära och optik. Experimentell tentamen. Räknestuga

Vad är vågor? FAFF Johan Mauritsson 1. Tentamen. Våglära och optik. Experimentell tentamen. Räknestuga FAFF30 013-05-5 Våglär och optik FAFF30 JOHAN MAURITSSON Tentmen 3 juni klockn 8.00 13.00 i Victorihllen T med boken T med miniräknre T med penn! T med legitimtion Experimentell tentmen Frivilligt! Ersätter

Läs mer

1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt).

1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). AKUSTIK Håkan Wennlöf, hwennlof@kth.se Övning : Akustik. Intensitet är effekt per area I = P A [ ] W m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). För ljudvåg gäller

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Gravitationsvågor! Tillämpad vågrörelselära FAF260. Gravitationsvågor! Radiovågor. Astronomi. Mikrovågor FAF260. Lars Rippe, Atomfysik/LTH 1

Gravitationsvågor! Tillämpad vågrörelselära FAF260. Gravitationsvågor! Radiovågor. Astronomi. Mikrovågor FAF260. Lars Rippe, Atomfysik/LTH 1 Gravitationsvågor! Tillämpad vågrörelselära FAF260 Lars Rippe Atomfysik 1.3 miljarder ljusår bort - GW150914 14 September 2015 Gravitationsvågor! Radiovågor LIGO Hanford - LIGO Livingston ALMA-Atacama

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,

Läs mer

Ljusets polarisation

Ljusets polarisation Ljusets polarisation Viktor Jonsson och Alexander Forsman 1 Sammanfattning Denna labb går ut på att lära sig om, och använda, ljusets polarisation. Efter utförd labb ska studenten kunna sätta upp en enkel

Läs mer

Böjning och interferens

Böjning och interferens Böjning och interferens Böjning: Oänligt många elementarvågor från en öppning Böjnings minima bsin m Interferens: Änligt många elementarvågor från flera öppningar Interferens maxima sin m Multipelinterferens

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00

Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00 FAFF25-2012-03-09 Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

TFYA58, Fysik, 8 hp, 3 delar

TFYA58, Fysik, 8 hp, 3 delar 1. Vågrörelselära (mekaniska vågor, optik, diffraktion ) 7x2 tim föreläsning 6x2tim lektion 2. Experimentell problemlösning TFYA58, Fysik, 8 hp, 3 delar Ht 1 Ht 2 2x1 tim föreläsning 2 st Richardslabbar

Läs mer

Tentamen i El- och vågrörelselära,

Tentamen i El- och vågrörelselära, Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från

Läs mer

Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003

Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för teknik och naturvetenskap Campus Norrköping Igor Zozoulenko Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 Laboration 1: Ljudhastigheten i luft;

Läs mer

Optik. Innehåll: I - Elektromagnetiska vågor radio och ljus. II - Reflexion och brytning. III - Ljusvågor. MNXA11 / Lund University

Optik. Innehåll: I - Elektromagnetiska vågor radio och ljus. II - Reflexion och brytning. III - Ljusvågor. MNXA11 / Lund University Optik Innehåll: I - Elektromagnetiska vågor radio och ljus II - Reflexion och brytning III - Ljusvågor Kom ihåg Definition Amplitud, Våglängd, Frekvens, Våghastighet Mekaniska eller Elektromagnetiska vågor

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Fysik TFYA86. Föreläsning 9/11

Fysik TFYA86. Föreläsning 9/11 Fysik TFYA86 Föreläsning 9/11 1 Elektromagnetiska vågor (ljus) University Physics: Kapitel 32, 33, 35, 36 (delar, översiktligt!) Översikt och breddning! FÖ: 9 (ljus) examineras främst genom ljuslabben

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3] TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

2. Ljud. 2.1 Ljudets uppkomst

2. Ljud. 2.1 Ljudets uppkomst 2. Ljud 2.1 Ljudets uppkomst Ljud är en mekanisk vågrörelse som fortskrider i ett medium (t.ex. luft, vatten...) Någon typ av medium är ett krav; I vakuum kan ljudet inte fortskrida. I vätskor och gaser

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Vågrörelselära och Optik VT14 Lab 3 - Polarisation

Vågrörelselära och Optik VT14 Lab 3 - Polarisation Vågrörelselära och Optik VT14 Lab 3 - Polarisation Stockholms Universitet 2014 Kontakt: olga.bylund@fysik.su.se Instruktioner för redogörelse för Laboration 3 Denna laboration består utav fyra experiment

Läs mer