Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003

Storlek: px
Starta visningen från sidan:

Download "Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003"

Transkript

1 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för teknik och naturvetenskap Campus Norrköping Igor Zozoulenko Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 Laboration 1: Ljudhastigheten i luft; ljudvågor, ljudnivåmätning Laboration 2: Geometrisk optik (brytningslagen, linsformel) Laboration 3: Fysikalisk optik (interferens och böjning) 1

2 Laboration 1: Ljudhastigheten i luft; ljudvågor, ljudnivåmätning Nödvändig teori: Föreläsning 1: Enkel harmonisk svängning (Kap.1), Tvungen svängning och resonans (Kap. 2) Föreläsning 2: Vågrörelse (Kap. 3) Föreläsning 3: Interferens (Kap. 4) Föreläsning 4: Interferens, försät. (Kap. 4), Musikinstrument (Kap. 9) Föreläsning 5: Ljudtryck, hastighet och intensitet (Kap 6), Hörsel och röst (Kap 7) Förberedelseuppgifter (lämnas in innan laborationen börjar) 1. En viss vattenvåg beskrivs av ekvationen s(x, t) = 0.25 sin(0.52x 2.3t), där s, x är i meter och t är i sekunder. Vilken är (a) amplituden, (b) frekvensen, (c) utbredningshastigheten, (d) den maximala partikelhastigheten? 2. Figuren nedan visar en harmonisk våg vid tiden t = 0 och senare vid t = 2 s. Skriv ner (teckna) denna vågs ekvation. s (cm) t = 0 s x (cm) t = 2 s 3. Figuren nedan visar ett partikelutslag vid tid t = 0 i en stående våg som bildas i ett rör av längden L. Rita partikelutslagen i röret vid tid t = T/8, T/4, T/2, T ; där T är svängningstid (period). Ange också om röret är öppet, helt stängt, eller halvstängt samt ange vilken resonansfrekvens det är (dvs första, andra,...). S(x,t=0) x L 4. En dag när ljudhastigheten var 345 m/s, var grundfrekvensen hos en i ena änden sluten orgelpipa 220 Hz. (a) Hur lång var orgelpipan? (b) Den tredje resonansfrekvensen hos denna pipa har samma våglängd som den tredje resonansfrekvensen hos en öppen orgelpipa. Vad är det för längd hos 2

3 öppna pipan? Rita schematiskt partikelutslag samt tryck för de tre lägsta resonansfrekvenserna (grundton och två första övertoner) i både en öppen och en sluten pipa. 5. Man lyssnar på musik från högtalaren och mätaren visar ljudintensitet I = 60 db. Vad blir det för förändringar i ljudintensitetsnivåen, om en annan identisk högtalare placeras bredvid den första? Utrustning Laborationsutrustningen är uppkopplad då ni kommer till laboratoriet. Mätuppställningen ser i princip ut enligt figur nedan. högtalare resonansrör rörlig kolv generator frekvensmeter flyttbar mikrofon oscilloskop En högtalare är ansluten till ena änden av resonansröret. Från högtalaren sänds en ljudvåg ut som utbreder sig i rörets längdriktning, så att röret fungerar som en ljudledare. Resonansrörets effektiva längd kan varieras med en rörlig kolv som förflyttas inne i röret. Ljudvågen reflekteras mot kolven och i röret blir det då en interferens mellan två motriktade vågor, som har i stort sett samma amplitud och således ger, för vissa frekvenser, upphov till en snygg stående våg med bukar och noder. Kolven kan tas bort och högtalaren flyttas så att resonansrörets bägge ändar kan vara öppna. Mikrofonen kan endera placeras någonstans i röret (eller bredvid en rörets öppen ände), eller monteras fast med tejp på en metallstav, för att kunna förflyttas inne i röret. Den signal som mikrofonen registrerar samt signalen från funktionsgeneratorn studeras på oscilloskopet. Viktigt! Innan funktionsgenerator slås på eller av skall amplituden nollställas, om inte kan högtalaren skadas. GLÖM ABSOLUT INTE DETTA! Lab 1.1 Bestämning av ljudhastigheten i luft Rörets båda ändar hålls stängda, högtalaren i den ena änden och den rörliga kolven i den andra. Mikrofonen placeras inne i röret. Ställ in en sinusspänning, amplitud maximalt klockan nio, frekvensen mellan 1-2 khz. 3

4 Variera rörets längd genom att flytta den rörliga kolven. När den stående vågen bildas i röret blir signalen från mikrofonen på oscilloskopet maximal. Rita schematiskt partikelutslag i röret for konsekutiva resonanser m, m + 1,... (observera att du inte vet vilken resonans det är, dvs värdet på m). Gör erforderliga mätningar av l och ta fram ett värde på våglängden λ. Använd sedan sambandet mellan f, v och λ (f = v/λ) för att ta fram ljudhastigheten i luft v. m l m+1 m+2 l Gör ett försök till, där frekvensen varieras mellan försöken. Vad gäller för vågens utberedningshastighet om temperaturen i rörets dubblas? Vad gäller för vågens utberedningshastighet om frekvensen halveras med bibehållen längd på röret? Lab 1.2 Resonansfrekvens Placera högtalaren på cirka 2-5 cm avstånd från rörets ena ände och öppna den andra änden helt. Mikrofonen placeras bredvid den öppna änden inne i röret. Ställ in en sinusspänning med frekvensen 100 Hz, amplitud maximalt klockan nio. Öka frekvensen långsamt och leta upp ett läge där mikrofonsignalen är maximal, sök sedan upp åtminstone fem maximum fm exper. Vilka är de teoretiska värdena av resonansfrekvens fm teor hos ett öppet rör (ta fram ett numeriskt värde av fm teor och utnyttja vetskap om ljudhastighet luft, v = 343m/s)? Rita grafen av fm exper och fm teor som funktion av m och jämför experimentella och teoretiska värden. Försöket upprepas sedan med slutet rör, dvs den öppna änden stängs igen; mikrofonen placeras inne i röret. 4

5 Lab 1.3 Stående ljudvågor När ljudetsfrekvens från högtalaren är lika med resonansfrekvensen i röret, bildas en stående våg i röret. Rita partikelutslag samt tryck i både ett öppet och ett i ena änden slutet rör för tredje och fjärde resonansfrekvenserna. Börja med ett öppet rör. Ställ in en frekvens på funktionsgeneratorn som motsvarar den tredje resonansfrekvensen. Montera fast mikrofonen med tejp på en metallstav. Förflytta mikrofonen inne i röret och mät signalen genom att leta upp lägen för bukar eller noder och avläs på mm-skalan. (Vilket läge är lättast att bestämma tycker du läget av buk eller nod?). Vad gäller för den mikrofon vi använder, vad mäter den? Rita signalen och jämför experiment och teori (uppgift 3(b)). Upprepa mätningar för en annan resonansfrekvens (t.ex. för fjärde resonans). Upprepa försöket med i ena änden slutet rör. Lab 1.4 Ljudnivåmätning Ljudintensitetsnivån anges i decibel och definieras enligt, L = 10 log I I 0, där I är den aktuella intensiteten och I 0 är en referensnivå som sätts till Wm 2. Detta värde anger den lägsta hörbara intensiteten och svarar mot noll decibel. Hörbarhetsområdet ligger mellan 0 och 120 db. Bekanta er med ljudnivåmätaren och genomför några enkla mätningar (t.ex., studera bakgrundsljudnivån i lokalen, bruset från en dator eller rinnande vatten; sjung, vissla, prata osv). 5

6 Laboration 2: Geometrisk optik (brytningslagen, linsformel) Nödvändig teori: Föreläsning 8: Elektromagnetiska vågor (Kap 11), Reflektion och brytning (Kap 12). Föreläsning 9: Geometrisk optik: Linser (Kap 13) Föreläsning 10: Geometrisk optik: Speglar (Kap 14) Dugga Laborationen inledas med en dugga som innehåller fyra praktiska (enkla) uppgifter vardera 1 poäng varje. För att bli godkänt måste man få min 2 poäng. Duggan är 15 min; Formelsamlingen får användas. De fyra uppgifterna omfattar följande ämnen, Brytningslagen, totalreflektion linsformel, standardstrålar för linser spegelformel, standardstrålar för speglar Förberedelseuppgifter (lämnas in innan laborationen börjar) 1. En ljusstråle infaller mot fyra glasskivor med olika brytningsindex enligt figuren nedan. Vilken vinkel bildar den utgående strålen med den infallande? α n=1.51 n=1.41 n= 1.48 n= För vilka avstånd a mellan objekt och en positiv lins med brännvidd f fås (a) en reell bild? (b) en virtuell bild? (Härled ett uttryck för avståndet och illustrera varje fall med en ritning). Tips: reell bild fås när b > 0 3. För vilka avstånd mellan objekt och en positiv lins fås (a) förstorad reell bild (b) förminskad reell bild (c) 1 1-reell bild (dvs förstoringen M = 1) 6

7 (Härled ett uttryck för avståndet och illustrera varje fall med en ritning). Facit: 2(a) a > f; 2(b) a < f; 3(a) f < a < 2f; 3(b) a > 2f; 3(c) a = 2f 4. En person står bredvid en pool, se figuren nedan. Ett mynt ligger på poolens botten på andra sida. Till vilket djup måste poolen fyllas med vatten för att man ska se myntet? 2m 4m 4m 2.5m mynt Utrustning Optisk bänk, lampa, kondensor, transformator, sladdar, pil, skärm, linser (f=+50mm, +100mm, -100mm), optiklåda, burk, mynt. Lab 2.1 Brytningslagen Bestäm, med hjälp av brytningslagen, brytningsindex för en kropp. Studera även totalreflektion. Mätuppställningen ser i princip ut enligt figur nedan. lampa kondensor skärm pil optisk bänk halvcirkelformad kropp Lab 2.2 Linsformeln Verifiera linsformeln i experiment. Mätuppställningen kan i princip se ut enligt figur på nästa sida. 1. Placera pil och lins med f = +100mm på minst två olika avstånd så att en skarp bild med förstoring M > 1 erhållas. Beräkna avståndet med linsformeln och jämför med de experimentella värdena. Beräkna förstoringen och jämför med de experimentella data. För vilka avstånd mellan objekt och lins fås alltså förstoring?; förminskning? 7

8 lampa kondensor lins skärm pil optisk bänk 2. Upprepa punkt 1 men försök att få 1 1-bild (M = 1) samt förminskning (M < 1). 3. Placera linsen på sådan avstånd (vilken?) att en virtuell bild erhålles. 4. Byt till negativ lins och undersök om skarp bild kan erhållas. Förklara din observation. Lab 2.3 Vattens brytningsindex Bestäm vattens brytningsindex med hjälp av burk, mynt, linjal. Utförande är valfritt, med några tips visas nedan (a) α α h (b) α1 α 2 h 8

9 Nödvändig teori: Laboration 3: Fysikalisk optik (interferens och böjning) Föreläsning 11: Böjning och upplösning (Kap 16) Föreläsning 12: Interferens och böjning (Kap 17) Förberedelseuppgifter (lämnas in innan laborationen börjar) 1. En spalt med bredden 1µm belyses med en röd He-Ne laser. Böjningsmönstret som studeras på en skärm visas i figuren nedan. Sedan tas spalten bort och en tråd med I/Io α/π samma diameter som spaltöppningen belyses med samma laser. Skissera mönstret som man kommer att se på skärmen. 2. Vid dubbelspaltförsök ser man 7 mörka streck per centimeter på en skärm som befinner sig 2 m ifrån dubbelspalten. Hur stor är spaltavstandet om ljuskällans våglängd är λ = 519nm? 3. Figuren på nästa sida visar ett interferensmönster på en skärm som uppkommer från ett gitter med spaltavståndet d = 100µm och okänd spaltbredd b (vi vet att b d) I/I x (cm) 9

10 Gittret belyses med en röd He-Ne laser (λ = 632.8nm). Förklara figuren: vilka maxima (eller minima) har ursprung i interferens och vilka i böjning? På vilket avstånd befinner sig gittret från skärmen? Var är det för spaltbredd b? (Ledning: studera Exempel 2, sida 357 i Våglära i optik samt relaterad teori). Utrustning Röd He-Ne laser (λ = 632.8nm), optisk bänk, skärm, varierbar spalt, bladmått, CD-skiva, Laser diffraction kit som inkluderar spalt, dubbelspalt och gitter. Viktigt! Observera att laser vi kommer att arbeta med, är 4000 gånger lysande än solskenet! Därför kan laserljuset skada näthinnan i ögat, så det är ABSOLUT FÖRBJUDET att titta in i laserstrålen! Mätuppställningen för Laborationer se i princip ut enligt figur nedan. He-Ne laser (632.8nm) spalt, gitter skärm bänk optisk bänk ~5m Lab 3.1 Diffraktion (böjning) i enkelspalt * Placera den varierbara spalten vinkelrätt mot laserstrålen. Variera spaltbredden och se på diffraktionsmönstret. Vad drar ni för slutsats av försöket? * Ställ med bladmåttet in en spaltbredd. Låt laserljuset falla in vinkelrätt mot spalten och gör erforderliga mätningar för att beräkna spaltbredden, utgående från diffraktionsmönstret. Jämför de båda värdena på spaltbredden. Lab 3.2 Hårets diameter Bestäm diameter hos ett hår med hjälp av laser (utnyttja Babinets princip). Lab 3.3 Bestämning av spaltbredden och spaltavståndet på okända spalter och gitter. (a) enkelspalt Placera enkelspalten vinkelrätt mot laserstrålen och låt diffraktionsmönstret falla på ett papper. (Använd single slit från Laser diffraction kit). Gör erforderliga mätningar för att beräkna spaltbredden. 10

11 (b) dubbelspalt Placera dubbelspalten vinkelrätt mot laserstrålen och låt interferensmönstret falla på ett papper. (Använd multiple slit 2 från Laser diffraction kit). Analysera mönstret som ni se på skärmen och jämför det med diffraktionsmönstret från enkelspalten från föregående uppgift (jämför också den här uppgiften med förberedelseuppgift 3). Vilka maxima (eller minima) har ursprung i interferens och vilka i böjning? Gör erforderliga mätningar för att beräkna spaltbredden och spaltavståndet. Vad drar ni för slutsats av försöket om spaltbredden hos dubbelspalten och enkelspalten från föregående uppgift? (c) gitter Byt spalten till ett gitter och gör erforderliga mätningar för att beräkna spaltbredden och spaltavståndet. (Använd två gitter, coarse gratings 2 och coarse gratings 3 från Laser diffraction kit). Jämför mönstret från båda gittren. Vad drar ni för slutsats av försöket? Lab 3.4 CD-skivan På en CD-skiva ligger information kodad i ett spiralformat spår. Man kan bestämma spåravståndet genom att använda CD-skivan som ett reflexionsgitter för vinkelrätt infallande laserljus, se figuren nedan. bänk He-Ne laser (632.8nm) skärm med hål CD-skiva Använd aluminiumskärmen med det uppborrade hålet och gör erforderliga mätningar för att bestämma spåravståndet. Undersök också hur långt spåret är på CD-skivan. 11

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Repetitionsuppgifter i vågrörelselära

Repetitionsuppgifter i vågrörelselära Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor

Läs mer

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p) Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens Ljusets böjning & interferens Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter 3 Appendix Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Dopplerradar. Ljudets böjning och interferens.

Dopplerradar. Ljudets böjning och interferens. Dopplerradar. Ljudets böjning och interferens. Förberedelser Läs i vågläraboken om interferens (sid 60 70), svävning (sid 71 72), dopplereffekt (sid 83 86), ljudreflektioner i ett rum (sid 138 140), böjning

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd? Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor. FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2012-04-10 Tentamen i Fotonik - 2012-04-10, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Tentamen i Fysik för K1, 000818

Tentamen i Fysik för K1, 000818 Tentamen i Fysik för K1, 000818 TID: 8.00-13.00. HJÄLPMEDEL: LÄROBÖCKER (3 ST), RÄKNETABELL, GODKÄND RÄKNARE. ANTAL UPPGIFTER: VÅGLÄRA OCH OPTIK: 5 ST, ELLÄRA: 3 ST. LÖSNINGAR: LÖSNINGARNA SKA VARA MOTIVERADE

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Vågrörelselära, akustik och optik. Lösningsförslag till räkneuppgifter

Vågrörelselära, akustik och optik. Lösningsförslag till räkneuppgifter Vågrörelselära, akustik och optik. Lösningsförslag till räkneuppgifter Jonas Persson 5 juli 2007 Förord Som författare försöker man att anpassa sig till läsarna och presentera materialet på ett så lättläst

Läs mer

1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft.

1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. Problem. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. (p) Det finns många förklaringar, till exempel Hewitt med insekten

Läs mer

Uppgift 1: När går en glödlampa sönder?

Uppgift 1: När går en glödlampa sönder? Uppgift 1: När går en glödlampa sönder? Materiel: Glödlampa, strömkälla, motstånd samt dator försedd med analog/digital omvandlare och tillhörande programvara för datainsamling. Beskrivning: Kanske tycker

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant Fysik - Måldokument Lena Folkebrant FYSIK ÅK 9 AKUSTIK OCH OPTIK Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng

Läs mer

Lösningarna inlämnas renskrivna vid laborationens början till handledaren

Lösningarna inlämnas renskrivna vid laborationens början till handledaren Geometrisk optik Förberedelser Läs i vågläraboken om avbildning med linser (sid 227 241), ögat (sid 278 281), färg och färgseende (sid 281 285), glasögon (sid 287 290), kameran (sid 291 299), vinkelförstoring

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25 FAFA60-2016-05-10 Tentamen i Fotonik - 2016-05-10, kl. 08.00-13.00 FAFF25 Fysik för C och D, Delkurs i Fotonik FAFA60 Fotonik för C och D Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Repetition Ljus - Fy2!!

Repetition Ljus - Fy2!! Repetition Ljus - Fy2 Egenskaper ör : Ljus är inte en mekanisk vågrörelse. Den tar sig ram utan problem även i vakuum och behöver alltså inget medium. Exakt vilken typ av vågrörelse är återkommer vi till

Läs mer

Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad rättas inte!

Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad rättas inte! DUGGA I FYSIK FÖR BME1 DEN 28 Nov 2015 Skrivtid: 08.00-12.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Vågrörelselära & Kvantfysik, FK2002 1 december 2011

Vågrörelselära & Kvantfysik, FK2002 1 december 2011 Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f

Läs mer

Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 4

Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 4 IHM Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 4 Datum 213-11-7 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare Linjal

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

E-I Sida 1 av 6. Diffraktion på grund av spiralstruktur (Total poäng: 10)

E-I Sida 1 av 6. Diffraktion på grund av spiralstruktur (Total poäng: 10) Sida 1 av 6 Diffraktion på grund av spiralstruktur (Total poäng: 10) Inledning Röntgendiffraktionsbilden för DNA (Fig. 1), som togs i Rosalind Franklins laboratorium och blev känd som Photo 51, lade grunden

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

Prov i vågrörelselära vt06 Lösningsförslag

Prov i vågrörelselära vt06 Lösningsförslag Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela

Läs mer

PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN PBFy9805 Enheten för Pedagogiska Mätningar 1998-05 Umeå Universitet Provtid PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN Del I: Experimentell del Anvisningar Hjälpmedel: Provmaterial Miniräknare (grafritande

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

E-II. Diffraktion på grund av ytspänningsvågor på vatten

E-II. Diffraktion på grund av ytspänningsvågor på vatten Q Sida 1 av 6 Diffraktion på grund av ytspänningsvågor på vatten Inledning Hur vågor bildas och utbreder sig på en vätskeyta är ett viktigt och välstuderat fenomen. Den återförande kraften på den oscillerande

Läs mer

Geometrisk optik. Laboration

Geometrisk optik. Laboration ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Geometrisk optik Linser och optiska instrument Avsikten med laborationen är att du ska få träning i att bygga upp avbildande optiska

Läs mer

Våglära och Optik Martin Andersson mading1977@gmail.com

Våglära och Optik Martin Andersson mading1977@gmail.com Våglära och Optik Martin Andersson mading1977@gmail.com A - Våglära (Kapitel 19-21) Innehåll: I - Beskrivning, Egenskaper hos vibrationer och vågor II - Mekaniska vågor ljud I - Beskrivning, egenskaper

Läs mer

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Datum 2011-06-01 Tid 4 timmar Kursansvarig Åsa Skagerstrand Tillåtna hjälpmedel Övrig information Resultat:

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 18 DECEMBER 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

(ii) Beräkna sidoförskjutningen d mellan in- och utgående strålar, uttryckt i vinklarna θ i och tjocklekar t i. (2p)

(ii) Beräkna sidoförskjutningen d mellan in- och utgående strålar, uttryckt i vinklarna θ i och tjocklekar t i. (2p) Tentamen i Vågrörelselära(FK49) Datum: Onsdag, 4 Augusti,, Tid: 9: - 4: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen

Läs mer

Ljudets och ljusets böjning och interferens

Ljudets och ljusets böjning och interferens 1 Föreredelser Läs i vågläraoken om ljudreflektioner i ett rum (sid 138-140), öjning i en spalt (sid 325-329), öjning i en cirkulär öppning och Bainets princip (sid 329-332), Youngs duelspaltförsök (sid

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

Laboration 2: Buller och akustik

Laboration 2: Buller och akustik Fysiska institutionen, UDIF Laboration 2: Buller och akustik Illustration av en stående våg. Olika tillfällen visas med olika ljusa kurvor. Simulerad amplitud nära enkelspalt respektive trippelspalt. Högst

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Chalmers tekniska högskola och April 2001. Fysik och teknisk fysik Christian Karlsson

Chalmers tekniska högskola och April 2001. Fysik och teknisk fysik Christian Karlsson Tom sida. Lab-PM börjar på nästa sida. 1 Chalmers tekniska högskola och April 2001 Göteborgs universitet 11 sidor Fysik och teknisk fysik Christian Karlsson O9 Optik för Basåret En CD-spelare innehåller

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260 Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion

Läs mer

a) Ljud infalier fran luft mot ett tatare material. Ar stralarna A och B i fas elier ur fas precis vid gransytan?

a) Ljud infalier fran luft mot ett tatare material. Ar stralarna A och B i fas elier ur fas precis vid gransytan? / TENT AMEN I TILLAMPAD VAGLARA FOR M Skrivtid: 08.00-13.00 Hjalpmedel: Formelblad och raknedosa. Uppgifterna ar inte ordnade efter svarighetsgrad. Borja varje ny uppgift pa ett nytt blad och skriv bara

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n1, 9 JANUARI 2004 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och godkänd räknare. Obs. Inga lösblad! Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och

Läs mer

Tentamen i Optik för F2 (FFY091)

Tentamen i Optik för F2 (FFY091) CHALMERS TEKNISKA HÖGSKOLA 2008-08-26 Teknisk Fysik 08.30-12.30 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Våglära och optik FAFF30 JOHAN MAURITSSON

Våglära och optik FAFF30 JOHAN MAURITSSON Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

för M Skrivtid re (2,0 p) används för (2p) (3,0 p) vattenbad?

för M Skrivtid re (2,0 p) används för (2p) (3,0 p) vattenbad? Tentamen i tillämpad Våglära FAF260, 2014 05 30 för M Skrivtid 8.00 13.00 Hjälpmedel: Formelblad och miniräknar re Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook. CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

RealSimPLE: Pipor. Laborationsanvisningar till SimPLEKs pipa

RealSimPLE: Pipor. Laborationsanvisningar till SimPLEKs pipa RealSimPLE: Pipor Laborationsanvisningar till SimPLEKs pipa Vad händer när ljudvågor färdas genom ett rör? Hur kan man härma ljudet av en flöjt? I detta experiment får du lära dig mer om detta! RealSimPLE

Läs mer

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M 2012-01-13 Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

Chalmers tekniska högskola och Oktober 2007 V1, V2. Projektlaborationer

Chalmers tekniska högskola och Oktober 2007 V1, V2. Projektlaborationer Chalmers tekniska högskola och Oktober 2007 Göteborgs universitet 10 sidor E. Eriksson, J. Bäckström, C. Karlsson, F. Svedberg, C. Tengroth, K. Stiller, H. Riedl och D. Hanstorp V1, V2 Projektlaborationer

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Problem Vågrörelselära & Kvantfysik, FK november Givet:

Problem Vågrörelselära & Kvantfysik, FK november Givet: Räkneövning 3 Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Problem 16.5 Givet: En jordbävning orsakar olika typer av seismiska vågor, bland annat; P- vågor (longitudinella primär-vågor) med våghastighet

Läs mer

WALLENBERGS FYSIKPRIS 2013

WALLENBERGS FYSIKPRIS 2013 WALLENBERGS FYSIKPRIS 2013 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna

Läs mer

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 OSCILLOSKOPET Syftet med laborationen Syftet med denna laboration är att du ska få lära dig principerna för hur ett oscilloskop fungerar,

Läs mer

Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur.

Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur. Diffraktion (Kap. 36) Diffraktion... Fjärilens (Blå Morpho) vingar har en ytstruktur som gör att endast vissa färger (blå) blir synligt under vissa vinklar genom diffraktionseffekter: idag försöker forskare

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

Tentamen i Fysik våglära, optik och atomfysik (FAF220),

Tentamen i Fysik våglära, optik och atomfysik (FAF220), KURSLABORATORIET I FYSIK, LTH Tentamen i Fysik våglära, optik och atomfysik (FAF0), 0503 TID: 0503, KL. 3 HJÄLPMEDEL: UTDELAT FORMELBLAD, GODKÄND RÄKNARE. OBS. INGA LÖSBLAD! LÖSNINGAR: BÖRJA VARJE NY UPPGIFT

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Elektromagnetism (TFYA86) LJUSVÅGOR

Elektromagnetism (TFYA86) LJUSVÅGOR TEKNISKA HÖGSKOLAN VID LINKÖPINGS UNIVERSITET IFM Elektromagnetism (TFYA86) LJUSVÅGOR LABORANT PERSON- NUMMER DATUM GODKÄND (Mars 11 BS) MÅL Avsikten med laborationen är att illustrera en del fenomen som

Läs mer

Radiovågor. Tillämpad vågrörelselära FAF260. Astronomi. Mikrovågor. Mekaniska svängingar FAF260. Lars Rippe, Atomfysik/LTH 1. Lars Rippe Atomfysik

Radiovågor. Tillämpad vågrörelselära FAF260. Astronomi. Mikrovågor. Mekaniska svängingar FAF260. Lars Rippe, Atomfysik/LTH 1. Lars Rippe Atomfysik Radiovågor Tillämpad vågrörelselära FAF260 Lars Rippe Atomfysik ALMA-Atacama Large Millimeter Array Chajnantor platån i Atacama öknen i Chile på 5,000 m höjd Våglängder mellan 0.3 mm och 9.6 mm Astronomi

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt.

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt. Om förstoringsglaset Du kan göra mycket med bara ett förstoringsglas! I många sammanhang i det dagliga livet förekommer linser. Den vanligast förekommande typen är den konvexa linsen, den kallas också

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer