Elevens övningsark Förnamn

Storlek: px
Starta visningen från sidan:

Download "Elevens övningsark Förnamn"

Transkript

1 1 Magnetiska poler Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter 1. Nämn fem saker som en magnet drar till sig. 2. Vad kallar man ändarna på en magnet? 1. Vilken typ av metall fastnar en magnet på? 2. Vad händer när likadana poler på en magnet läggs nära varandra? 1. Vilken typ av metall fastnar en magnet på? 2. Vad händer när likadana poler på en magnet läggs nära varandra? Vilka krafter bildas?

2 2 Konstruera en kompass Övningens syfte: Att göra en kompass och hitta nord- och sydpolerna. 1. Nämn två saker på din skola som vetter mot norr från där du står eller sitter just nu. 2. Om du var på Nordpolen vilken ände av jordens magnet skulle du i så fall vara vid? 1. Nämn två saker på din skola som vetter mot norr i förhållande till var du befinner dig nu. Vetter dessa saker fortfarande mot norr i förhållande till dig om du flyttar dig till ett annat ställe på skolan? 2. Om du var på Nordpolen vilken ände av jordens magnet skulle du i så fall vara vid? Kan du förklara varför? 1. Låt kompassen hjälpa dig att hitta norr, och rita därefter en karta över ditt klassrum. 2. Varför tror du att två kulor används tillsammans för att man ska kunna göra kompassen?

3 3 Magnetiska krafter inuti kulorna Övningens syfte: Att förstå hur man kan öka och sänka de magnetiska krafterna inuti kulorna. 1. Vad händer om du sätter ihop två set där båda har värdet -2? Vad händer om du sätter ihop två set där det ena värdet har +2 och det andra har värdet -2? Vad händer om du sätter ihop två set där båda har värdet -2? Förklara ditt svar Vad händer om du sätter ihop två set där det ena värdet har +2 och det andra har värdet -2? Förklara ditt svar Skriv regler som förklarar vad som händer med seten när de placeras i närheten av varandra och har kulor med olika värden. 2. Vad händer när en kula med värdet noll rör vid en annan kula med värdet noll?

4 4 Magnetisk levitation Övningens syfte: Att förstå att lika poler repellerar (stöter bort), och vad som menas med magnetisk levitation. 1. Vilket avstånd är det mellan levitationsstavarna? Kan du tänka ut hur du ska mäta avstånden? Förklara här under med ett diagram. 1. Vad händer när du lägger flera stavar i tuben? 2. Vad är det totala levitationsavståndet med tre stavar? 1. Om tre eller fler stavar läggs till, är avståndet då mellan varje stav detsamma? Kan du hitta ett sätt till att mäta avstånd och bevisa din teori? Förklara här under. 2. Kan du tänka ut andra, praktiska tillfällen där magnetisk levitation eller fjädrar kan användas?

5 5 Ackumulering av polariteter Övningens syfte: Att förstå vad som händer när de magnetiska krafterna inne i kulorna ökar och minskar. 1. Vad händer när du placerar de två kulorna bredvid varandra? Vad händer när du placerar de två kulorna bredvid varandra? Förklara ditt svar Rita och markera värdena på ett liknande set som bara har två kulor som repellerar eller visa bortstötande krafter. 1. Vad händer när du placerar de två kulorna bredvid varandra? Förklara ditt svar. På vilket sätt kan du öka eller minska attraktionen mellan de två kulorna? Hur får du två kulor att stöta bort varandra med fler stavar? Rita ditt svar här under och ge en kort beskrivning.

6 6 Enkla strukturer Övningens syfte: Att bilda enkla strukturer. 1. Förklara varför en fyrkant är en svag figur. 1. Förklara varför en triangel är en stark figur. 1. Förklara (med en ritning) hur en fyrkant kan göras till en starkare figur.

7 7 Regelbundna polygoner Övningens syfte: Att förstå vad en regelbunden polygon är och hur man gör en serie figurer. 1. Rita och namnge de tre-, fyr-, fem- och sexkantiga regelbundna polygonerna. 1. Rita och namnge de tre-, fyr-, fem- och sexkantiga regelbundna polygonerna. 2. Rita och namnge några tre-, fyr-, fem- och sexkantiga oregelbundna polygoner. 1. Rita och namnge de tre-, fyr-, fem- och sexkantiga regelbundna polygonerna. Lägg till de invändiga vinklarna för varje figur.

8 8 Tredimensionella (3D) strukturer Övningens syfte: Att förstå hur det går till att bygga en struktur genom att använda enkla polygoner. 1. Kan du förklara vad en struktur är? 1. Kan du förklara vad en struktur är? 2. Rita en struktur här under. Markera några enkla polygoner. 1. Kan du förklara vad en struktur är? 2. Kuben här under är inte en stark struktur. Hur kan du göra strukturen starkare? Rita dina idéer och förklara varför.

9 9 Komplexa 3D-strukturer Övningens syfte: Att förstå hur 3D-figurer formas. 1. Markera och räkna hörnen, sidorna och kanterna på kuben här under. 1. Markera och räkna hörnen, sidorna och kanterna på pyramiden med en triangelformad bas här under. 1. Rita, markera och räkna hörnen, sidorna och kanterna på ett sexkantigt prisma.

10 10 Starka strukturer Övningens syfte: Att bygga en enkel brostruktur och förstå hur man förstärker en struktur. 1. Rita den färdiga bron sedd från sidan, så att det tydligt framgår på vilket sätt du har förstärkt brons vägbana. 1. Rita den färdiga bron sedd från sidan, så att det tydligt framgår på vilket sätt du har förstärkt brons vägbana. Markera alla bortstötande och tilldragande krafter du kan se. 1. Rita den färdiga bron sedd från sidan, så att det tydligt framgår på vilket sätt du har förstärkt brons vägbana. Markera minst två stavar som är under tryck och två som är under spänning.

11 11 Fackverksbroar Övningens syfte: Att förstå vad en fackverksbro är och trianguleringens effekt på strukturerna. 1. Rita en fackverksbro här under. 2. Vilken figur är den viktigaste på en fackverksbro? 1. Rita en fackverksbro här under. Markera en triangel. 2. Förklara varför trianglar är så viktiga. 1. Rita en fackverksbro här under. Markera en triangel. 2. Vilka material används till att bygga fackverksbroar?

12 12 Användning av bortstötande och tilldragande krafter Övningens syfte: Att bygga en struktur för att visa de magnetiska bortstötande och tilldragande krafterna. 1. Kan du förklara varför käkarna inte stängs? 1. Kan du förklara varför käkarna inte stängs? 2. Hur kan du göra så att käkarna stängs genom att använda en till stav? Rita ditt svar. 1. Använd de ord du har lärt dig till att förklara varför käkarna inte stängs. 2. Hur kan du öppna käkarna ännu mera?

13 13 Oscillator Övningens syfte: Att förstå hur jag kan använda de bortstötande krafterna till att bygga en svängande pendel. 1. Hur länge pendlar triangeln i mitten? Använd ett stoppur och ta tiden i sekunder. 1. Hur länge pendlar triangeln i mitten? Använd ett stoppur och ta tiden i sekunder. 2. På vilket sätt tror du att du kan förlänga den tiden? 1. Förklara uttrycket pendling. Kan du komma på någon sak som pendlar? 2. Visa på diagrammet här under de krafter som är inblandade, och de magnetiska krafternas värde på kulorna högst upp.

14 14 Rotation och friktion Övningens syfte: Att använda kulor till kopplingar med låg friktion. 1. Vad händer med den nedersta delen när du snurrar den orangefärgade strukturen på den första modellen? 2. Vad får den att bromsa och till slut stanna? 1. Snurra de två delarna på den första modellen i motsatt riktning. Vad händer till sist? 2. Vad får den att bromsa och till slut stanna? 1. När den orangefärgade strukturen på den första modellen snurras så rör basdelen sig också. Om du lägger till fler stavar för att förstärka polariteten på toppkulan, kommer det då att minska eller öka effekten? Varför? 2. Även om det inte fanns någon friktion alls mellan kulorna skulle rotationen till slut stanna. Varför?

15 15 Enkla kullager Övningens syfte: Att förstå hur enkla kullager fungerar. 1. Förklara varför och hur ett enkelt kullager fungerar. 1. Förklara varför och hur ett enkelt kullager fungerar. 2. Varför är friktionen lägre i ett kullager? 1. Rita och markera delarna på ett enkelt kullager. 2. Vad händer med strukturens rörelse om friktionskoefficienten är lika med noll?

16 16 Trycklager Övningens syfte: Att förstå hur trycklager fungerar. 1. Vilka belastningstyper finns det i ett trycklager? 2. Tror du att detta lager passar i en karusell? Varför? 1. Vilka belastningstyper finns det i ett trycklager? 2. Rita trycklagerbelastningens riktning på karusellen här under. 1. Vilka belastningstyper finns det i ett trycklager? 2. Rita trycklagerbelastningens riktning på karusellen här under. Känner du till några andra produkter eller konstruktioner som har trycklager?

17 17 Lägga till en rotationsrörelse Övningens syfte: Att förstå hur rotationsrörelsen kan kombineras med de magnetiska bortstötande och tilldragande krafterna. 1. Beskriv vad som händer med käkarna när du roterar mittdelen. 2. Visa med pilar rotationsrörelsen som bildas på diagrammet här under. Vilken magnetisk kraft rör det sig om bortstötande (repulsiv) eller tilldragande (attraktiv) kraft? 1. Beskriv alla rörelserna när du roterar mittdelen. 2. Visa med pilar rotationsrörelsen som bildas på diagrammet här under. Vilken magnetisk kraft rör det sig om bortstötande (repulsiv) eller tilldragande (attraktiv) kraft? Hur kan du veta det? 1. Beskriv rörelsen och krafterna som sker när du roterar mittdelen. Förklara varför det händer. 2. Visa rotationsrörelsen som bildas på diagrammet här under. Vilken magnetisk kraft rör det sig om bortstötande (repulsiv) eller tilldragande (attraktiv) kraft? Hur kan du veta det?

18 18 Drivande rörelse Övningens syfte: Att förstå hur man bildar en drivande rörelse med hjälp av de magnetiska bortstötande och tilldragande krafterna. Och att förstå hur man bildar en rotationsrörelse genom att använda enkla kullager. 1. Beskriv rörelsen när du snurrar toppdelen. 2. Varför behövs det ett kullager mellan de två delarna? 1. Beskriv rörelsen som uppstår när du roterar toppdelen. Vilken magnetisk kraft åstadkommer denna rörelse? 2. Varför behövs det ett kullager mellan de två delarna? 1. Förklara varför de två delarna pendlar och roterar tillsammans? 2. Vad skulle hända med rörelsen om det inte fanns någon friktion mellan kullagren? Är det möjligt?

19 19 Homopolär magnetisk motor Övningens syfte: Att förstå hur en homopolär magnetisk motor är konstruerad. 1. Rita och markera delarna på en homopolär motor. 2. Vad har denna motor gemensamt med en liten elektrisk motor i leksaksbilar? 1. Rita och markera delarna på en homopolär motor. 2. Vad skulle hända om du använde ett batteri med mer effekt? 1. Rita och markera delarna på en homopolär motor. 2. Vad är det som får tråden att röra sig fortare?

Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter

Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter 1 Magnetiska poler Övningens syfte: Att förstå hur positiva och negativa magnetiska poler har bortstötande krafter och tilldragande krafter 1. Nämn fem saker som en magnet drar till sig. Alla metallföremål

Läs mer

Elektricitet och magnetism. Elektromagneter

Elektricitet och magnetism. Elektromagneter Elektricitet och magnetism. Elektromagneter Hans Christian Ørsted (1777 1851) 1820 Hans Christian Ørsted upptäckte att elektricitet och magnetism i allra högsta grad hänger ihop Upptäckten innebar att

Läs mer

ELEKTRICITET. Vad använder vi elektricitet till? Hur man använder elektricitet?

ELEKTRICITET. Vad använder vi elektricitet till? Hur man använder elektricitet? ELEKTRICITET Vad använder vi elektricitet till? Hur man använder elektricitet? ELEKTRICITET I EN KRETS En elektrisk krets 1. Slutenkrets 2. Öppenkrets KOPPLINGSSCHEMA Komponenter i en krets Batteri /strömkälla

Läs mer

Läsförståelse 26. Magnetism. Jonas Storm, Kungsbroskolan, Tidaholm www.lektion.se. Bild från wikipedia. Pyramid av dankar och stavmagneter.

Läsförståelse 26. Magnetism. Jonas Storm, Kungsbroskolan, Tidaholm www.lektion.se. Bild från wikipedia. Pyramid av dankar och stavmagneter. Läsförståelse 26 Bild från wikipedia. Pyramid av dankar och stavmagneter. Magnetism Innehåll Permanentmagneter och naturliga magneter Kompassen och jordens magnetfält Elektromagneten Från magnetism till

Läs mer

PLANA FIGURER I DEN TREDIMENSIONELLA RYMDEN

PLANA FIGURER I DEN TREDIMENSIONELLA RYMDEN larobjekt1.nb 1 PLANA FIGURER I DEN TREDIMENSIONELLA RYMDEN Fyra lärobjekt, som bildar en helhet: Ë vart och ett presenterar någon typ av regelbunden polyeder Ë vart och ett belyser någon idé som är viktig

Läs mer

AKTIVITETER VID POWERPARK/HÄRMÄ

AKTIVITETER VID POWERPARK/HÄRMÄ AKTIVITETER VID POWERPARK/HÄRMÄ Acceleration Mega Drop Fritt fall Piovra Typhoon Svängningsrörelse Planetrörelse La Paloma Cirkelrörelse FRITT FALL (Mega Drop) Gradskiva och måttband Räknemaskin Tidtagarur

Läs mer

attraktiv repellerande

attraktiv repellerande Magnetism, kap. 24 Eleonora Lorek Magnetism, introduktion Magnetism ordet kommer från Magnesia, ett område i antika Grekland där man hittade konstiga stenar som kunde lyfta upp järn. Idag är magnetism

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Ge exempel på hur vi använder oss av magneter Think, pair, share

Ge exempel på hur vi använder oss av magneter Think, pair, share Magnetism Ge exempel på hur vi använder oss av magneter Think, pair, share Vilka ämnen är magnetiska? Vi gör även en laboration där vi testar vilka ämnen som är magnetiska och drar en slutsats utifrån

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Demonstration: De magnetiska grundfenomenen. Utrustning: Tre stavmagneter, metallkulor, mynt, kompass.

Demonstration: De magnetiska grundfenomenen. Utrustning: Tre stavmagneter, metallkulor, mynt, kompass. 1. Magnetism Magnetismen som fenomen upptäcktes redan under antiken, då man märkte att vissa malmarter attraherade vissa metaller. Nuförtiden vet vi att magneter också kan skapas på konstgjord väg. 1.1

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Magnetism och elektromagnetism

Magnetism och elektromagnetism Teknikområde Magnetism och elektromagnetism Magneter upptäcktes i staden Magnesia i Grekland. Magneter kan dra till sig föremål som innehåller mycket järn (eller kobolt eller nickel). Man kan tex. använda

Läs mer

Grundläggande ellära. Materiellåda art nr. 1. I den första uppgiften skall du använda ett batteri, 2 sladdar med banankontakter och en lös glödlampa.

Grundläggande ellära. Materiellåda art nr. 1. I den första uppgiften skall du använda ett batteri, 2 sladdar med banankontakter och en lös glödlampa. 1 Mtrl: Materiellåda art nr Grundläggande ellära 1. I den första uppgiften skall du använda ett batteri, 2 sladdar med banankontakter och en lös glödlampa. Koppla så att lampan lyser. Rita hur du kopplade.

Läs mer

Föreläsning 5: Geometri

Föreläsning 5: Geometri Föreläsning 5: Geometri Geometri i skolan Grundläggande begrepp Former i omvärlden Plangeometriska figurer Symmetri och tessellering Tredimensionell geometri och geometriska kroppar Omkrets, area, volym

Läs mer

Vrid och vänd en rörande historia

Vrid och vänd en rörande historia Vrid och vänd en rörande historia Den lilla bilden nederst på s 68 visar en låda. Men vad finns i den? Om man vrider den vänstra pinnen, så rör sig den högra åt sidan. Titta på pilarna! Problemet har mer

Läs mer

DEMONSTRATIONER ELEKTROSTATIK II. Bandgeneratorns princip Försök med bandgeneratorn Åskvarnare Ljuslåga i elektrostatiskt fält

DEMONSTRATIONER ELEKTROSTATIK II. Bandgeneratorns princip Försök med bandgeneratorn Åskvarnare Ljuslåga i elektrostatiskt fält DEMONSTRATIONER ELEKTROSTATIK II Bandgeneratorns princip Försök med bandgeneratorn Åskvarnare Ljuslåga i elektrostatiskt fält Introduktion I litteraturen och framför allt på webben kan du enkelt hitta

Läs mer

Magneter. En magnet har all-d en nord- och en sydände. Magneter används -ll exempelvis kompasser, magnetlås, fästmagneter.

Magneter. En magnet har all-d en nord- och en sydände. Magneter används -ll exempelvis kompasser, magnetlås, fästmagneter. Magneter En magnet har all-d en nord- och en sydände. Magneter används -ll exempelvis kompasser, magnetlås, fästmagneter. Om man lägger en magnetnål på en rörlig hållare ställer nålen in sig i nordsydlig

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Elektricitet och magnetism

Elektricitet och magnetism Elektricitet och magnetism Eldistribution Laddning Ett grundläggande begrepp inom elektricitetslära är laddning. Under 1700-talet fann forskarna två sorters laddning POSITIV laddning och NEGATIV laddning

Läs mer

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

Golv, Tapeter, och andra Mönster

Golv, Tapeter, och andra Mönster Golv, Tapeter, och andra Mönster De Arkimediska plattläggningarna Tänk dig att du ska lägga ett golv. Till ditt förfogande har du plattor av varierande utseende, men alla är så kallade reguljära månghörningar,

Läs mer

Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6

Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6 Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots

Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots Grupp 1: Kanonen: Launch + Top Hat + Lilla Lots Kanonen liknar inte en vanlig berg- och dalbana. Uppdraget- den långa backen där berg- och dalbanetåg sakta dras upp - har ersatts med en hydraulisk utskjutning.

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

4-10 Rymdgeometri fördjupning Namn:..

4-10 Rymdgeometri fördjupning Namn:.. 4-10 Rymdgeometri fördjupning Namn:.. Inledning I kapitlet om rymdgeometri lärde du dig känna igen de vanligaste tredimensionella kropparna, och hur man beräknar deras yta och volym. I detta kapitel skall

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

NMCC Sigma 8. Täby Friskola 8 Spets

NMCC Sigma 8. Täby Friskola 8 Spets NMCC Sigma 8 Täby Friskola 8 Spets Sverige 2016 1 Innehållsförteckning Innehållsförteckning... 1 Inledning... 2 Sambandet mellan figurens nummer och antalet små kuber... 3 Metod 1... 3 Metod 2... 4 Metod

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Elbilstävlingen. Tilläggsuppdrag till. Magneter och Motorer. och. Rörelse och Konstruktion

Elbilstävlingen. Tilläggsuppdrag till. Magneter och Motorer. och. Rörelse och Konstruktion 060508 Elbilstävlingen Tilläggsuppdrag till Magneter och Motorer och Rörelse och Konstruktion Av: Pauliina Kanto NO-lärare och NTA-utbildare, Håbo kommun 1 Inledning Dessa tilläggsuppdrag passar utmärkt

Läs mer

ELLÄRA OCH MAGNETISM

ELLÄRA OCH MAGNETISM ELLÄRA OCH MAGNETISM Atomen För att förstå elektriska fenomen behöver vi veta vad en atom består av. En atom består av en kärna och runt den rör sig elektroner. Kraften som håller kvar elektronerna kallas

Läs mer

5-1 Avbildningar, kartor, skalor, orientering och navigation

5-1 Avbildningar, kartor, skalor, orientering och navigation Namn:. 5-1 Avbildningar, kartor, skalor, orientering och navigation Inledning Nu skall du studera hur man avbildar verkligheten. Vad skall man göra det för? undrar du eftersom du skall ifrågasätta allt.

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Även kvadraten är en rektangel

Även kvadraten är en rektangel Åsa Brorsson Även kvadraten är en rektangel Vad innebär det att arbeta med geometriska objekt och deras egenskaper i årskurs 1 3? Hur kan vi använda det centrala innehållet i geometri för att utveckla

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

Svar om ( Ljudlös komunikation i slutet detta dokument)

Svar om ( Ljudlös komunikation i slutet detta dokument) Svar om ( Ljudlös komunikation i slutet detta dokument) Pariserhjul Rikstävling Får man ha solseller som driver hjulet? Svar: Nej, bara mekanisk drivning, inen form av elektrisk motor. Är det okej om kulan

Läs mer

Trepoängsproblem. Kängurutävlingen 2011 Junior

Trepoängsproblem. Kängurutävlingen 2011 Junior Trepoängsproblem 1 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen börjar och slutar med ett vitt streck. På Storgatan har ett övergångsställe totalt åtta vita

Läs mer

Uppgifter till KRAFTER

Uppgifter till KRAFTER Uppgifter till KRAFTER Peter Gustavsson Per-Erik Austrell 1 Innehåll 1 Introduktion till statiken... 3 A-uppgifter...3 2 Krafter... 5 A-uppgifter...5 B-uppgifter...5 3 Moment... 7 A-uppgifter...7 B-uppgifter...9

Läs mer

LEKTION PÅ GRÖNA LUND GRUPP A (GY)

LEKTION PÅ GRÖNA LUND GRUPP A (GY) LEKTION PÅ GRÖNA LUND GRUPP A (GY) t(s) FRITT FALL Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man

Läs mer

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Student sid 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

7.1.1 Modulindelning. Delsystem: Pneumatiskt system. Elmotor för rotation. Axel. Lager. Chuck. Ram. Kylsystem. Sensorer

7.1.1 Modulindelning. Delsystem: Pneumatiskt system. Elmotor för rotation. Axel. Lager. Chuck. Ram. Kylsystem. Sensorer 7 Konstruera konceptet 7.1 Systemarkitektur En utförlig systemarkitektur har satts upp för att underlätta konstruktionen av produkten. Genom att omforma delsystemen till moduler fås en bättre översikt.

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Aktiviteter förskolan

Aktiviteter förskolan Aktiviteter förskolan Äggkartongsuppdrag Du behöver: Äggkartonger Typ av aktivitet: par Tränar följande: - att bilda par - hälften och dubbelt - geometriska former och talföljder - jämförelseord - antal

Läs mer

Räknare får inte användas i den här delen. Skriv ner beräkningar eller motiveringar till varje uppgift, ifall ingenting annat uppges.

Räknare får inte användas i den här delen. Skriv ner beräkningar eller motiveringar till varje uppgift, ifall ingenting annat uppges. Grundskolans matematiktävling Finaltävling fredagen den 6 februari 009 DEL Tid 30 min Poängantal 0 Räknare får inte användas i den här delen. Skriv ner beräkningar eller motiveringar till varje uppgift,

Läs mer

Mekanisk solros, Digitala projekt(edi021) Kristoer Nordvall, Stefan Windfeldt, Inlämmnad: 4 december 2006

Mekanisk solros, Digitala projekt(edi021) Kristoer Nordvall, Stefan Windfeldt, Inlämmnad: 4 december 2006 Mekanisk solros, Digitala projekt(edi021) Kristoer Nordvall, d03kn@student.lth.se Stefan Windfeldt, d03sw@student.lth.se Inlämmnad: 4 december 2006 Innehåll 1 Problembeskrivning 3 2 Teknisk beskrivning

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april. Utforskande aktivitet med GeoGebra GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare 19-20 april Utforskande aktivitet med GeoGebra GeoGebra 0 Utforskande aktivitet med GeoGebra 1 Börja med att ta bort koordinataxlarna

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

Se även "Bygg en solcellsdriven bil" och Solcellspaneler för leksaksdrift

Se även Bygg en solcellsdriven bil och Solcellspaneler för leksaksdrift ***** Mera om Motorer för solcellsdrift Se även "Bygg en solcellsdriven bil" och Solcellspaneler för leksaksdrift Ett antal motorer har provats för drift av leksaksbil och annat med solceller. Ett första

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Jordens Magnetiska Fält

Jordens Magnetiska Fält Jordens Magnetiska Fält En essä för kursen Ämneskommunikation för Fysiker Sammanställd av Anne Ylinen 14 mars 2009 i Innehåll 1 Inledning 1 2 Beskrivning av Jordens magnetfält 1 2.1 Vektorbeskrivning av

Läs mer

Nikolai Tesla och övergången till växelström

Nikolai Tesla och övergången till växelström Nikolai Tesla och övergången till växelström Jag påminner lite om förra föreläsningen: växelström har enorma fördelar, då transformatorer gör det enkelt att växla mellan högspänning, som gör det möjligt

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R Junior vdelning 1. Trepoängsproblem 1. I fem lådor ligger kort. arje kort är märkt med en av bokstäverna,, R, O och. Peter ska plocka bort kort så att det blir ett enda kort kvar i varje låda och så att

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

Förklaringar till experimenten i Upptäckarland

Förklaringar till experimenten i Upptäckarland Förklaringar till experimenten i Innehållsförteckning 2 Experiment Sida Luftblås 3 Dykaren 4 Värmeplattor 5 Studs 6 Drinking Bird 7 Reaktionstid 8 Såpbubblor 9 Rullande cylinder och dubbelkon 10 UV-ljus

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Koppla spänningsproben till spolen.

Koppla spänningsproben till spolen. LÄRARHANDLEDNING Induktion Materiel: Utförande: Dator med programmet LoggerPro Mätinterfacet LabQuest eller LabPro spänningsprobe spolar (300, 600 och 1200 varv), stavmagnet plaströr och kopparrör (ca

Läs mer

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3) Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Matematikplanering 3 geometri HT-12 VT-13 7 a KON Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några

Läs mer

TENTAMEN. Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling.

TENTAMEN. Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet TENTAMEN Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin, Magnus Cedergren, Karin Due, Jonas Larsson Datum:

Läs mer

ROCKJET GRUPP A (GY) FRITT FALL

ROCKJET GRUPP A (GY) FRITT FALL GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Detta är en lektion utvecklad under Kleindagarna 2011, vidareutvecklad och testad i klassrum av

Detta är en lektion utvecklad under Kleindagarna 2011, vidareutvecklad och testad i klassrum av Ramsey tal etta är en lektion utvecklad under Kleindagarna 2011, vidareutvecklad och testad i klassrum av Samuel engmark, Matematiska vetenskaper, halmers och Göteborgs universitet lisabeth Samuelsson,

Läs mer

Eulers polyederformel och de platonska kropparna

Eulers polyederformel och de platonska kropparna Eulers polyederformel och de platonska kropparna En polyeder är en kropp i rummet som begränsas av sidoytor som alla är polygoner. Exempel är tetraedern och kuben, men klotet och konen är inte polyedrar.

Läs mer

Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i.

Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i. STOCKHOLMS UNIVERSITET iagnostiskt prov Lösningar MTEMTISK INSTITUTIONEN Vektorgeometri och funktionslära vd. Matematik VT 20 Lösning till uppgift (Komplexa tal) Vi börjar med första och andra uträkningen.

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

Känguru 2016 Student gymnasieserien

Känguru 2016 Student gymnasieserien sid 1 / 10 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex. svarar

Läs mer

Catherine Bergman Maria Österlund

Catherine Bergman Maria Österlund Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv

Läs mer

Kandidatprogrammet FK VT09 DEMONSTRATIONER INDUKTION I. Induktion med magnet Elektriska stolen Självinduktans Thomsons ring

Kandidatprogrammet FK VT09 DEMONSTRATIONER INDUKTION I. Induktion med magnet Elektriska stolen Självinduktans Thomsons ring DEMONSTRATIONER INDUKTION I Induktion med magnet Elektriska stolen Självinduktans Thomsons ring Introduktion I litteraturen och framför allt på webben kan du enkelt hitta ett stort antal experiment som

Läs mer

Planering för Fysik Elektricitet och magnetism årskurs 7

Planering för Fysik Elektricitet och magnetism årskurs 7 Planering för Fysik Elektricitet och magnetism årskurs 7 Syfte Använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som rör samhälle. genomföra systematiska undersökningar

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

Jordklotet GRUNDBOKEN sid. 4

Jordklotet GRUNDBOKEN sid. 4 Jordklotet GRUNDBOKEN sid. 4 Jorden är rund - Jordgloben - Nordpolen och Sydpolen 1. Här ska du rita en egen jordglob med kontinenter och oceaner. Rita även in Nordpolen och Sydpolen. Måla din jordglob

Läs mer

TESTVERSION. Geometri. G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.

TESTVERSION. Geometri. G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Geometri. G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Området består av följande fyra delområden: Symmetri, GSy Geometriska former,

Läs mer

Geometri med fokus på nyanlända

Geometri med fokus på nyanlända Geometri med fokus på nyanlända Borås 17 januari 2017 Madeleine Löwing Tala matematik Bygga och Begripa Begrepp i Geometri Använda förklaringsmodeller som hjälper eleven att bygga upp långsiktigt hållbara

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

M=matte - Handledning

M=matte - Handledning Fingris Fingerräkning Grunden för matematik är taluppfattning. I detta spel parar du ihop tal med fingrarnas antal. Finns det fler fingrar än talet anger? Eller färre? Lika många? Det finns många frågor

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

LNC Lösningar

LNC Lösningar LNC022 2013-05-27 Lösningar 1. (a) På en vägskylt står det att vägens lutning är 12 %. Om detta innebär att höjdskillnaden är 12 % av den körda vägsträckan, vilken är då vägens lutningsvinkel? (Rita figur.)

Läs mer

3. Potentialenergi i elfält och elektrisk potential

3. Potentialenergi i elfält och elektrisk potential 3. Potentialenergi i elfält och elektrisk potential 3.1 Potentiell energi i elfält Vi betraktar en positiv testladdning som förs i närheten av en annan laddning. I det första fallet är den andra laddningen

Läs mer

Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3)

Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3) Känguru 2013 Student sida 1 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

Att tala och skriva matematik

Att tala och skriva matematik maria asplund Att tala och skriva matematik Redskap för bedömning Folkparksskolan i Norrköping arbetar sedan åtta år med Tankeverkstad i åk F 5. Arbetssättet utvecklas ständigt och det senaste är att arbeta

Läs mer