Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk

Storlek: px
Starta visningen från sidan:

Download "Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk"

Transkript

1 .6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N N N N Nw + Nθ + Nw + Nθ () Lösning Nd [ ] e w θ Från formelbladet: N + N + ( ξ ξ ) ( ξ ξ ) N N ( ξ ξ ξ ) L ( ξ ξ ξ ) L () w ξ Bidrag till δ term Bidrag till θ L term ( ξ ξ )( δ θl) Nw + N θ ξ ξ + ξ θl ( ξ ξ )( δ θl) Nw + + N θ ξ + ξ + ξ θl ξ + ξ + ξ ξ + ξ ξ ξ ξ + ξ + ξ ξ ξ + ξ + ξ w L x + w x + x L Σ ξ ( ξ) δ θ ξ ξ δ θ, Q.E.D.

2 5. Blandad användning av stång- och balkelement Bilder av Veronica Wåtz Givet: EI k η, η L Q x q( x), x L LL Sökt : w( x), M( x ) Lösning: Börja med att göra om problemet till element. Balken utsätts för både böjning och normalkraft, så den bör modelleras med ett stångelement och ett balkelement som sitter ihop i gemensamma noder. Fjädern kan modelleras med ett fjäderelement.

3 Steg : Beräkna K. Stångdelen och fjädern är lätta, så vi kan väl börja med dem: EA K ea L () Innehåller noderna och, men viktigare, frihetsgraderna och. c c c cos9 a a c cs EI Kec k, där c, a Kec ac ac cs s s sin 9 L Innehåller noderna och, frihetsgraderna,5,7 och 8. () EI Alt. K ea L, innehållandes frihetsgraderna 5 och 8. Bara balkdelen kvar då. För balkar gäller: a T ke B EIB dx, där a halva elementlängden a Obs! Finns INTE med i formelbladet uttryckt på det här sättet. Om EI är konstant, kan det brytas ut ur integralen, och resten fås från formelbladet: Notera att L i formelbladet motsvarar L för det här problemet eftersom vi har elementlängden L. a T e EI BBdx EI a a k Finns i formelbladet a a a a a a a a a a a a () Vi har tur eftersom balkelementet sammanfaller med x-axeln. Vi slipper alltså transformera.

4 EI K k { a L} 6L eb e 6L 6L 6L 6L 6L 8L 6L 6L 6L 8L 6L 6L Innehåller noderna och, frihetsgraderna,,5 och 6. Med elementstyvhetsmatriserna kända är det dags att assemblera. I tidigare övningar har det räckt att hålla koll på vilka noder en elementstyvhetsmatris behandlar. Eftersom noderna och är en kombination av både stång och balk får man istället gå över till det mer allmänna fallet, att hålla koll på frihetsgraderna. Assemblera Steg : Beräkna F., L x<, ξ < x Q x Q, x L L ξ, ξ LL L ξ q( x) q x () Den utbredda lasten angriper balkdelen, stångdelen behöver inte behandlas. ξ + ξ L( ξ ξ + ξ ) T Q Fb,b balkq( x) dx ξ dx { dx Ldξ} N ξ ξ L + L( ξ + ξ + ξ ) body force, element b

5 5 ξ ξ ξ + Q 5 ξ ξ + ξ 5 ξ ξ ξ ξ 7 L Q L 5 L Q ξ ξ ξ ξ + + Q 6 dξ 5 9 ξ ξ ξ Q ξ + ξ + ξ L( ξ ξ + ξ + ξ ) 5 5 ξ ξ ξ ξ Q L + + L 5 6 Verkar på frihetsgraderna,,5 respektive 6. (5) Nodlasten stoppar i en global vektor direkt: R R M R P F s (6) ( R7 ) R8 I exempelsamlingens lösningsförslag sätter man R 7 direkt här eftersom fjädern inte kan överföra krafter i x-led. Alternativt kan man göra som vanligt och få fram krafterna som F KD. Assemblera lasterna till en global lastvektor: R Q R R 7Q R Q MR L 6 M R 7QL 6 P P F Fs + F b + (7) 9Q 9Q QL 6 Q L R 6 8 R 8 5

6 Steg : Lös ut okända i D på det gamla hederliga sättet via F KD Notera att D praktiskt taget är utskrivet. EA PL P D + D5 + D D 6 L EA 9Q 7EI EI QL D 5 6L 8L D 5 5 EI Q EI EI D 6 QL L D6 6 8L L 5EI (8) Steg : Ta fram det vi ville ha, utböjningen och momentet. Som tur var sammanfaller balkens koordinatsystem med globala x-axeln, och vi behöver alltså inte tänka på transformationer hit och dit. Utböjning: w( ξ ) T ξ + ξ L( ξ ξ + ξ ) QL Nbalkde ξ ξ + 5 EI L( ξ + ξ + ξ ) QL 5EI Tar för stor plats att skriva på horisontell ledd QL QL x x x w ξ ξ + ξ + ξ w x + + EI EI 5 5 L L 9 L (9) () x M ( x) EIw'' ( x) EIBbalkd e M ( x) QL + () 5 L 6

7 5.6 Symmetri Givet: Om R h kan man bestämma fjäderkonstanten till Sökt: Ta fram symmetrivillkor. Lösning: k π ( π 8) Det viktiga att ta med sig från den här uppgiften är hur man kan modellera symmetrivillkor i FEM med hjälp av randvillkor. Varje gång man inför en symmetri halverar man det som behöver modelleras, vilket är väldigt trevligt. I det här fallet kan vi börja med att konstatera att problemet har en övre och undre halva som är symmetriska. När man ska modellera det här bör man tänka igenom randvillkoren:. De två halvorna sitter ihop i planet och får varken tryckas in i varandra eller dras isär. u y. Materialet måste sticka upp normalt mot symmetriplanet, annars skulle förskjutningarna motsvara både en sprickbildning, och att materialet krockar in i spegelbilden. θ. De två halvorna kan röra sig fritt i x-led, spegelbilden följer med. EI. R Detta uppfylls om man sätter ett randvillkor som ser ut såhär: 7

8 Vi ser att vänster och höger sida fortfarande är spegelbilder av varandra. Vad gäller förskjutningar kan vi använda vagnen som randvillkor även här. För att inse hur man ska dela upp punktkraften tänker vi oss hur lasten skulle se ut i verkligheten. I verkligheten finns är punktlaster istället en väldigt väldigt koncentrerad utbredd last. Om vi zoomar in där lasten angriper skulle det kunna se ut nåt sånt här: Nu ser man tydligt hur halva kraften angriper på höger halva, och halva kraften på vänster halva. Genom att införa ett andra symmetrivillkor har problemet reducerats till en fjärdedel. Slutresultat: Betydligt 8

4.6 Stelkroppsrörelse i balk

4.6 Stelkroppsrörelse i balk Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen

Läs mer

Övning 1 FEM för Ingenjörstillämpningar Rickard Shen

Övning 1 FEM för Ingenjörstillämpningar Rickard Shen Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ

Läs mer

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip

1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip --8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod

Läs mer

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012 Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

BT4003/MA6007 Finita elementmetoden, 7.5hp,

BT4003/MA6007 Finita elementmetoden, 7.5hp, BT/MA67 Finita elementmetoden, 7hp, 7--8 Hjälpmedel: Räknedosa och kompendium Finita elementmetoden - en kort introduktion till teorin! Uppgift -8 p/uppgift Lösningarna ska skrivas i Mathematica på samma

Läs mer

Matrismetod för analys av stångbärverk

Matrismetod för analys av stångbärverk KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen

Läs mer

Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012

Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012 Umeå universitet Tillämpad fysik och elektronik Annika Moström 212-3-6 Fackverk Projektuppgift 1 Hållfasthetslärans grunder Våren 212 Fackverk 1 Knut 3 Knut 2 Stång 2 Stång 3 y Knut 4 Stång 1 Knut 1 x

Läs mer

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:

8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar: Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:

Läs mer

6.8 b) Konsistenta Nodlaster med Vanlig Integrering

6.8 b) Konsistenta Nodlaster med Vanlig Integrering 6.8 ) Konsistenta Nodlaster med Vanlig Integrering Bilder av Veronica Wåtz och Jonas Faleskog. Givet: Plåttjocklek, hm [ ] Densitet, ρ kg m λ = Sökt: Bidraget till nodlastvektorn (konsistenta nodlaster)

Läs mer

FEM M2 & Bio3 ht06 lp2 Projekt P 3

FEM M2 & Bio3 ht06 lp2 Projekt P 3 HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för

Läs mer

Manual för ett litet FEM-program i Matlab

Manual för ett litet FEM-program i Matlab KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA MAJ 2011 Institutionen för tillämad mekanik, Chalmers tekniska högskola TENTAMEN I HÅFASTHETSÄRA F MHA 8 3 MAJ ösningar Tid och lats: 8.3.3 i M huset. ärare besöker salen ca 9.3 samt. Hjälmedel:. ärobok i hållfasthetslära:

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas

Läs mer

Lösning: ε= δ eller ε=du

Lösning: ε= δ eller ε=du Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange

Läs mer

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik

Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet

Läs mer

FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D

FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband

Läs mer

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005 Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016 Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.

Läs mer

TMV225 Kapitel 3. Övning 3.1

TMV225 Kapitel 3. Övning 3.1 TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition

Läs mer

Tentamen i kursen Balkteori, VSM-091, , kl

Tentamen i kursen Balkteori, VSM-091, , kl Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.

Läs mer

6.8 b) Konsistenta nodlaster med vanlig integrering

6.8 b) Konsistenta nodlaster med vanlig integrering 6.8 ) onsistenta nodlaster med vanlig integrering Bilder av Veronica Wåtz och Jonas Faleskog. Givet: Plåttjocklek, hm Densitet, kg m Sökt: Bidraget till nodlastvektorn (konsistenta nodlaster) på grund

Läs mer

Ordinarie tentamen i Mekanik 2 (FFM521)

Ordinarie tentamen i Mekanik 2 (FFM521) Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m

B3) x y. q 1. q 2 x=3.0 m. x=1.0 m B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,

Läs mer

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T. Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12

TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12 Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

Formelblad, lastfall och tvärsnittsdata

Formelblad, lastfall och tvärsnittsdata Strukturmekanik FE60 Formelblad, lastfall och tvärsnittsdata Formelblad för Strukturmekanik Spännings-töjningssamband för linjärt elastiskt isotropt material Enaiell normalspänning: σ = Eε Fleraiell normalspänning:

Läs mer

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led

Läs mer

TENTAMEN I KURSEN BYGGNADSMEKANIK 2

TENTAMEN I KURSEN BYGGNADSMEKANIK 2 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) Tid och plats: Lösningsskiss: Tisdagen den 20 december 2016 klockan 0830-1230 i M-huset Christian Forssén Detta är enbart en skiss av den

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

Tentamen i Balkteori, VSMF15, , kl

Tentamen i Balkteori, VSMF15, , kl Tentamen i Balkteori, VSMF15, 2011-10-18, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs maimalt 18 poäng. Tentamen består av två delar: En del med frågor och en del

Läs mer

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)

TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081) TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på

Läs mer

FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL

FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL FEM FÖR INGENJÖRSTILLÄMPNINGAR OH-MATERIAL Jonas Faleskog, KTH Hållfasthetslära Januari 3 FEM för Ingenjörstillämpningar, VT3 / J.Faleskog SE5, FEM för ingenjörstillämpningar (6 hp) fortsättningskurs i

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons

Läs mer

Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/

Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/ Institutionen för matematik KTH Håkan Hedenmalm Lösningsförslag för omtentamen i Komplex analys, SF1628, 21/12 2016 Skrivtid 08.00-13.00. Inga hjälpmedel är tillåtna. Skriv tydliga lösningar med utförliga

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 1 juni 2011 kl

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 1 juni 2011 kl KTH HÅFASTHETSÄRA Tentamen i FEM för ingenjörstillämpningar (SE5) den juni l. 8-3. Resultat ommer att finnas tillgängligt senast den juni. Klagomål på rättningen sall vara framförda senast en månad därefter.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) = SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA JUNI 2014 Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I ÅLLFASTETSLÄRA F MA 081 JUNI 014 Lösningar Tid och plats: 14.00 18.00 i M huset. Lärare besöker salen ca 15.00 samt 16.0 jälpmedel:

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

6.2 Transitionselement

6.2 Transitionselement 6. Transitionselement Den här tpen av element används för förbinda ett linjärt och ett kvadratiskt element. Givet: Sökt: Bestäm formfunktionen för nod. Visa att den uppfller kraven för en formfunktion.

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

TATA42: Föreläsning 3 Restterm på Lagranges form

TATA42: Föreläsning 3 Restterm på Lagranges form TATA4: Föreläsning 3 Restterm på Lagranges form Johan Thim 9 mars 9 Lagranges form för resttermen Vi har tidigare använt resttermen på ordo-form med goda resultat. Oftast i samband med gränsvärden, extrempunktsundersökningar

Läs mer

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5. February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds, Institutionen för matematik, KTH Serguei Shimorin SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december 211. Lösningsförslag 1. Räkna ut flödesintegral F n ds, där F = (x e y,

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

Tentamen: Lösningsförslag

Tentamen: Lösningsförslag Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:

Läs mer

P R O B L E M

P R O B L E M Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 24 augusti 2009 klockan 08.30-12.30 i V. Lösningsskiss: Christian Forssén. Obligatorisk del 1. Rätt svarsalternativ på de sex frågorna är:

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen

Läs mer

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T, Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Tentamen i Hållfasthetslära AK

Tentamen i Hållfasthetslära AK Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 00-06-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,

Läs mer

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm

Hållfasthetslära. VT2 7,5 p halvfart Janne Färm Hållfasthetslära VT2 7,5 p halvfart Janne Färm Torsdag 31:a Mars 13:15 17:00 Föreläsning 2 PPU203 Hållfasthetslära Eftermiddagens agenda Tips inför INL1.1 Repetition Rast Föreläsning: Normaltöjning Deformation

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014 Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

Lösningar till seminarieuppgifter

Lösningar till seminarieuppgifter Lösningar till seminarieuppgifter 2018-09-26 Uppgift 1 z ρ P z = 0 ρ Introducera ett koordinatsystem så att det jordade planet sammanfaller med planet z = 0, oc skivans centrum med punkten (0,0,). a) Problemet

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

Tentamen i SG1140 Mekanik II. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen 010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi

Läs mer