Simuleringar av elliptiska kurvor för elliptisk kryptografi

Storlek: px
Starta visningen från sidan:

Download "Simuleringar av elliptiska kurvor för elliptisk kryptografi"

Transkript

1 Simuleringar av elliptiska kurvor för elliptisk kryptografi Matematiska institutionen, Linköpings universitet Eric Felding LiTH - MAT - EX / SE Högskolepoäng: 16 Nivå: Handledare: Examinator: G2 Linköping: Juni 2019 Milagros Izquierdo, Matematiska institutionen, Linköpings universitet Göran Bergqvist, Matematiska institutionen, Linköpings universitet

2

3 Abstract This thesis describes the theory behind elliptic-curve Diffie-Hellman key exchanges. All the way from the definition of a group until how the operator over an elliptic curve forms an abelian group. This is illustrated with clear examples. After that a smaller study is made to determine if there is a connection between the size of the underlying field, the amount of points on the curve and the order of the points to determine how hard it is to find out the secret key in ellipticcurve Diffie-Hellman key exchanges. No clear connection is found. Since elliptic curves over extension fields have more computational heavy operations, it is concluded that these curves serve no practical use in elliptic-curve Diffie-Hellman key exchange. Keywords: Diffie-Hellman, elliptic curves, cryptography, ECDH, ECC URL for electronic version: Felding, iii

4

5 Sammanfattning Denna rapport går igenom teorin bakom Diffie-Hellmans nyckelutbyte över elliptiska kurvor. Från definitionen av en grupp hela vägen till hur operatorn över en elliptisk kurva utgör en abelsk grupp gås igenom och görs tydligt med konstruktiva exempel. Sedan görs en mindre undersökning av sambandet mellan storleken av den underliggande kroppen, antal punkter på kurvan och ordning av punkterna på kurvan, det vill säga svårigheten att hitta den hemliga nyckeln framtagen med Diffie-Hellmans nyckelutbyte för elliptiska kurvor. Ingen tydlig koppling hittas. Då elliptiska kurvor över utvidgade kroppar har mer beräkningstunga operationer dras slutsatsen att dessa kurvor inte är praktiska inom Diffie-Hellman nyckelutbyte över elliptiska kurvor. Nyckelord: Diffie-Hellman, elliptiska kurvor, kryptografi, ECDH, ECC URL för elektronisk version: Felding, v

6

7 Tack Jag skulle vilja tacka min handledare Milagros Izquierdo för att ha lett mig med en stadig hand genom detta arbete. Jag vill även tacka Sam Olsson som då vi suttit tillsammans och skrivit våra separata rapporter ofta har kommit med insiktsfulla kommentarer och stöttat mig moraliskt då det varit som tyngst. Jag vill även rikta ett tack till min opponent Olivia Linder. Felding, vii

8

9 Nomenklatur N De naturliga heltalen Z Heltalen Z + De positiva heltalen Z n Heltalen modulo n Q De rationella talen R De reella talen C De komplexa talen G Grupp R Ring R Den multiplikativa gruppen till R R[x] Polynomring i en variabel R[x 1,..., x n ] Polynomring i n variabler I Ideal A Ideal genererat av mängden A F, K Kroppar F n Ändlig kropp med n element F n Affina rummet av dimension n över F F P 2 Det projektiva planet över F C Kurva E Elliptisk kurva Felding, ix

10

11 Innehåll 1 Introduktion Historisk bakgrund Algebraiska strukturer Grupper Ringar Kroppar Geometri Affin geometri Projektiva planet Bezouts sats Elliptiska kurvor 29 5 Diffie-Hellman för elliptiska kurvor Diffie-Hellman Undersökning Nästa steg Litteraturförteckning 42 A Kod för elliptisk kurvor på normalform 45 B Kod för generella ellitpiska kurvor 51 Felding, xi

12

13 Kapitel 1 Introduktion 1.1 Historisk bakgrund Så länge det har funnits penna och papper har människan försökt att skicka meddelanden som ingen obehörig skulle kunna läsa. Ett av de tidigaste exemplen är Ceasarchiffret där alla bokstäver i alfabetet förskjuts några steg [2]. Under andra världskriget hade en del krypteringssystem blivit så svåra att det inte gick att lösa dem utan att testa alla möjliga kombinationer. Alan Turing och kollegorna vid Bletchley Park byggde en maskin som med vissa startvärden kunde räkna ut krypteringsnyckeln. Startvärderna kom bland annat ifrån att tyskarna varje morgon skickade ut en krypterad väderleksrapport som avslutade med "Heil Hitler". Detta var en nackdel för det var ast ett lösenord per dag som användes. Lösenorden var tryckta i böcker som aldrig fick komma i fies händer. Hur skickas ett hemligt medelande utan att skicka lösenordet, nyckeln, i vanlig text, fysiskt eller digitalt? Whitfield Diffie och Martin Hellman publicerade år 1976 ett system för att bestämma en gemensamm nyckel, kallat Diffie-Hellmans nyckelutbyte [2]. Det bygger på att (g a ) b (g b ) a g a g b mod p för hemliga tal a, b. Nu finns det en nyckel att kryptera med för parterna A och B. Året efter publicerade Ron Rivest, Adi Shamir och Leonard Adleman ett system kallat RSA som bygger på samma idé men som kan liknas vid att varje person har en hemlig nyckel och ett hänglås som vem som helst kan låsa kring ett meddelande. År 1997 kom det fram att brittiska GCHQ som bedriver signalspaning under MI5 hade kommit på liknande system som både Diffie- Hellman och RSA år 1969 respektive Felding,

14 2 Kapitel 1. Introduktion Neal Koblitz och Victor Miller kom oberoe av varandra på hur elliptiska kurvor skulle kunna användas inom kryptografi 1985 [2]. En elliptisk kurva är ingen ellips! Namnet kommer ifrån att ekvationen för en elliptisk kurva är kopplat till bågländen av ellipser som studeras med integraler i det komplexa planet [1]. Giulio Fagnano ( ) och Leonhard Euler ( ) studerade bågländen av en ellips med elliptiska integraler. Niels Henrik Abel ( ) studerade abelska integraler som är en generallissering av elliptiska integraler. Teorin utvecklades av Carl Gustav Jacobi ( ). En rigorös forskning gjordes senare av Karl Weierstrass ( ) och Hermann Schwarz ( ) som fokuserade på elliptiska funktioner. Elliptiska kurvor är en sorts elliptisk funktion så det är därifrån namnet kommer. Bernhard Riemann ( ) studerade också ellliptiska funktioner. Svensken Anders Wiman ( ) studerade hyperelliptiska kurvor. Elliptiska kurvor användes av Andrew Wiles 1994 för att bevisa Fermats stora sats. Elliptiska kurvor används hela tiden av datorer som med Diffie-Hellman kan bestämma en gemensam nyckel, de används även för att verifiera identiteter för att kunna ha en digital signatur bland annat inom blockkedjeteknologin där Bitcoin är framträddande.

15 Kapitel 2 Algebraiska strukturer Algebraiska strukturer är mängder tillsammans med en eller flera slutna operatorer. Vi ska fokusera på de resultat för grupper, ringar och kroppar som är nödvändiga för att kunna definiera elliptiska kurvor och tillämpa dem inom kryptografi. Satser och definitioner i detta kapitel finns främst i [3]. 2.1 Grupper Definition Låt G vara en mängd och låt vara en binär operator. Det ordnade paret (G, ) är grupp om: (a) a b G, a, b G, sluten, (b) I d G så att a G gäller att a I d = I d a = a, identitet, (c) a G a 1 så att a a 1 = a 1 a = I d, invers, (d) (a b) c = a (b c) gäller a, b, c G, associativ. 2. Gruppen (G, ) kallas abelsk om a b = b a a, b G, kommutativ. Vi säger att G är en grupp under om (G, ) är en grupp. Exempel 2.1. Exempel på några grupper är: 1. Z, Q, R samt C med vanlig addition,+. 2. Q \ {0}, R \ {0} samt C \ {0} med vanlig multiplikation,*. Felding,

16 4 Kapitel 2. Algebraiska strukturer 3. Heltalen mod n, Z n = {0, 1,..., n 1} där a = {a + kn : k Z} är en grupp under addition mod n. Addition för gruppen definieras som a + b = a + b, där a + b är klassen {a + b + kn : k Z}. Vi passar på att definiera multiplikation mod n som ab = ab, där ab är klassen {ab + kn : k Z}. I fortsättningen kommer vi enbart att skriva a istället för a. 4. Transformationer på Rubiks kub består av rotationer i det 3 dimensionela rummet. Det är permutationer av de 48 sidorna på kuben. Transformationerna är elementen i en grupp tillsammans med en operator som utför transformationerna i ordning. Det är lätt att se att om en transformation sker så är vi kvar i kuben, alltså sluten. Identiteten är ingen rotation alls. Inversen till en transformation fås genom att snurra tillbaks. Associativitet kan vara svår att föreställa sig, för hur utvärderas transformationer innan de utförs? Speciellt då operatorn inte är kommutativ. Bevis för associativitet finns i [4]. Det gäller även för grupper att [3] 1. Identiteten är unik, 2. a G så är a 1 G unikt bestämd, 3. a, b G så är (a b) 1 = (b 1 ) (a 1 ), 4. om a u = a v eller u a = v a så är u = v, a, u, v G, kancellering. Exempel 2.2. Betrakta grupperna (R +, ) och (R, +). Låt f : R R + som definieras av f(a) = e a. Då gäller att f(a + b) = e a+b = e a e b = f(a)f(b). Detta är ett exempel på en grupphomomorfi. Det gäller även att f 1 : R + R är väldefinerad så f är en bijektiv funktion. En bijektiv grupphomomorfi kallas för en isomorfi. Två grupper som är isomorfa är grupper med samma struktur och lika många element så de kan slarvigt sägas vara samma grupp. Det kan även vara intressant att ha ett begrepp för storleken av element samt för grupper. Definition 2.2. Låt G vara en grupp samt låt x G. Ordningen av x, x, är det minsta heltalet n så att x n = I d där x n betecknar gruppoperationen upprepad n gånger. Om det inte finns något sådant n sägs ordningen vara oändlig. Exempel Kleins fyrgrupp, V 4, är gruppen 1 a b c 1 1 a b c a a 1 c b b b c 1 a c c b a 1

17 2.2. Ringar 5 där 1 = I d har ordning 1 och elementen a, b, c har ordningen Elementet 1 (R, +) har oändlig ordning. Definition 2.3. Låt G vara en grupp. Ordningen av G är antalet element i G och betecknas G. Exempel Gruppen V 4 har ordning Ordningen av Z n är n. 3. Ordningen av (Z, +) är oändlig. Sats 2.1. [3] Låt G vara en ändlig grupp och låt x G. Det gäller då att x delar G. Definition 2.4. En grupp G är cyklisk om x G så att G = {x n : n Z}. Vi skriver gruppen G som genereras av x som G = x. Elementet som genererar en grupp, generatorn, behöver inte heller vara unik. Det gäller även att cykliska grupper är abelska. Cykliska gruppen av ordning n betecknas C n. Det gäller att för gruppen G genererade av x att x = G Exempel Gruppen (Z, +) är cyklisk ty alla element kan skrivas på formen = n, n Z. Det är lätt att se att även -1 är en generator. 2. Gruppen av enhetsrötter ({z : z C, z n = 1}, ) är en cyklisk grupp, C n. Det är lätt att se att z = e 2π n i är en generator och att e 0 = 1 = I d. 3. Vi kommer i avsnittet om kroppar se att utvidgade kroppar är cykliska grupper med hjälp av Sats Ringar Då vi ska utforska kroppar som är en viss typ av kommutativa ringar så kommer vi inte att fokusera så mycket på generella ringar. Vi är även intresserade av att konstruera ändliga kroppar med hjälp av polynomringar. Den särskilt intresserade kan läsa mer om icke-kommutativa ringar i [3]. Definition En ring (R, +, ) är en mängd R tillsammans med två binära operationer, +,, som kallas addition och multiplikation, som uppfyller följande: (a) (R, +) är en abelsk grupp, identiteten för + betecknas 0 R,

18 6 Kapitel 2. Algebraiska strukturer (b) är associativ: (a b) c = a (b c), (c) Den distrubitiva lagen håller i R (a + b) c = (a c) + (b c) och a (b + c) = (a b) + (a c). 2. R kallas kommutativ om * är kommutativ. 3. R säges ha en etta om det finns ett element, 1 R R, som a R a 1 R = 1 R a = a. För att förkorta notationen kommer vi att skriva a b som ab. På samma sätt som för grupper kommer notationen R att användas för ringen istället för (R, +, ) om det är givet vilka operatorer vi arbetar med. Exempel Med vanlig addition samt multiplikation så är (Z, +, ), (R, +, ) och (C, +, ) ringar med etta. 2. Alla jämna tal, 2Z = {2x : x Z}, bildar en ring med addition och multiplikation som vanligt. Denna ring saknar etta. Definition 2.6. Låt R vara en ring. En underring I till R är en ring med samma addition och multiplikation som R samt att I är en delmängd till R. Exempel 2.7. Ringen 2Z är en underring till Z som i sin tur är en underring till ringen R. Definition 2.7. Låt R vara en kommutativ ring och I vara en underring. Då är I ett ideal om r R så gäller att givet i I så gäller att ri I. Exempel Till ringen R så är R och {0 R } alltid ideal. Dessa är ganska tråkiga ideal men i vissa fall de a som finns. Det gäller speciellt för kroppar som vi kommer till senare att de bara har två ideal [3]. 2. (2Z, +, ) är ett ideal till (Z, +, ). Det är lätt att se ty ett jämnt tal multiplicerat med ett annat heltal blir jämnt. Definition 2.8. Låt R vara en ring och låt A vara en delmängd till R 1. Låt A beteckna de minsta idealet till R innehållande A, kallat idealet genererat av A. Om R är kommutativ så gäller att A = a i r i : a i A, r i R. 1 i A

19 2.2. Ringar 7 2. Ett ideal genererat av ett a element kallas principalideal. 3. Ett primideal P är ett ideal så att om ab P så gäller att a P eller b P. Exempel 2.9. Ett principalideal till (Z, +, ) är (2Z, +, ) = 2 som är idealet generat av 2. Det är även ett primideal. Exempel Ett ideal till Z är 2, 3 = {2a + 3b : a, b Z}. Det gäller att 1 = ( 2) + 3 2, 3 vilket ger att 2, 3 = Z. Definition 2.9. Låt R vara en ring. Ett ideal M till R kallas maximala idealet om M R och de a ideal som innehåller M är M och R. Exempel Ringarna 2 och 3 är två maximala ideal till (Z, +, ). 4 är inte ett maximalt ideal till (Z, +, ) ty är inte heller ett primideal ty men 2 / 4. Sats 2.2. [3] Antag R en kommutativ ring med etta. Varje maximalt ideal till R är ett primideal. Definition Låt R vara en ring och låt I vara ett ideal till R. En kvotring R/I är en ring där elementen är ekvivalensklasser {a : a + i I, a R, i I}. Addition och multiplikation för a, b R/I är 1. a + b = a + b 2. ab = ab där a + b är klassen {a + b : a + b + i I, a, b R, i I} och på samma sätt är ab klassen {ab : ab + i I, a, b R, i I}. Observera att det är olika operationer för addition och multiplikation i R och R/I men det använder samma symbol. Definitionen bör kännas igen från Exempel 2.1 då vi definierade Z n på ett liknande vis. Definition Låt R vara en kommutativ ring med etta. 1. Ett element a R, a 0 R kallas nolldelare om b 0 R, b R så att ab = 0 R. 2. En enhet är ett element a R så att b R, ab = ba = 1 R. Mängden av enheter till R betecknas R, kallas den multiplikativa gruppen till R. Exempel I Z 8 = {0, 1, 2, 3, 4, 5, 6, 7} med addition och multiplikation mod 8 så är 2 4 = 0, 6 4 = 0 så 2, 4 och 6 är nolldelare. Det gäller även att den multiplikativa gruppen Z 8 = {1, 3, 5, 7} ty 1 1 = 1, 3 3 = 1, 5 5 = 1, 7 7 = 1. Ordningen av 1, 3, 5 och7 är alltså 2. Det är inte så svårt sen att visa att Z 8 är isomorf med V 4, som sågs i Exempel 2.3.

20 8 Kapitel 2. Algebraiska strukturer Exempel För Z p gäller där p är ett primtal att Z p = Z p \ {0}. I Z n så gäller det att elementen u för vilka u och n är relativt prima är enheter. I Z p är alla element förutom 0 relativt prima n. I annat fall om, a 0 är ett heltal inte relativt prima n så låter vi d vara största gemensamma delare till a och n och låt b = n d. Så d > 1 och således 0 < b < n, b 0. Men konstruktionen gör att n delar ab, ab = 0. Alltså a är en nolldelare. Således är alla element i Z n nolldelare eller enheter. Speciellt gäller då n är ett primtal att Z p = Z p \ {0}. Definition Låt R vara en kommutativ ring med etta så att 1 R 0 R, då kallas R för ett integritetsområde om R saknar nolldelare. Exempel Några olika integritetsområden är Z, C och de gaussiska heltalen {a + bi : a, b Z}. Definition Låt R vara en kommutativ ring med etta. Polynomringen R[x] över R är mängden {p(x) = i=0 a i x i : a i R, a i = 0 i > i 0 } i=0 tillsammans med additionen a i x i + b i x i = (a i + b i )x i samt multiplikationen i=0 i=0 i=0 i=0 i=0 ( a i x i )( b i x i ) = c i x i där c k = a i b j. i+j=k Polynomringen i variablerna x 1, x 2,..., x n R[x 1, x 2,..., x n ], definieras rekursivt som med koefficienter i R, betecknad R[x 1, x 2,..., x n ] = R[x 1, x 2,..., x n 1 ][x n ]. Läsaren har säkerligen arbetat i exempelvis R[x] och C[x, y] utan att ha funderat på ringteorin. Exempel x 3 + 2x + 34 R[x] 2. x 3 + 3x 2 + y 2 + 4xy 3 Z[x, y] Exempel Betrakta R[x] och polynomet x Det gäller då att x är ett ideal till R[x].

21 2.2. Ringar 9 2. Ett ideal till R[x, y] är (x + 1), (y + 1) vilket är ett maximalt och således primideal enligt Sats 2.2. Idealet I = xy + x + y + 1 är inte ett primideal ty (x + 1)(y + 1) I men (x + 1), (y + 1) / I. Sats 2.3. Låt R vara ett integritetsområde, då är R[x] ett integritetsområde. Definition Låt R vara ett integritetsområde. Antag att r R inte är noll och inte en enhet, då kallas r för reducibelt i R om r kan skrivas på formen r = ab, a, b R och varken a eller b är en enhet, a, b / R. Annars säges r vara irreducibelt. Exempel I Z utgör primtalen alla irreducibla element. Exempel Låt r = ab = x 2 2 Q[x]. Då är r irreducibelt i Q[x] ty x 2 2 = (x 2)(x + 2) men ± 2 / Q. Exempel på värden till a och b är: a = x2 2 1 samt b = 2, en enhet. Exempel Integritetsområdet Z 2 = {0, 1} ger att ett irreducibelt polynom, p(x) Z 2 [x], av grad två är på formen p(x) = x 2 + αx + β där α, β Z 2. Skulle p(x) kunna skrivas på formen p(x) = r = ab så skulle a och b vara irreducibla polynom av grad 1 alltså x + γ, γ { Z 2 [x] det vill säga antingen rötter p(0) = 1 i x eller x 1 = x + 1 i Z 2 [x], så vi söker, vilket ger den unika p(1) = 1 lösningen r = p(x) = x 2 + x + 1 som är irreducibelt i Z 2 [x]. Exempel För att finna ett irreducibelt polynom av grad tre i Z 2 [x] det vill säga p(x) = x 3 + αx 2 + βx + γ Z 2 [x] så räcker det att kontrollera att det inte { finns några faktorer av grad 1 p(0) = 1 p(1) = = 1 Vi finner då att x 3 + x samt x 3 + x + 1 är irreducibla. Exempel För att finna ett irreducibelt polynom av grad fyra i Z 2 [x] det vill säga p(x) = x 4 + αx 3 + βx 2 + γx + δ Z 2 [x] så ska alla faktorer av grad ett samt faktorer av grad 2 kontrolleras. { α + β + γ = 0 Inga faktorer av grad 1 ger δ = 1 Inga faktorer av grad 2 ger att (x 2 +x+1) 2 = x 4 +2x 3 +3x 2 +2x+1 = x 4 +x 2 +1 även kan uteslutas. De irredubibla polynomen av grad 4 i Z 2 [x] är: x 4 + x + 1, x 4 + x 3 + 1, x 4 + x 3 + x 2 + x + 1.

22 10 Kapitel 2. Algebraiska strukturer Detta argument kan generaliseras för att hitta irreducibla polynom. Alla irreducibla faktorer av lägre grad måste kontrolleras så att de inte är faktorer. Detta kan bli omständigt att göra för hand så datorer är bra. Det räcker dock att kolla alla faktorer av grad högst n 2. För vissa ringar har vi ett effektivt kriterium: Sats 2.4. [3] Eisensteins kriterium Låt P vara ett primideal till integritetsområdet R och låt f(x) = x n +a n 1 x n 1 + +a 1 x+a 0 vara ett polynom av grad 1 i R[x]. Antag att a n 1,..., a 1, a 0 P och antag att a 0 / P 2. Då är f(x) irreducibel i R[x]. Exempel x x + 5 Z[x] irreducibelt, följer då P = 5 används i Eisensteins kriterium. Definition Låt R vara en ring och låt I vara ett ideal till R. 1. Radikalen till I, betecknad rad I, defineras som rad I = {r R : r k I för något k 1}. 2. Ett ideal säges vara radikalt om I = rad I. Det är inte ovanligt att rad I betecknas I. Exempel Betrakta integritetsområdet Z och dess ideal I = 6Z. Ett element är på formen x = 6y. Det följer att om x k = (6y) k I så är x = 6y I. Så 6Z är ett radikalt ideal. 2. Idealet I = x 2 till R[x] är inte radikalt ty x / I men x 2 I. Sats 2.5. [3] Prim och således maximala ideal är radikala. Definition Låt F vara en ring med etta, 1 F 0 F. Om a F, a 0 F, b F så att ab = ba = 1 F så kallas F för en divisionsring. Med andra ord gäller att (F \ {0 F }) = F är en grupp med multiplikation. 1. Q, R och C med vanlig addition och multiplikation är di- Exempel visionsringar. 2. Låt H = {a + bi + cj + dk : a, b, c, d R} vara kvarterionerna. Addition definieras (a+bi+cj+dk)+(a +b i+c j+d k) = (a+a )+(b+b )i+(c+c )j+(d+d )k.

23 2.2. Ringar 11 Multiplikation definieras genom att expandera (a + bi + cj + dk)(a + b i + c j + d k) med den distrubutiva lagen och använda relationerna i 2 = j 2 = k 2 = 1, ij = ji = k, jk = kj = i, ki = ik = j. Exempelvis så är (1 + i + 2j)(j + k) = 2 + 2i + 2k. Kvarterionerna är en av de första upptäckta ickekommutativa divisionsringarna och upptäcktes 1843 av William Hamilton. De spelar en viktig roll i vissa områden av matematik och fysik [3]. Definition En kommutativ divisionsring kallas för en kropp. Vi kommer hädanefter att sluta använda beteckningarna 0 F och 1 F för att istället använda 0 och 1. Exempel Z p där p är ett primtal är en kropp. Vi identifierar Z p med F p, kroppen med p stycken element. Vi noterar även att följande sats är applicerarbar på Z p. Sats 2.6. [3] Ett ändligt integritetsområde F är en kropp. Bevis. Låt F vara ett ändligt integritetsområde och låt a F, a 0. Med kancellering så har vi att avbildningen x ax är en injektiv funktion. Då F är ändlig gäller det även att den avbildning är surjektiv. Speciellt så b F så att ab = 1. Då multiplikation är kommutativ i ett integritetsområde så gäller att ab = ba = 1 så F är en kommutativ divisionsring, en kropp. Följande sats angåe maximala ideal kommer att användas flitigt, för att det är ett sätt att konstruera kroppar. Sats 2.7. [3] Antag R en kommutativ ring med etta. Idealet M är maximalt om och ast om kvotringen R/M är en kropp. Definition Låt R vara en kommutativ ring med etta. Då kallas R för en Noethersk ring om det för varje kedja med växande ideal till R, I 1 I 2 I 3... finns m Z, I k = I m k m. Detta garanterar att det finns ett maximalt ideal, I, och således är R/I en kropp. Det gäller även att kroppar är Noetherska ty de enbart har två ideal. Sats 2.8. [3] Hilberts bassats Låt R vara en Noethersk ring. Då är R[x] också en Noethersk ring.

24 12 Kapitel 2. Algebraiska strukturer Vi har nu olika sätt för att hitta kroppar. Antingen som en kommutativ divisionsring eller som en kvotring R/I där R är en kommutativ ring med etta och idealet I = q(x) är maximalt. Det är inte säkert att exempelvis integritetsområdet Z[x]/ q(x) är ändligt. Senare i Sats 2.12 kommer vi få en sats som ger upphov till större kroppar givet ett irreducibelt polynom och kan ses som en utökning av Sats Kroppar Kroppar är mängder tillsammans med addition och multiplikation som uppför sig så som vi är vana vid. Detta då vi vill kunna arbeta med kurvor över kroppar. Definition Låt F vara en kropp. Karakteristiken av kroppen F är det minsta positiva heltalet p så att p 1 = 0 om sådant p existerar, annars definieras karakteristiken till 0. Vi betecknar karakteristiken av en kropp som ch(f ). Sats 2.9. [3] Låt F vara en kropp. Om ch(f ) = p > 0 så gäller x F, p x = p(1 x) = (p 1)x = 0. Det följer att karakteristiken för en kropp antingen är ett primtal, p, eller 0. Det gäller även i en kropp av karakteristik p att (x+y) p = x p +y p och (xy) p = x p y p, kallat Frobenius homomorfin. Detta då ( ) p n = p! n!(p n)! är delbart med p n, 0 < n < p. Exempel Detta är ett illustrativt exempel till varför det inte finns kroppar av karakteristik 6. Antag att (F, +, ) är en kropp med 6 element. Då är (F, +) en abelsk grupp. Eftersom Z 6 är den a abelska gruppen med 6 element så måste (F, +) vara Z 6. Så låt F = {0, 1, 2, 3, 4, 5} och + att vara addition mod 6. Operationen * är ännu inte definierad men vi vet att 2 3 = (1+1) (1+1+1) = = i + i + i + i + i + i = /6i/ = 0. Men detta kan inte hända i en kropp ty ab = 0 a = 0 eller b = 0 men i detta exempel så är a = 2 och b = 3. Så det finns inget sätt att definiera * så att (F, +, ) är en kropp. Nedan följer några definitioner som säger hur kroppar kan förhålla sig till varandra. Definition Låt K vara en kropp. Om F är en kropp med samma operatorer samt att F K så säges F vara en underkropp till K. Definition Den primära underkroppen till en kropp F är underkroppen till F genererad av den multiplikativa identiteten 1 till F. Den är isomorf till Q om ch(f ) = 0 annars F p.

25 2.3. Kroppar 13 Definition Om K är en kropp innehållande underkroppen F, då säges K vara en utvidgning av F, som betecknas K/F. Graden av utvidgningen betecknas [K : F ]. Definition Den utvidgade kroppen K till F kallas en delandekropp för polynomet f(x) F [x] om f(x) faktoriseras komplett i linjära faktorer i K[x] och f(x) inte kan faktoriseras i linjära faktorer i någon underkropp E till K så att F E K. Exempel Polynomet x 2 2 Q[x] kan inte faktoriseras i linjära faktorer över Q men om Q utvidgas med 2 så fås att (x 2), (x + 2) Q( 2)[x] där Q( 2) = {a + b 2 : a, b Q} och [Q( 2) : Q] = 2. Addition i K definieras som vanlig polynomaddition mod ch(f ). Låt a(x), b(x) K[x] och låt a(x)b(x) = p(x)h(x)+r(x) där h(x), r(x) K[x] och deg r(x) < n. Multiplikation i K definieras då som a(x)b(x) = r(x), där r(x) är resten (av grad < n) som fås efter att dividera polynomet a(x)b(x) med p(x) i F [x]. Definition Låt F vara en kropp och låt K vara en utvidgning av F. Ett element a K är algebraiskt över F om f(a) = 0 F [x]. Definition Låt F vara en kropp. Kroppen F kallas det algebraiska höljet till F om F är algebraisk över F och om alla polynom f(x) F [x] delas över F (så F kan sägas innehålla alla element som är algebraiska över F. Definition En kropp F säges vara algebraisk sluten om f(x) F [x] a F så att f(a) = 0. Exempel Höljet till R är C ty alla polynom med koefficienter i R har komplexa nollställen enligt algebrans fundementalsats. Således är R(i) = R = C. Sats [3] Låt F vara en kropp. Det algebraiska höljet till F, F, är algebraiskt slutet. Då C är höljet till R så är C en algebraiskt sluten kropp. Sats [3] Låt p(x) F [x] vara ett irreducibelt polynom av grad n över kroppen F och låt K vara kroppen F [x]/ p(x). Låt θ = x + p(x) K. Då är elementen 1, θ, θ 2,..., θ n 1

26 14 Kapitel 2. Algebraiska strukturer en bas för K som ett vektorrum över F, så graden av utvidgningen är n, [K : F ] = n. Således är K = {a 0 + a 1 θ + a 2 θ a n 1 θ n 1 : a 0, a 1,..., a n 1 F } som består av alla polynom i θ av grad < n. Exempel [3] Det irreducibla polynomet x R[x] ger upphov till kroppen R[x]/ x Detta är en utvidgning av grad 2 i R i vilken x har en rot. Således är elementen på formen a + bθ, a, b R. Addition ges av (a + bθ) + (c + dθ) = (a + c) + (b + d)θ. För multiplikation använder vi att θ 2 +1 = 0 alltså att θ 2 = 1. Detta ger (a+bθ)(c+dθ) = ac+(ad+bc)θ+bdθ 2 = ac + (ad + bc)θ + bd( 1) = (ac bd) + (ad + bc)θ. Om vi inför noteringen θ = i så ser vi att det är samma välbekanta addition och multiplikation som vi lärt oss för C. Exempel Med samma metod som i exemplet ovan fast med kroppen Q så finnes att Q[x]/ x = {a + bi : a, b Q}, inte så förvånande. Vi har dock med a, b, c, d Z att a+bi c+di = (a+bi)(c di) c 2 +d = ac+db 2 c 2 +d + i bc ad 2 c 2 +d = e + fi, e, f Q. Vi 2 ser alltså att på samma sätt som Q är en fraktionskropp till Z, Q = { a b : a, b Z, b 0} så är Q[x]/ x = { a b : a, b G, b 0} där G är de Gaussiska heltalen {a + bi : a, b Z} som vi såg i Exempel Sats [3] Låt F vara en kropp och låt p(x) F [x] vara ett irreducibelt polynom av grad n. Antag att K är en utvidgandekropp till F innehållande en rot α till p(x) : p(α) = 0. Låt F (α) = α beteckna underkroppen till K genererad över F av α. Då är F (α) = F [x]/ p(x). Det gäller även att F (α) = {a 0 + a 1 α + a 2 α a n 1 α n 1 : a 0, a 1,..., a n 1 F } K. Det följer att om F p utvidgas så får vi F p n. Exempel Kvotringen F 2 [x]/ x 2 +x+1 = F 4 är en kropp ty x 2 +x+1 är irreducibelt i F 2 [x]. Låt α vara en rot till x 2 + x + 1, α 1 = α, α 2 = (α + 1) = α + 1 ty α 2 + α + 1 = 0 och addition och subtraktion är desamma i en kropp av karakteristik 2, α 3 = 1 ty α(α + 1) = α 2 + α = 2α + 1 = 1 så elementen i F 2 [x]/(x 2 + x + 1) är 0, 1, α, α + 1. Nedan följer additions- och multiplikationstabell för F 4. Vi känner igen additionen som V 4 från Exempel 2.3. Vi ser även att F 4 = C 3.

27 2.3. Kroppar α α α α α + 1 α α α α α + 1 α + 1 α α α α α + 1 α 0 α α α α α Additionen är lätt att förstå, till exempel är α + (α + 1) = 2α + 1 = 1, det vill säga addition mod 2. Multiplikation är lite klurigare men för exempelvis α(α + 1) = α 2 + α = (α 2 + α + 1) + 1 = 1 då vi är i en kvotring. Annars kan α 2 + α + 1 = 0 α 2 = α + 1 användas ty 1 = 1 mod 2 så α(α + 1) = α 2 + α = α α = 2α + 1 = 1. Om beteckningen α = 2 införs så fås att Skulle vi istället jobba i F p där p primtal så sammanfaller addition och multiplikation med den vanliga mod p, som vi såg i Exempel 2.1. Exempel Nedan följer additions- och multiplikationsmatriserna för kroppen F 8 genererad med det irreducibla polynomet p(x) = x 3 + x + 1. Additionsmatrisen är samma oavsett genererande polynom. Multiplikationsmatrisen blir dock olika för olika polynom. Det gäller att den ena är en permutation av den andra..

28 16 Kapitel 2. Algebraiska strukturer α α α α α + 1 α α α α α + 1 α + 1 α 1 0 α 2 α 2 α α 2 + α α 2 + α + 1 α α α 2 α 2 + α + 1 α 2 + α α 2 + α α 2 + α α 2 + α + 1 α 2 α α 2 + α + 1 α 2 + α + 1 α 2 + α α α 2 + α 2 α α 2 + α α 2 + α α 2 α α 2 + α α 2 + α α α 2 α 2 + α + 1 α 2 + α α α 2 + α α α + α + 1 α α 2 α + 1 α 2 + α + 1 α 2 + α α α 2 α α α + 1 α α + 1 α α 2 + α α α α 2 + α + 1 α + 1 α α α α α + 1 α 0 α α 2 α 2 + α α α + 1 α 2 + α α α 2 0 α 2 α + 1 α 2 + α + 1 α α α 2 α 2 + α 0 α 2 + α α 2 + α α 2 + α α 2 + α + 1 α α α 2 α α 2 + α α 2 + α α 2 α α 2 + α α 2 + α + 1 α α α 2 + α + 1 α 2 α + 1 α 2 + α + 1 α 2 1 α α 2 α 2 + α α α α α α 2 + α + 1 α + 1 α 2 + α α 2 + α α α + 1 α α 2 α 2 + α α 2 + α α 2 α + 1

29 2.3. Kroppar 17 Exempel Nedan följer additions- och multiplikationsmatriserna för F 9 = F 3 [x]/ x 2 + x α α + 1 α + 2 2α 2α + 1 2α α α + 1 α + 2 2α 2α + 1 2α α + 1 α + 2 α 2α + 1 2α + 2 2α α + 2 α α + 1 2α + 2 2α 2α + 1 α α α + 1 α + 2 2α 2α + 1 2α α + 1 α + 1 α + 2 α 2α + 1 2α + 2 2α α + 2 α + 2 α α + 1 2α + 2 2α 2α α 2α 2α + 1 2α α α + 1 α + 2 2α + 1 2α + 1 2α + 2 2α α + 1 α + 2 2α + 2 2α + 2 2α 2α α + 2 α α α α + 1 α + 2 2α 2α + 1 2α α α + 1 α + 2 2α 2α + 1 2α α 2α + 2 2α + 1 α α + 2 α + 1 α 0 α 2α 2α α + 1 α + 2 2α α α + 1 2α α + 2 2α 2 α 2α + 1 α α + 2 2α + 1 α + 1 2α 2 2α α 2α 0 2α α α α + 2 2α + 1 α α α + 1 α + 2 2α + 2 α 1 α α 2α α + 2 α α + 1 α 1 2α α + 2 Vi ser även att F 9 = C 8 = {α 0,..., α 8 } = {1, α, 2α + 1, 2α + 2, 2, 2α, α + 2, 1 + α}.

30

31 Kapitel 3 Geometri Följande kapitel kommer att behandla affin och projektiv geometri. Affin geometri är som vanligt medan i projektiv geomtri lägger vid till extra punkter vi oändligheten för varje klass av parallella linjer. En liknelse är ett rakt tågspår där rälsen ser ut att gå mot samma punkt i fjärran. Detta kapitel kommer även att behandla Bezouts sats som säger i hur många punkter två kurvor möts. Denna sats är nödvändig för gruppoperatorn som vi senare kommer att definiera för elliptiska kurvor. Bra källor är för detta område är [5], [6], och en stor del återfinns även [3]. 3.1 Affin geometri Definition 3.1. Låt F vara en kropp och låt n Z +. Det affina rummet av dimension n över F är mängden F n = {(a 1,..., a n ) : a 1, a 2,..., a n F }. Vi kallar F 1 = F den affina linjen och F 2 det affina planet. Läsaren har arbetat i R n samt C n inom linjära algebra. Exempel 3.1. Hörnen på en hyperkub i n dimensioner är F n 2. Det kan ses som grafen med hörn i (x 1,..., x n ), x i F 2 och det är en kant mellan hörnen (x 1,..., x n ) och (y 1,..., y n ) om givet i 0 så gäller x i = y i och x i0 y i0, i, 1 i n, i i 0. Vi kommer att arbeta mest i planen F 2 q, q = p m, p primtal, m Z +. Felding,

32 20 Kapitel 3. Geometri Definition 3.2. Låt F vara en kropp, och låt f 1,..., f s vara polynom i F [x 1,..., x n ]. Då definieras mängden V(f 1,..., f s ) = {(a 1,..., a n ) F n : f i (a 1,..., a n ) = 0, 1 i s}. Vi kallar V(f 1,..., f s ) den affina varieteten definierad av f 1,..., f s. Så om I är ett ideal till F [x 1,..., x n ] så består I av polynom. Det gäller då att V(I) är en affin varietet genererad av alla polynom i I. Det gäller att V( 0 ) är det hela affina rummet F n. Detta då 0 ast består av nollpolynom, f F n [x 1,..., x n ] så f(a 1,..., a n ) = 0 (a 1,..., a n ) F n. Definition 3.3. Låt V F n vara en affin varietet. Då sätter vi I(V ) = {f F [x 1,..., x n ] : f(a 1,..., a n ) = 0, (a 1,..., a n ) V }. Sats 3.1. [5] Om V F n är en affin varietet, då är I(V ) F [x 1,..., x n ] ett ideal. Vi kommer att kalla I(V ) idealet till V. Den viktiga observationen är att I(V ) är ett ideal som är ändligt genererat. Detta eftersom kroppar är Noetheriska som följer från Definition Definition 3.4. Låt f F [x, y] vara ett polynom. Då är V( f ) en affin kurva. Vi definierar alltså en kurva som en varietet beståe av nollställen till ett principal ideal i F [x, y]. Exempel 3.2. Låt f = x 2 y F 3 / α 2 + α + 2. Vi finner att V( f ) = {(0, 0), (1, 1), (2, 1), (α, 2α+1), (α+2, 2), (2α, 2α+1), (2α+1, 2), (2α+2, α+2)}. Detta illustreras med α = 2 i Figur 3.1. Exempel 3.3. I Exempel 2.16 hade vi I = (x + 1), (y + 1) R[x, y]. Detta ger V = V(I) = {(x, y) : x = 1 och y = 1}. Vi ser att I(V ) = I genom att ansätta f = h 1 (x + 1) + h 2 (y + 1) + r där h 1, h 2 R[x, y] och r R. Detta då om f är ett monomial, ett polynom med ast en term, så gäller f = x α y β = ( 1 + x + 1) α ( 1 + y + 1) β = ( 1) α + h 1 (x + 1) + ( 1) β + (y + 1) β. Då ett godtyckligt f R[x, y] är en R-linjär kombination av monomial så gäller det att f alltid är på formen h 1 (x + 1) + h 2 (y + 1) + r. För att visa att I(V ) = I så ser vi att I I(V ). För att visa likhet noterar vi att 0 = f( 1, 1) så det måste vara så att r = 0. Så det gäller att I = I(V(I)). I(V(f 1,..., f s )) behöver inte vara samma som f 1,..., f n. Ett exempel är J = x 2, y 2. Det gäller att V(J) = {(0, 0)} = V( x n, y n ), speciellt så är {(0, 0)} = V( x, y ). Det gäller att I({0, 0)}) = x, y. Det gäller även att J x, y så I(V(J)) J. En naturlig fråga som uppkommer är när de är desamma.

33 3.1. Affin geometri 21 y x (5) (6) (7) (8) (8) 1 (7) 2 (6) 3 (5) 4 Figur 3.1: x 2 = y över F 3 [x]/ x 2 + x + 2 = F 9

34 22 Kapitel 3. Geometri y x ( 1, 1) Figur 3.2: V = V( (x + 1), (y + 1) ) = {( 1, 1)}, i blått V 1 = V( x + 1 ), i rött V 2 = V( y + 1 ), V 1 V 2 = V, V 1 V 2 = V 3 = V( xy + x + y + 1 ) Definition 3.5. Låt V vara en affin varietet. V säges vara reducibel om V = V 1 V 2, där V 1, V 2 är affina varieter och V 1 V, V 2 V. Annars säges V vara irreducibel. Exempel 3.4. Betrakta f 1 = x + 1, f 2 = y + 1 R[x, y] som genererar V 1 = V( f 1 ) = {( 1, a) : a R} och V 2 = V( f 2 ) = {(a, 1) : a R}. Låt V 3 = V( (x + 1)(y + 1) ) = {(a, b) : a, b R, a = 1 eller b = 1}. Det är tämligen enkelt att se att V 3 = V 1 V 2 så V 3 är reducibel. Se Figur 3.2. Sats 3.2. [5] Låt V vara en affin varietet. Då är V irreducibel om och ast om I(V ) är ett primideal. Sats 3.3. [3], [5], [6] Hilberts Nullstellensatz Låt F vara en algebraiskt sluten kropp. Då är I(V(I)) = rad I för alla ideal I till F [x 1,..., x n ]. Dessutom så definierar avbildningarna I och V inversa bijektioner {affina algebraiska mänder} I {radikala ideal}. V Då radikalen av ett primideal är primidealet så har vi funnit en hel klass av ideal som har egenskapen att I(V(I)) = I. Exempel 3.5. För att illustrera varför kroppen måste vara sluten betrakta f = x 2 + x + x 2 y + xy F 2 [x, y] och I = f. Vi har att f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 1 och således är V = V(I) =. Så I(V ) = F 2 [x, y]. Det

35 3.2. Projektiva planet 23 gäller att V är irreducibel varietet och således är I ett primideal. Det gäller att primideal är radikala så radi = I. För att se att I F 2 [x, y] noterar vi att x / I. Ytterligare ett exempel på varför kroppen måste vara sluten är x R[x]. Definition 3.6. Låt V F n vara en affin varietet. Då kallas kvotringen F n /I(V ) för koordinatringen till V och betecknas F [V ]. Då vi har en kurva C med genererande polynom f så är F [C] = {a : a + bf, a, b F [x, y]}. Det är alltså en mängd ekvivalensklasser av polynom. Det gäller att detta är en ring [5]. Om vi inför funktionerna x = x + f, y = y + f så gäller det att x, y : C F vars värden vid en punkt p C är koordinaterna till p. Vi kallar x för x-koordinatfunktionen på C. På samma sätt är y, y-koordinatfunktionen på C. Det gäller då att koordinatfunktionerna genererar F [C] då något polynom i F [C] är en linjärkombination av x och y. Det är därifrån namnet koordinatring kommer. 3.2 Projektiva planet Då vi vill kunna beskriva elliptiska kurvor, som är kurvor i planet så kommer vi i följande avsnitt att arbeta i 2 dimensioner. Definitionerna går med fördel att generalisera och det är ofta så de är beskrivna, se [5]. Definition 3.7. Låt F vara en kropp och låt (X, Y, Z) F 3. Det projektiva planet F P 2 = {ekvivalensklasser [X : Y : Z]} = (F 3 \ {0, 0, 0})/ där [X : Y : Z] [λx : λy : λz] om λ F, det vill säga ekvivalensklasser. Med andra ord, så är varje punkt i det projektiva planet F P 2 en linje i F 3 genom origo. Definition 3.8. En linje i F P 2 är L : {[X : Y : Z] : ax + by + cz = 0, a, b, c F }. Linjen L skär {Z = 0} vid X = b, Y = a så [ b : a : 0] är linjens punkt vid oändligheten, L. Punkter till F P 2 med Z = 0 motsvarar kvoter [X : Y : 0], dessa punkter bildar linjen som är F P 1 = F { } kallat ideella linjen alternativt linjen vid oändligheten. Ett sätt att se det är att då parallella linjer möts i en punkt vid oändligheten så bildas det ekvivalensklasser för linjer i F 2. Varje klass har en punkt vid oändligheten associerad med den. Mängden av punkter vid oändligheten bildar en egen projektiv linje, linjen vid oändligheten, [X : Y : 0]. Mängderna U x, U y, U z betecknar mängderna där U z = {[X : Y : Z] : Z 0} = {( X Z, Y Z, 1)} så U z = F 2 och på liknande sätt för U x, U y. Vi har att F P 2 =

36 24 Kapitel 3. Geometri Figur 3.3: F 3 P 2 U x U y U z = U z {Z = 0}. Beroe på vilken mängd U i som vi arbetar i så blir det olika punkter vid oändligheten. Vi väljer att hädanefter arbeta med {Z = 0} som de punkter vid oändligheten. Vi har att då Z 0 att [X : Y : Z] = [X/Z : Y/Z : 1] som kan identifieras med (x = X Z, y = Y Z ) F 2. Exempel 3.6. Se Figur 3.3 och 3.4 för hur det affina planet och det projektiva planet hör ihop. Definition 3.9. Låt f(x, y, z) F [x, y, z]. Polynomet f säges vara ett homogent polynom om summan av exponenterna i varje term är densamma. Det är ekvivalent med att säga att för ett homogent polynom g(x, Y, Z) F [X, Y, Z] av grad d så gäller g(λx, λy, λz) = λ d g(x, Y, Z), λ F. Definition Låt F vara en kropp och låt f 1,..., f s F [x, y, z] vara homogena polynom. Då definieras mängden V(f 1,..., f s ) = {(x, y, z) F P 2 : f i (x, y, z) = 0 1 i s}. Vi kallar V(f 1,..., f s ) den projektiva varieteten i F P 2 definierad av f 1,..., f s. Sats 3.4. [5] Låt V = V(f 1,..., f s ) vara en projektiv varietet. Då kan W = V U z identifieras med den affina varieteten V (g 1,..., g s ) F n, där g i (x, y, z) = f i (x, y, z) 1 i s.

37 3.2. Projektiva planet 25 z y x Figur 3.4: RP 2 = U z {Z = 0}. Punkten [1 : 1 : 2] är markerad linje x + y + 2z = 0 R 3. Skärningen med det affina planet R 2 är även markerad. Vi ser även att två parallella linjer går mot samma punkt. Detta för att om vi bara har kvar punkter på formen ( X Z, Y Z, 1) i en projektiv varietet så kan de identifieras med affina punkter i en affin varietet. Exempel 3.7. Låt f(x, y) = x 3 + 3x 3 y 2 + y F [x, y]. Vi kan notera att f = 1 5 (x 3 + 3x 3 y 2 + y 4 + 2). För att homogenisera f kan vi se det som att f F [x, y, 1] som ger med insättning av Z: Z 5 (( X Z )3 + 3( X Z )3 ( Y Z )2 + ( Y Z )4 + ( 2 Z )5 ) = X 3 Z 2 + 3X 3 Y 2 + Y 4 Z + Z 5 = g(x, Y, Z). Exempel 3.8. Betrakta den projektiva varieteten V = V(X 2 Y Z) RP 2. Vi betraktar skärningen mellan V och U z som ger den affina V(x 2 y) R 2. Vi kan även betrakta den affina varieteten som ges av V U X, (y = Y X, z = Z X ), som är V(1 yz) R 2. För att gå från en affin varietet till en projektiv räcker det ibland att homogenisera varieteten medan i vissa fall krävs lite mer för att finna en projektiv varietet. Då vi i fortsättningen kommer att vara försiktiga och arbeta med väl valda varieter som enbart kräver homogenisering så lämnas detaljerna till [5]. Definition Låt F vara en kropp och låt g F [X, Y, Z] vara ett homogent polynom. Då är en planprojektiv kurva C = V( g ) = {p F P 2 : g(p) = 0}. Vi säger även att en punkt p är rationell om g(p) = 0 och således p C. Notera igen att p är en linje i F 3 så det kan vara svårt att visualisera sig kurvan. Det som görs är att vi betraktar U z och sedan vid behov punkterna vid oändligheten.

38 26 Kapitel 3. Geometri Definition Låt F vara en kropp och låt I vara ett ideal till F [x, y, z]. Idealet I säges vara ett homogent ideal om f I, så gäller att f i I, där f i är de homogena komponeterna till f. Exempel 3.9. Låt I = y x 2. De homogena komponenterna till f = y x 2 är f 1 = y samt f 2 = x 2. Det gäller att f 1, f 2 / I då ingen av de är en multipel av y x 2 och således är I inte ett homogent ideal. Sats 3.5. [5] Låt I vara ett ideal. Det gäller att I är ett homogent ideal I = f 1,..., f s där f i är ett homogent polynom. Sats 3.6. [5] Projektiva Nullenstellensatz Låt F vara en sluten kropp och låt I vara ett homogent ideal i F [X, Y, Z]. Om V = V(I) är en projektiv varietet i F P 2 så gäller det att För att sammanfatta: I(V(I)) = rad I. af f int projektivt f(x, y) g(x, Y, Z) homogent C = {p : f(p) = 0, p F 2 } C = {p : g(p) = 0, p F P 2 } V(f) V(g) f ideal till F [x, y] g homogent ideal till F [X, Y, Z] N ullenstellensatz N ullenstellensatz Det går att definiera en projektiv koordinatring som en kvotring men den kommer inte att ha samma fina egenskap att den genereras av koordinatfunktionerna. Detta på grund av att ett icke-konstant element p är ju faktiskt en linje i F 3, inte en funktion! 3.3 Bezouts sats Vi är nu intresserade av att finna snittet av kurvor. Speciellt då en av kurvorna är en linje. Definition Låt f, g F [x] vara polynom av grad > 0 på formen f = a 0 x l + + a l, a 0 0, g = b 0 x m + + b m, b 0 0.

39 3.3. Bezouts sats 27 Då är Sylvestermatrisen av f och g med avse på x, betecknad Syl(f, g, x), följande matris a 0 b 0 a 1 a 0 b 1 b 0. a 2 a... 1 b 2 b a0... b0 Syl(f, g, x) =. a 1. b 1. a l b m al. bm } {{ al }} {{ bm } m kolumner l kolumner Vi definierar även resultanten av f och g med avsee på x, betecknat Res(f, g, x) som: Res(f, g, x) = det(syl(f, g, x)). Exempel Polynomen f = x 2 + x och g = x + 2 ger upphov till Syl(f, g, x) = Vi finner att Res(f, g, x) = Om vi låter f = xy 1, g = x 2 +y 2 4 och betraktar dem som polynom i x, alltså i kroppen F (y)[x], så finner vi Res(f, g, x) = det 1 y 0 = y y 2 4 y 4 4y Hur många skärningspunkter har y = x 2 och x = c? En vid (c, c 2 ). Vad händer om vi går över till det projektiva planet och betraktar skärningspunkterna mellan Y Z = X 2 och X = cz? Vi löser ut X och får då Y Z = c 2 Z 2. Lösningarna blir då [X : Y : Z] = [0 : 1 : 0] eller [c : c 2 : 1]. Detta är samma som innan samt en skärning vid oändligheten. ( ) Y c Vi har även att Res(Y Z X 2, cz X, Z) = det X 2 = (cx X 2 XY ) = X 1 (cx Y ) 1. Resultanten blir 0 för samma punkter! Exponenten till varje faktor ger även multipliciteten av skärningen i den punkten. Detta exempel illustrerade följande sats:

40 28 Kapitel 3. Geometri Sats 3.7. [5], [6] Bezouts sats Låt C = V( g ) och D = V( h ) vara två planprojektiva kurvor över F P 2 av grad m respektive n utan gemensam komponent. Då är antalet skärningspunkter över en algebraisk sluten kropp, F, mn räknat med multiplicitet. Det är fullt möjligt att två kurvor aldrig skär varandra i en kropp men har alla skärningspunkter i kroppens hölje. Det är inte säkert att resultanten ger rätt multiplicitet direkt, utan ett variabelbyte kan vara nödvändig. Se detaljer i [5]. Exempel För att illustrera varför kroppen ska vara sluten så betrakta skärningen mellan två cirklar på formen (x a) 2 +(y b) 2 r 2 = 0 som projektivt är (x az) 2 + (y bz) 2 r 2 z 2. Det gäller för alla cirklar att punkterna [1 : i : 0] och [1 : i : 0] vid oändligheten alltid ligger på cirkeln. Vad händer om cirklarna ligger i RP 2? Punkterna vid oändligheten finns inte och således skär cirklarna varandra i högst 2 punkter.

41 Kapitel 4 Elliptiska kurvor Elliptiska kurvor är en typ av kurvor som redan innan deras bruk inom kryptografi var av särskilt intresse. Bland annat så är en elliptisk kurva över C en torus. Fokus kommer dock att ligga på elliptiska kurvor över ändliga kroppar. Det mesta i detta kapital kommer från [6] och [2]. Definition 4.1. En elliptisk kurva är en irreducibel plankurva av grad tre över en kropp, F, med ekvation Y 2 Z + a 1 XY Z + a 3 Y Z 2 = X 3 + a 2 X 2 Z + a 4 XZ 2 + a 6 Z 3 betecknat E. Affint är kurvan y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 tillsammans med tre extra punkter vid oändligheten för att det alltid ska finnas tre punkter där kurvan möter en linje, detta från Bezouts sats. Att en elliptisk kurva inte är singulär innebär att {(x, y) : f(x,y) x = f(x,y) y = 0} =. Detta krav kan även skrivas med diskriminanten,, med kravet att 0 som kan skrivas som b 2 = a 2 14a 2, b 4 = 2a 4 + a 1 a 3, b 6 = a a 6, b 8 = a 2 1a 6 + 4a 2 a 6 a 1 a 3 a 4 + a 2 a 2 3 a 2 4, = b 2 2b 8 8b b b 2 b 4 b 6. Det gäller även att varje elliptisk kurva över en kropp av karakteristik > 3 eller 0 kan sättas i (Weierstrass) normalformen E : Y 2 Z = X 3 + axz 2 + bz 3. Den affina formen är y 2 = x 3 + ax + b Felding,

42 30 Kapitel 4. Elliptiska kurvor tillsammans med en punkt vid oändligheten av ordning 3, O = [0 : 1 : 0] [6]. Detta då linjen vid oändligheten, Z = 0, ger att 0 = X 3 och således att X = 0 så Y är den a fria koordinaten. Att den inte ska vara singulär kan även nu skrivas med diskriminanten = 16(4a b 2 ) 0. En elliptisk kurva över R har två huvudsakliga utseen, se Figur 4.1 och 4.2. Utseet beror på om determinanten är positiv eller negativ. y x Figur 4.1: y 2 = x 3 4x + 1 över R För att kunna tillämpa elliptiska kurvor till kryptering måste vi ha någon gruppoperator. Tillämpningar av elliptisk kryptering bygger på att elliptiska kurvor är abelska grupper, se Definition 2.1. Definition 4.2. Låt E vara en elliptisk kurva. Låt vara en operator sådan att P Q = R. Där P, Q, R är de 3 punkter, räknat med multiplicitet, på linjen P Q som skär E. Låt sedan R vara en punkt med samma x-koordinat som R och om möjligt annan y-koordinat. I R så gäller det att samma x-koordinat är en spegling i x-axeln för ( a) 2 = a 2. I andra kroppar så är det lite svårare att hitta speglingen men från Exempel 2.33 så ser vi i F 9 att (2α + 2) + (α + 1) = 0, så (2α + 2) 2 = (α + 1) 2 = α + 2. Sats 4.1. [6] Låt E vara en elliptisk kurva på normalform och som ovan. Det gäller då P, Q, R E : 1. P Q R = R R = O P, Q, R är kolinjära,

43 31 y x Figur 4.2: y 2 = x 3 x + 1 över R 2. Identiteten är I d = O = [0 : 1 : 0], 3. Inversen ges av linjen OP E = {O, P, P }, 4. Operatorn är assosiativ, P (Q R) = (P Q) R, 5. Operatorn är även kommutativ P Q = Q P. Skiss av beviset: Det är alltså en abelsk grupp. Identiteten O O = O är linjen vid oändligheten och en punkt av ordning 3, O R = R är den lodräta linjen som går igenom R, R samt O och sen speglas R till R. Inversen är liknande att R R ger den lodräta linjen i riktning mot O som sen speglas till sig själv. Att operatorn är kommutativ är lätt att se för det finns bara en linje mellan två punkter. Att operatorn är associativ är inget som följer direkt utan det krävs ett väldigt tekniskt bevis med flertalet falluppdelningar. Exempel 4.1. Betrakta den elliptiska kurvan E : y 2 = x 3 4x+1 över R. Vi har då de rationella punkterna P = ( 2, 1), Q = (3, 4). Vi söker P Q = R. Först så drar vi linjen mellan P och Q. Lutningen är λ = ( 2) = 3 5 så linjen är då L : y = x+ 5. Detta ger ( 3 5 x + ) = x 3 4x+1 0 = x 3 ( 3 5 x + ) x+1 = x x ( x 25 = (x+2)(x 3)(x+16/25) ) där vi använda att P, Q L E. Detta ger R = 16 25, 3 ( 16) = ( 16 25, ). Spegling i x-axeln ger R = ( 16 25, ). Vi kan se att det stämmer med resultanten och Bezouts sats Res(z 3 4xz 2 y 2 z +x 3, 11/5z +3/5x y, z) = (4x 3y)(x+2y)( x 25 y).

44 32 Kapitel 4. Elliptiska kurvor Figur 4.3: y 2 = x 3 + 4x över F 125

45 33 2P = O y R Q P x R Figur 4.4: Gruppopperatorn för en elliptisk kurva y P R Q P Q R x Q R P Q Figur 4.5: Assosiativitet för en elliptisk kurva

46 34 Kapitel 4. Elliptiska kurvor Exempel 4.2. Betrakta den elliptiska kurvan E : y 2 = x 3 4x + 1 över R och P = ( 2, 1) som ovan. Vi söker P P = R. Lutningen vid P fås genom att implicit derivera E, så 2y dy dx = 3x2 4, som borde vara bekant från en kurs i flervariabel analys. Så dy. I punkten P har vi således λ = 3 ( 2) dx = 3x2 4 2y 2 1 = = 4. Vi får då linjen y = 4x + 9 som P uppfyller 1 = 4( 2) + 9. Insättning i kurvans ekvation ger (4x + 9) 2 = x 3 4x+1 0 = x 3 4x+1 (4x+9) 2 = (x 20)(x + 2) 2. På linjen får vi y = 89 = Spegling i x-axeln ger R = (20, 89). Följande sats ger en algoritm för gruppoperatorn, som definieras i Sats 4.1. Det är denna metod som används i kommande beräknar. Sats 4.2. [2] Låt E vara en elliptisk kurva på normalform och låt P, Q E. 1. Om P = Q = O, då P Q = O, 2. Om P = O, då P Q = Q, 3. Om Q = O, då P Q = P, 4. Annars låt P = (x 1, y 1 ), Q = (x 2, y 2 ), 5. Om x 1 = x 2 och y 1 y 2, då P Q = O, 6. Annars låt och låt Då är P Q = (x 3, y 3 ). Bevis. Använd koordinater. λ = { y2 y 1 x 2 x 1 3x 2 1 +a 2y 1 P Q P = Q x 3 = λ 2 x 1 x 2 och y 3 = λ(x 1 x 3 ) y 1. Följande sats generaliserar gruppoperatorn till alla elliptiska kurvor. Den är snarlik den för normalform med den största skillnanden att speglingen ges av (x, y) (x, y a 1 a 3 ). Sats 4.3. [2] Låt E vara en elliptiska kurva över kroppen F på formen y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6. Låt P 1 = (x 1, y 1 ) och P 2 = (x 2, y 2 ) vara punkter på E.

3. Bestäm med hjälpa av Euklides algoritm största gemensamma delaren till

3. Bestäm med hjälpa av Euklides algoritm största gemensamma delaren till UPPSALA UNIVERSITET Matematiska institutionen Isac Hedén, isac@math.uu.se Prov i matematik Vi räknar ett urval av dessa uppgifter vid vart och ett av de tio lektionstillfällena. På kurshemsidan framgår

Läs mer

Euklides algoritm för polynom

Euklides algoritm för polynom Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

POLYNOM OCH POLYNOMEKVATIONER

POLYNOM OCH POLYNOMEKVATIONER Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.

Läs mer

x 23 + y 160 = 1, 2 23 = ,

x 23 + y 160 = 1, 2 23 = , Matematiska Institutionen KTH Lösningar till några övningar, inför tentan moment B, på de avsnitt som inte omfattats av lappskrivningarna, Diskret matematik för D2 och F, vt08.. Ett RSA-krypto har n =

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning

TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper

Läs mer

Mer om faktorisering

Mer om faktorisering Matematik, KTH Bengt Ek november 2013 Material till kursen SF1662, Diskret matematik för CL1: Mer om faktorisering Inledning. Är alla ringar som Z? De första matematiska objekt vi studerade i den här kursen

Läs mer

1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = =

1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = = Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF630, den 20 maj 2009 kl 08.00-3.00. Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 15 Ringar, kroppar och polynom Det fjortonde kapitlet behandlar ringar. En ring har till skillnad

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009

SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009 SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009 (1) a) Definiera vad som menas med en grupphomomorfi. (1) b) Visa att exponentialfunktionen, exp

Läs mer

Grupper och RSA-kryptering

Grupper och RSA-kryptering UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF1631 och SF1630, den 1 juni 2011 kl

Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF1631 och SF1630, den 1 juni 2011 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik moment B för D2 och F SF63 och SF63 den juni 2 kl 8.- 3.. Examinator: Olof Heden tel. 7354789. Hjälpmedel: Inga

Läs mer

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET AKS-algoritmen för att bestämma om ett tal är ett primtal eller inte av Per Westerlund 2005 - No 14 MATEMATISKA INSTITUTIONEN,

Läs mer

SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009

SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009 SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009 (1) a) Definiera vad som menas med centralisatorn till ett element g i en grupp G. (1) b) Visa att

Läs mer

Matematiska Institutionen KTH. Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09.

Matematiska Institutionen KTH. Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09. 1 Matematiska Institutionen KTH Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09. 1. Betrakat gruppen G = (Z 19 \ {0}, ). (a) Visa att G är en cyklisk grupp.

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

MINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER

MINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER MINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER SONJA KOVALEVSKYDAGARNA 2008; HANNA USCKA-WEHLOU 0. Praktiska anmärkningar Det finns följande moment i workshop: en föreläsningsdel - jag berättar om

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Ett försök att generalisera konjugatregeln av Ulrika Söderberg 2016 - No 17 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,

Läs mer

10! = =

10! = = Algebra II: Gamla tentor Algebra II: Lösningar till tentan den 28. maj 2012 Hjälpmedel: Papper skrivdon samt miniräknare. 1. Låt ϕ : N N vara Eulers ϕ-funktion. (a) Primfaktorisera ϕ(10!). Lösning: Faktoriseringen

Läs mer

8(x 1) 7(y 1) + 2(z + 1) = 0

8(x 1) 7(y 1) + 2(z + 1) = 0 Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

En hastig inblick i den algebraiska geometrin

En hastig inblick i den algebraiska geometrin U.U.D.M. Project Report 2015:29 En hastig inblick i den algebraiska geometrin Adrian Wennström Examensarbete i matematik, 15 hp Handledare och examinator: Veronica Crispin Quinonez Augusti 2015 Department

Läs mer

Algebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10

Algebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10 Grupper En grupp är ett par (G,*) där G är en mängd och * är en binär operation på G som uppfyller följande villkor: G1 (sluten) x,yϵg så x*yϵg G2 (associativ) x,y,z ϵg (x*y)*z=x*(y*z) G3 (identitet) Det

Läs mer

NÅGOT OM KRYPTERING. Kapitel 1

NÅGOT OM KRYPTERING. Kapitel 1 Kapitel 1 NÅGOT OM KRYPTERING Behovet av att skydda information har funnits mycket länge, men först i samband med utvecklingen av datatekniken har det blivit ett allmänt problem för alla moderna samhällen.

Läs mer

Gaussiska heltal. Maja Wallén. U.U.D.M. Project Report 2014:38. Department of Mathematics Uppsala University

Gaussiska heltal. Maja Wallén. U.U.D.M. Project Report 2014:38. Department of Mathematics Uppsala University U.U.D.M. Project Report 014:38 Gaussiska heltal Maja Wallén Examensarbete i matematik, 15 hp Handledare och examinator: Gunnar Berg Juni 014 Department of Mathematics Uppsala University Innehållsförteckning

Läs mer

1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e

1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e 1 Lösning till MODELLTENTA DISKRET MATEMATIK moment B FÖR D2 och F, SF1631 resp SF1630. DEL I 1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. Lösning: Vi

Läs mer

Ändliga kroppar. Anna Boman. U.U.D.M. Project Report 2016:12. Department of Mathematics Uppsala University

Ändliga kroppar. Anna Boman. U.U.D.M. Project Report 2016:12. Department of Mathematics Uppsala University U.U.D.M. Project Report 2016:12 Ändliga kroppar Anna Boman Examensarbete i matematik, 15 hp Handledare: Gunnar Berg Examinator: Veronica Crispin Quinonez Juni 2016 Department of Mathematics Uppsala University

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Daniel Bergh. Lösningsförslag Algebra och kombinatorik

MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Daniel Bergh. Lösningsförslag Algebra och kombinatorik MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Daniel Bergh Lösningsförslag Algebra och kombinatorik 015-01-16 Uppgift 1 Vi noterar att 31 är ett primtal, så Z 31 är en kropp.

Läs mer

Något om algebraiska kurvor

Något om algebraiska kurvor 85 Något om algebraiska kurvor Björn Gustafsson K T H Inledning. De enklaste matematiska funktionerna är de som kan definieras direkt med hjälp av de fyra räknesätten, dvs polynomen, (bara tre räknesätt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

Abstract Vi betraktar ringen R = Z 2 [x 1,...,x n ]/(x 2 1 x 1,...,x 2 n x n ). Vi visar att det finns en naturlig 1-1-motsvarighet mellan elementen

Abstract Vi betraktar ringen R = Z 2 [x 1,...,x n ]/(x 2 1 x 1,...,x 2 n x n ). Vi visar att det finns en naturlig 1-1-motsvarighet mellan elementen ËÂ ÄÎËÌ Æ Á Ê Ì Æ Á Å Ì Å ÌÁÃ Å Ì Å ÌÁËÃ ÁÆËÌÁÌÍÌÁÇÆ Æ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì Ú Ø ÓÒ Ý Ø Ñ Z 2 [x 1,...,x n ] Ú ÌÓ Ò Ö Ò ¾¼½ ¹ ÆÓ ½ Å Ì Å ÌÁËÃ ÁÆËÌÁÌÍÌÁÇÆ Æ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ½¼ ½ ËÌÇ ÃÀÇÄÅ Ú Ø ÓÒ

Läs mer

Lösningar till utvalda uppgifter i kapitel 3

Lösningar till utvalda uppgifter i kapitel 3 Lösningar till utvalda uppgifter i kapitel 3 3.37 (a) Att ` ' är reexiv, antisymmetrisk och transitiv följer direkt av att `den vanliga' är det på N och Z. (b) Följden m n = ( n, n) där n = 0, 1, 2,...

Läs mer

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1. Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Finaltävling i Uppsala den 24 november 2018

Finaltävling i Uppsala den 24 november 2018 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Finaltävling i Uppsala den 4 november 018 1. Låt ABCD vara en fyrhörning utan parallella sidor, som är inskriven i en cirkel. Låt P och Q vara skärningspunkterna

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

Optimering med bivillkor

Optimering med bivillkor Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla

Läs mer

Andragradspolynom Några vektorrum P 2

Andragradspolynom Några vektorrum P 2 Låt beteckna mängden av polynom av grad högst 2. Det betyder att p tillhör om p(x) = ax 2 + bx + c där a, b och c är reella tal. Några exempel: x 2 + 3x 7, 2x 2 3, 5x + π, 0 Man kan addera två polynom

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

EN KONCIS INTRODUKTION TILL RINGTEORI

EN KONCIS INTRODUKTION TILL RINGTEORI EN KONCIS INTRODUKTION TILL RINGTEORI DANIEL LARSSON Sammanfattning. En kort introduktion till ringteori. Innehåll 1. Inledning 1 2. Definition 1 2.1. Heltalsdomäner 3 3. Exempel, kommutativa ringar 4

Läs mer

Analys o Linjär algebra. Lektion 7.. p.1/65

Analys o Linjär algebra. Lektion 7.. p.1/65 Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om restklassaritmetik Mikael Hindgren 19 september 2018 Exempel 1 Klockan är nu 8.00 Vad är klockan om 78 timmar? Vad var klockan för 53 timmar sedan? 8 + 78

Läs mer

C/D-uppsats Matematik

C/D-uppsats Matematik 2001:18 C/D-UPPSATS Elliptiska kurvor Ing-Marie Holmqvist C/D-uppsats Matematik Institutionen för Matematik Avdelningen för - 2001:18 ISSN: 1402-1781 ISRN: LTU-C/DUPP--01/18--SE Abstract This is a study

Läs mer

Algebra och kryptografi Facit till udda uppgifter

Algebra och kryptografi Facit till udda uppgifter VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för

Läs mer

Matrisexponentialfunktionen

Matrisexponentialfunktionen U.U.D.M. Project Report 206:2 Matrisexponentialfunktionen Neda Farzaneh Examensarbete i matematik, 5 hp Handledare: Martin Herschend Examinator: Jörgen Östensson Juni 206 Department of Mathematics Uppsala

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6 Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 Institutionen för matematik, KTH Mats Boij Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 1. Ange kvot och rest vid division av 5BE med 1F där båda talen är angivna i hexadecimal

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

Tentamen i matematik. f(x) = ln(ln(x)),

Tentamen i matematik. f(x) = ln(ln(x)), Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

Linjär algebra. Lars-Åke Lindahl

Linjär algebra. Lars-Åke Lindahl Linjär algebra Lars-Åke Lindahl 2009 Fjärde upplagan c 2009 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. v 1 Linjära ekvationssystem

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga

Läs mer

RSA-kryptering och primalitetstest

RSA-kryptering och primalitetstest Matematik, KTH Bengt Ek augusti 2016 Material till kurserna SF1630 och SF1679, Diskret matematik: RSA-kryptering och primalitetstest Hemliga koder (dvs koder som används för att göra meddelanden oläsbara

Läs mer

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0 Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

Symbolisk integrering av rationella funktioner

Symbolisk integrering av rationella funktioner Symbolisk integrering av rationella funktioner Gustaf Lönn 28 augusti 2013 Helsingfors universitet Institutionen för matematik och statistik Handledare: Mika Seppälä Innehåll 1 Inledning 2 2 Abstrakt algebra

Läs mer

Algebra II. Isac Hedén och Johan Björklund

Algebra II. Isac Hedén och Johan Björklund Algebra II Isac Hedén och Johan Björklund 1 2 Innehåll 0 Introduktion 4 1 Talteori 4 1.1 Rationella tal och decimalrepresentationer............. 4 1.2 Delbarhet................................ 8 1.3 Primtal.................................

Läs mer

3 differensekvationer med konstanta koefficienter.

3 differensekvationer med konstanta koefficienter. Matematiska institutionen Carl-Henrik Fant 17 november 2000 3 differensekvationer med konstanta koefficienter 31 T Med en menar vi en av rella eller komplexa tal varje heltal ges ett reellt eller komplext

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

TALSYSTEM OCH RESTARITMETIKER. Juliusz Brzezinski

TALSYSTEM OCH RESTARITMETIKER. Juliusz Brzezinski TALSYSTEM OCH RESTARITMETIKER Juliusz Brzezinski MATEMATISKA INSTITUTIONEN CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2002 FÖRORD Detta häfte handlar om talsystem, restaritmetiker och polynomringar

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

DEL I 15 poäng totalt inklusive bonus poäng.

DEL I 15 poäng totalt inklusive bonus poäng. Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel

Läs mer

Vi börjar med en viktig definition som inte finns i avsnitt 3.4 i [EG], den formella definitionen av kongruens modulo n:

Vi börjar med en viktig definition som inte finns i avsnitt 3.4 i [EG], den formella definitionen av kongruens modulo n: MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 6 BLOCK INNEHÅLL Referenser Modulär aritmetik. Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Övningsuppgifter

Läs mer

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är KTH, Matematik Övningar till Kapitel 5.5-5.6, 6.6 och 8.3-8.6. Matrisframställningen A γ av en rotation R γ : R R med vinkeln γ är ( cos(γ sin(γ. sin(γ cos(γ Då R α+β = R α R β, är matrisen ( cos(α + β

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Manipulationer av algebraiska uttryck

Manipulationer av algebraiska uttryck Manipulationer av algebraiska uttryck Valentina Chapovalova SMaL-kursen i Mullsjö 19 juni 2018 Kluring 1 Bestäm produkten (x a) (x b) (x c)... (x z) Lösning kluring 1 Bestäm produkten (x a) (x b) (x c)..

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer