Föreläsning 2: A/ modellera och lösa LP-problem

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 2: A/ modellera och lösa LP-problem"

Transkript

1 TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid svar på den givna problemställningen TAOP52: Föreläsning 2 Verkligt problem Iden=fiering, avgränsningar, förenklingar, antaganden Verifiering Validering Förenklat problem Op=meringsmodell Lösning Formulering Lösningsmetod Resultat 1

2 TAOP52: Föreläsning 2 4 Problemställning i ord matematisk modell Beslut Variabler Mål Målfunk=on Begränsningar Bivillkor TAOP52: Föreläsning 2 5 Exempel: Produk=onsplanering Produk=on av två olika produkter. Maximera den totala vinsten. Resurs=llgång vid de två =llverkningsavdelningarna: avd 1: 240h avd 2: 140h Produkt 1 vinst/enhet: 0 kr resursåtgång avd 1: 4h resursåtgång avd 2: 2h begränsad ederfrågan: 40 st Produkt 2 vinst/enhet: 20 kr resursåtgång avd 1: h resursåtgång avd 2: 2h TAOP52: Föreläsning 2 6 Modellformulering Variabeldefini=on: x i = antalet =llverkade av produkt i, i = 1, 2 Matema=sk modell: max z = 0x x 2 då 4x 1 + x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 [målfunk)on] [resurs, avd. 1] [resurs, avd. 2] [maxproduk)on] [variabelbegränsningar] 2

3 TAOP52: Föreläsning 2 7 Vid modellering Parametrar: Givna data, beskriver problemet. Resursbegränsningar, priser, =llgångar, ederfrågan Variabler: Det man ska fa/a e/ beslut om / vill ha svar på. Produk=on, försäljning, inköp, lager, transport, blandning Bivillkor: Kopplar samman variabler och parametrar som behöver kommunicera med varandra. Resursbegränsningar, lagerbalans, ederfrågekrav Målfunk=on: Maximera vinst / minimera kostnader Försäljning gånger intäkt minus inköp gånger inköpspris TAOP52: Föreläsning 2 8 Parametrar Alla siffror som är kända, givna från början, beskriver förutsä/ningarna för problemet. Till exempel: Resurser - Tillgångar b kt ( råvara k, =d t ) - Åtgång a kj ( råvara k, produkt j ) Priser - Inköpspriser p kt ( råvara k, =d t ) - Försäljningspriser c jt ( produkt j, =d t ) EDerfrågan - Krav på produk=on d jt ( produkt j, =d t ) Kan vara minimumkrav ( ), maximumkrav ( ) eller exakt ederfrågan (=). TAOP52: Föreläsning 2 9 Variabler Det man ska bestämma / kan påverka / vill ha svar på: Produk=on x jt hur mycket ska produceras av produkt j under =dsperiod t Inköp y kt hur mycket ska köpas in av råvara k under =dsperiod t Lager L kt hur mycket finns i lager av råvara k i slutet (början) av =dsperiod t Transport T mnt hur mycket ska transporteras från plats m =ll plats n under =dsperiod t

4 TAOP52: Föreläsning 2 10 Bivillkor Reglerar så a/ ställda krav tvingas a/ uppfyllas : Resursbegränsningar Lagerbalans a x b kj j J jt kt k, t Lk, t 1 + ykt akj x jt = Lkt k, t j J Transportkrav (från varje m) Variabelbegränsningar (=ll varje n) T mnt n N T mnt m M x jt s mt d nt m, t n, t 0 j, t TAOP52: Föreläsning 2 11 Målfunk=on Ska minimeras eller maximeras Kan bestå av flera komponenter (intäkter / kostnader). Ska bestå av all=ng som man tjänar på, och allt som kostar Koppla samman varje kostnad / intäkt med en lämplig variabel. Exempelvis: Inköpskostnad (parameter) & inköpsmängd (variabel) p kt * y kt Försäljningspris (parameter) & försäljning (variabel) c jt * x jt Om en viss intäkt / kostnad inte verkar passa ihop med någon av variablerna: Fundera över om någon variabel saknas! TAOP52: Föreläsning 2 12 Formulering av bivillkor Produk=onsplaneringsproblem: I produkter som =llverkas ( i = 1,,20 ) K kunder som beställer ( k = 1,...,10 ) T =dsperioder ( t = 1,...,5 ) Förutsä/ningar: Daglig transportbegränsning: b ikt Vecko=llgång av varje enskild produkt: s i Fabrikens totala =llverkningskapacitet: C Daglig =llverkningskapacitet: M EDerfrågekrav (som minst) från varje kund: d ik 4

5 TAOP52: Föreläsning 2 1 Formulering av bivillkor Variabeldefini=on: x ikt = Antal produkter i som =llverkas och skickas =ll kund k under arbetsdag t, i = 1,,20 k = 1,...,10 t = 1,...,5 Formulera följande bivillkor: a) Det går inte a/ transportera fler än b ikt enheter av produkt i =ll kund k en viss dag t b) Fabriken kan =llverka som mest s i enheter av produkt i varje vecka c) Den totala =llverkningen av produkter i fabriken under en vecka kan inte övers=ga C enheter T 2.1 TAOP52: Föreläsning 2 14 Formulering av bivillkor d) Fabriken har en daglig =llverkningskapacitet på totalt M enheter (oavse/ vilka produkter som =llverkas) e) Varje kund k kräver a/ minst d ik enheter av produkt i skickas =ll dem varje vecka f) Kund k = 5 vill a/ fabriken skickar lika många enheter av produkt och produkt 7 under dag t = 2 g) Som mest 0% av den totala dagsproduk=onen får utgöras av produkt i = 8 TAOP52: Föreläsning 2 15 Exempel: produk=onsplanering II De kommande tre veckorna, t = 1,2,, är ederfrågan av en viss produkt d 1, d 2, respek=ve d. EDerfrågan i vecka t =llgodoses an=ngen genom produk=on eller a/ ta från befintligt lager. Kostnaden a/ =llverka en enhet i vecka t är c t. Vid produk=on används en maskin vars kapacitet är M =mmar varje vecka. För a/ =llverka en enhet vecka t så går det åt h t =mmar. Behöver man y/erligare maskin=mmar kan man leasa en maskin för k kr/=mme. Lagret har en kapacitet på S produkter och det kostar p kronor a/ lagra en enhet från en vecka =ll nästa. Ini=allagret (det som finns kvar i slutet av vecka t=0) betecknas L_init. Formulera problemet a/ minimera de totala kostnaderna som e/ linjärt op=meringsproblem. T 2.2 5

6 TAOP52: Föreläsning 2 16 LP-modell, produk=onsplanering II min z = c t x t + p L t + k y t t=1 t=1 t=1 då L t S, t =1,2, h t x t M + y t, t =1,2, L t 1 + x t d t = L t, t =1,2, L 0 = L _init x t, y t 0, t = 1,2, L t 0, t = 0,1,2, TAOP52: Föreläsning 2 17 LP-modell, matrisform max z = c T x då Ax b x 0 OBS: I denna modell finns både = - villkor och - villkor x = ( x 1 x 2 x L 0 L 1 L 2 L y 1 y 2 y ) T c = ( c 1 c 2 c 0 p p p k k k ) T b = ( S S S M M M d 1 d 2 d L _init ) T TAOP52: Föreläsning 2 18 LP-modell, matrisform A = h h h

7 TAOP52: Föreläsning 2 19 Kom ihåg! Skilj på parametrar (numerisk data) och variabler (det vi ska fa>a beslut om). I en LP-modell får variabler inte mul=pliceras eller divideras med varandra! I bivillkoren, skilj på: - e/ villkor för varje index ( ) - summera över index ( ) TAOP52: Föreläsning 2 20 Matema=sk modell AMPL-modell AMPL = modelleringsspråk som används för a/ formulera en matema=sk modell så a/ e/ datorprogram, tex CPLEX, kan förstå den. Skrivs i en vanlig texpil. Två strategier: Alterna=v 1: Modell och data =llsammans Alterna=v 2: Modell och data var för sig TAOP52: Föreläsning 2 21 AMPL Alterna=v 1: Alterna=v 2: max z = 0x x 2 max z = X c jx j j2j då 4x 1 + x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 då X a ijx j apple b i, i 2 I j2j x j 0, j 2 J Modell och data =llsammans. Enkelt för små problem. Modell och data var för sig. Smidigare för stora problem, mer generellt. 7

8 TAOP52: Föreläsning 2 22 AMPL-modell, alt. 1 # Variabeldefinition var x1 >= 0; var x2 >= 0; Tecknet # används framför kommentarer # Målfunktion maximize z : 0*x1 + 20*x2; # Bivillkor subject to Avd_tid1 : 4*x1 + *x2 <= 240; Avd_tid2 : 2*x1 + 2*x2 <= 140; Maxproduktion : x1 <= 40; TAOP52: Föreläsning 2 2 AMPL-modell, alt. 2, modell set PRODUKTER; set AVDELNING; # Har olika produkter # Har olika avdelningar param Vinst{ PRODUKTER }; # Täckningsbidraget param Maxtid{ AVDELNING }; # Tidstillgång, avd. param a{ PRODUKTER, AVDELNING }; # Tidsåtgång param Maxprod{ PRODUKTER }; # Maxtillverkning var x{ PRODUKTER } >= 0; # Variabeldefinition TAOP52: Föreläsning 2 24 AMPL-modell, alt. 2, modell maximize z : sum{ i in PRODUKTER } Vinst[i]*x[i]; subject to Namn på villkoret För varje... Avd_tid{ j in AVDELNING }: sum{ i in PRODUKTER } a[i,j]*x[i] <= Maxtid[j]; Maxproduktion{i in PRODUKTER}: x[i] <= Maxprod[i]; Summera över... 8

9 TAOP52: Föreläsning 2 25 AMPL-modell, alt. 2, data set PRODUKTER := p1 p2; set AVDELNING := m1 m2; param : Vinst Maxprod := p p ; Här specificeras: 2 produkter 2 avdelningar param : Maxtid := m1 240 m2 140 ; M=1000, ett tillräckligt stort tal param a : m1 m2 := p1 4 2 p2 2 ; TAOP52: Föreläsning 2 26 AMPL-modell CPLEX Vi har en modell- och en datafil som beskriver vårt problem. Hur få datorn a/ lösa det? modellfil: mi/problem.mod kommandofil: mi/problem.run datafil: mi/problem.dat TAOP52: Föreläsning 2 27 Kommandofil reset; # nollställer tidigare beräkningar options solver cplex ; # väljer lösare model exempel1.mod ; # väljer modell data exempel1.dat ; # väljer data solve; # löser problemet # skriver resultatet till fil display x > exempel1.res; display Avd_tid.slack > exempel1.res; 9

10 TAOP52: Föreläsning 2 28 CPLEX resultatutskrid Alt. 1, modell och data i samma fil z = 17. x1 = 40 x2 = Avd_tid1.slack = 0 Avd_tid2.slack = 6.67 Alt. 2, separata filer z = 17. x [ * ] := p1 40 p ; Avd_tid.slack [ * ] := m1 0 m2 6.67; TAOP52: Föreläsning 2 29 resultatutskrid svar på den givna problemställningen Läs av resultatet och gör en rimlighetsbedömning: Är variabelvärdena rimliga i rela=on =ll vad som är lönsamt?... i rela=on =ll de villkor och krav som finns? Är målfunk=onsvärdet rimligt? Om möjligt, gör en överslagsräkning Jämför med en op=mis=sk ska/ning Jämför med en pessimis=sk ska/ning TAOP52: Föreläsning 2 0 Op=mis=sk ska/ning Måste all=d, med säkerhet, ge e/ värde som är bä/re än det op=mala målfunk=onsvärdet. Strategi: Använd enkel papper och penna räkning Ska/a variablerna så a/ de blir för bra Förenkla målfunk=onen så a/ den ger e/ för bra värde max z = 0x x 2 då 4x 1 + x 2 apple 240 2x 1 + 2x 2 apple 140 x 1 apple 40 x 1, x 2 0 T 2. 10

11 TAOP52: Föreläsning 2 1 Op=mis=sk ska/ning Finns flera olika ska/ningar. Ju fler villkor man tar hänsyn =ll, desto bä/re (starkare) blir ska/ningen. En möjlighet: Ändra c 2 från 20 =ll 0, nu är x 1 och x 2 likvärdiga. Dessutom kräver x 2 mindre resurser än x 1.. Tillverka endast x 2 => x = (0,70) T, z opt = 0*70 = 2100 :- Eller: Ändra koefficient 4 =ll i första bivillkoret: x 1 + x 2 <= 240 Bivillkoren *(x 1 +x 2 ) <= 240 och 2*(x 1 +x 2 ) <= 140 ger a/ vi kan =llverka totalt 70 enheter, och som mest 40 st av x 1 Ger en ska/ning: x = (40,0) T, z opt = 0* *0 = 1800 :- TAOP52: Föreläsning 2 2 Pessimis=sk ska/ning Måste all=d, med säkerhet, ge en lösning som är =llåten med avseende på bivillkoren. Strategi: max z = 0x x 2 Använd enkel papper och då 4x 1 + x 2 apple 240 penna räkning 2x 1 + 2x 2 apple 140 Förenkla problemet utan a/ fler x 1 apple 40 lösningar än de ursprungliga blir =llåtna, troligen fås då färre =llåtna lösningar Förenkla målfunk=onen så a/ den ger e/ för dåligt värde x 1, x 2 0 T 2.4 TAOP52: Föreläsning 2 Pessimis=sk ska/ning De finns återigen olika ska/ningar. Kom ihåg a/ varje =llåten lösning all=d ger en pessimis=sk ska/ning: x = ( 0, 0) T, z pess = 0*0 + 20*0 = 0 :- x = (40,0) T, z pess = 0* *0 = 1200 :- Eller: Ändra koefficient =ll 4 i första bivillkoret: 4x 1 + 4x 2 <= 240 Bivillkoren 4*(x 1 +x 2 ) <= 240 och 2*(x 1 +x 2 ) <= 140 ger a/ vi kan =llverka totalt 60 enheter, och som mest 40 st av x 1 Ger en ska/ning: x = (40,20) T, z pess = 0* *20 = 1600 :- Slutsats: 1600 <= z* <=

12 TAOP52: Föreläsning 2 4 Labora=on 1 SyDar =ll a/ ni ska komma igång med AMPL Gå från problemställning i ord =ll resultatutskrid Byggs upp stegvis Förberedelse inför projektuppgiden där ni ska lösa e/ något större problem TAOP52: Föreläsning 2 5 Uppsummering Fö. 2 Modellering Parametrar, variabler, bivillkor, målfunk=on AMPL, modelleringsspråk för op=meringsproblem Sista sidorna på dagens föresläsning visar AMPLmodellen för problemet Produk=onsplanering II Upörliga exempel Modellering på Lisam: E/ dokument som försöker beskriva vad man bör tänka på vid modellering Work in progress, kom gärna med feedback och förslag på förbä/ringar TAOP52: Föreläsning 2 6 Produk=onsplanering II min z = c t x t + p L t + k t=1 t=1 t=1 y t då L t S, t =1,2, h t x t M + y t, t =1,2, L t 1 + x t d t = L t, t =1,2, L 0 = L _init x t, y t 0, t = 1,2, L t 0, t = 0,1,2, Behöver skapa tre filer. kommandofil: exempel2.run modellfil: exempel2.mod datafil: exempel2.dat 12

13 TAOP52: Föreläsning 2 7 modellfil, del 1 set produkter; # Olika produkter param T; # Antal veckor param c{produkter}; # Produktionskostnad param Efterfrågan{1..T} # Efterfrågan varje vecka param p; # Lagerkostnad param k; # Leasingkostnad param M; # Maskinkapacitet param h{1..t}; # Åtgång vid tillverkning param S; # Lagerkapacitet param L_init; # Initiallager TAOP52: Föreläsning 2 8 modellfil, del 2 # Antal producerade produkter vecka t: var x{1..t} >= 0; # Antal produkter i lager vecka t: var L{0..T} >= 0; # Antal leasingtimmar vecka t: var y{1..t} >=0; TAOP52: Föreläsning 2 9 modellfil, del minimize z: sum{t in 1..T} c[t]*x[t] + p*sum{t in 1..T} L[t] + k*sum{t in 1..T} y[t]; subject to Lagerkapacitet{t in 1..T} : L[t] <= S; Maskintid{t in 1..T} : h[t]*x[t] <= M + y[t]; Lagerbalans{t in 1..T}: L[t-1] + x[t] - d[t] = L[t]; Init_lager : L[0] = L_init; 1

Föreläsning 2: A/ modellera och lösa LP-problem. TAOP52: Föreläsning 2. Att modellera och lösa LP-problem

Föreläsning 2: A/ modellera och lösa LP-problem. TAOP52: Föreläsning 2. Att modellera och lösa LP-problem TAOP52: Föreläsning 2 Att modellera och lösa LP-problem TAOP52: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem Problemställning i ord matema=sk modell AMPL-modell CPLEX resultatutskrid

Läs mer

Föreläsning 2: A/ modellera och lösa LP-problem. TAOP14: Föreläsning 2

Föreläsning 2: A/ modellera och lösa LP-problem. TAOP14: Föreläsning 2 TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem

Läs mer

Föreläsning 2: A/ modellera och lösa LP-problem

Föreläsning 2: A/ modellera och lösa LP-problem TAOP14: Föreläsning 2 Problemställning i ord matematisk modell AMPL-modell CPLEX resultatutskrift svar på den givna problemställningen TAOP14: Föreläsning 2 2 Föreläsning 2: A/ modellera och lösa LP-problem

Läs mer

TAOP52: Optimeringslära grundkurs

TAOP52: Optimeringslära grundkurs TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det

Läs mer

TAOP14: Optimeringslära grundkurs

TAOP14: Optimeringslära grundkurs TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det

Läs mer

TAOP14: Optimeringslära grundkurs

TAOP14: Optimeringslära grundkurs TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det

Läs mer

TAOP52: Optimeringslära grundkurs

TAOP52: Optimeringslära grundkurs TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det

Läs mer

Introduktion till modelleringsspråket Ampl

Introduktion till modelleringsspråket Ampl 1 Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Introduktion till Ampl Optimeringslära 3 februari 2019 Introduktion till modelleringsspråket Ampl Ampl är ett modelleringsspråk

Läs mer

Laboration 1 - Simplexmetoden och modellformulering

Laboration 1 - Simplexmetoden och modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 4

TNSL05 Optimering, Modellering och Planering. Föreläsning 4 TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden

Läs mer

Optimering med hjälp av Lego. Mathias Henningsson

Optimering med hjälp av Lego. Mathias Henningsson Optimering med hjälp av Lego Mathias Henningsson Vem är jag? Mathias Henningsson Lärare Optimeringslära 1996-2007 Produktionsekonomi 2008- Bokförfattare Optimeringslära övningsbok (Studentlitteratur) Arbetar

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)

Läs mer

Laborationsinformation

Laborationsinformation Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 Information om GLPK/glpsol 1.1 Introduktion till GLPK GLPK (GNU Linear Programming

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

Laboration 2 - Heltalsoptimering

Laboration 2 - Heltalsoptimering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 2 Optimeringslära 4 februari 203 Laboration 2 - Heltalsoptimering Problemställning Synande av cellprover När

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

TNSL05 Övningsuppgifter modellering

TNSL05 Övningsuppgifter modellering TNSL05 Övningsuppgifter modellering 1) Ett företag tillverkar och säljer två olika typer av bord. Grundversionen, med skiva i trä, tar 0.6 timmar att sätta ihop, har fyra ben och säljs med 1500 kr i vinst.

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013

Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013 Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12

TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12 1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j

Läs mer

Optimering och simulering: Hur fungerar det och vad är skillnaden?

Optimering och simulering: Hur fungerar det och vad är skillnaden? Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna

Läs mer

Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.

Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken. Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 6

TNSL05 Optimering, Modellering och Planering. Föreläsning 6 TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t. 1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.

Läs mer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Lösningar till 5B1762 Optimeringslära för T, 24/5-07

Lösningar till 5B1762 Optimeringslära för T, 24/5-07 Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

Ett linjärprogrammeringsproblem på allmän form ser ut som

Ett linjärprogrammeringsproblem på allmän form ser ut som Linjärprogrammering Ett linjärprogrammeringsproblem på allmän form ser ut som Minimera n j=1 c jx j x j 0 n j=1 a ijx j b i i =1, 2,...,m Variant: Vi kan vilja maximera istället. Vi kommer att studera

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

Optimering med bivillkor

Optimering med bivillkor Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =

Läs mer

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013 Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 5

TNSL05 Optimering, Modellering och Planering. Föreläsning 5 TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

Lösningar till SF1861 Optimeringslära, 28 maj 2012

Lösningar till SF1861 Optimeringslära, 28 maj 2012 Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +

Läs mer

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

General Algebraic Modeling System Översätter direkt från modell till algoritm.

General Algebraic Modeling System Översätter direkt från modell till algoritm. Vad är GAMS? General Algebraic Modeling System Översätter direkt från modell till algoritm. Fördelar: Effektivt Skapa mängd ekvationer med en enda sats Lägg in data en och endast en gång Snabbt skapa prototyper

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och

Läs mer

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information

Läs mer

Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg.

Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2015-01-14 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Givna data:

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,

Läs mer

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering

TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

SF1545 Laboration 1 (2015): Optimalt sparande

SF1545 Laboration 1 (2015): Optimalt sparande Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa

Läs mer

5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder

5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder 5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 1 Kursintroduktion Ämnesintroduktion Terminologi Tillämpningar Agenda Vilka personer medverkar i kursen? Kursupplägg Lärobok Laborationer Återkoppling

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.

Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

Optimering med bivillkor

Optimering med bivillkor Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C

Läs mer

TAOP61 Projekt 2. Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober / 14

TAOP61 Projekt 2. Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober / 14 TAOP61 Projekt 2 Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober 2016 1 / 14 TAOP61 Projekt 2 Optimering av elmotorutnyttjandet i en laddhybrid med hjälp av dynamisk programmering. Kaj Holmberg (LiU) TAOP61

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)

Läs mer

TNSL05, Optimering, Modellering och Planering Gruppuppgift 3

TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 ITN/KTS Joakim Ekström/Marcus Posada Gruppuppgift 3 TNSL05, Optimering, Modellering och Planering, HT2018 TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 1 Gruppspecifika uppgifter 1.1 Kursmomentet

Läs mer

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10

Hemuppgift 2, SF1861 Optimeringslära för T, VT-10 Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift

Läs mer

Optimering av olika slag används inom så vitt skilda områden som produktionsplanering,

Optimering av olika slag används inom så vitt skilda områden som produktionsplanering, Anders Johansson Linjär optimering Exempel på användning av analoga och digitala verktyg i undervisningen Kursavsnittet linjär optimering i Matematik 3b kan introduceras med såväl analoga som digitala

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer