För att få första och sista elementet i en lista kan man använda First och Last

Storlek: px
Starta visningen från sidan:

Download "För att få första och sista elementet i en lista kan man använda First och Last"

Transkript

1 Arbetsblad 3 I det tredje arbetsbladet tar vi upp rekursiva definitioner, listor och primtal. Precis som det tidigare arbetsbladet är detta en mindre modifiering av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp). En skillnad mot tidigare arbetsblad är att uppgifterna är litet mer omfattande. För att underlätta prioritering av uppgifter har jag angivit svårighetsnivå i inledningen av varje uppgift. Svårighetsnivå 1 är den enklaste typen av uppgift, svårighetsnivå 3 är den svåraste. 1. Att hitta de största talen i en lista. Mycket av det material som Mathematica producerar är listor, alltså ordnade mängder. Vi har sett att en matris t ex är en lista av sina rader, som i sin tur är listor av tal. Lösningarna till en ekvation är en lista av transformationsregler. Det finns många kommandon för att göra allt man kan vilja göra med listor. Här är några exempel. En lista kan se ut så här: {15,25,35,45,55,65} För att sedan plocka ut i:te element ur en lista, skriver man [[i]] efter listan, t ex 815, 25, 35, 45, 55, 65<@@5DD Har man en lista av listor, t ex följande lista l av punkter i planet, kan man alltså plocka ut det 2:dra elementet ur den 3:de listan i l så här. l = 8811, 22<, 833, 44<, 855, 66<, 877, 88<< l@@3dd@@2dd För att få första och sista elementet i en lista kan man använda First och Last First@lD Last@lD Det finns kommandon för att ta snitt och komplement, och för att välja ut element som uppfyller ett visst kriterium, t ex vara jämna eller något annat. Se nästa exempel. Här tillverkar vi en lista på binomialkoefficienter, kallad bc. bc = Table@Binomial@20, id, 8i, 1, 20<D Sidospår, om att införa egna namn: Alla Mathematicas inbyggda funktioner börjar på stor bokstav. En grundregel som man kan använda för att markera att en funktion är vår egen och inte Mathematicas är alltså att låta dess namn börja med en liten bokstav. Även om denna regel inte används konsekvent i denna arbetsbok så rekomenderas ändå att du gör det! Tillbaka till vår lista med binomialkoeficienter: Det största elememtet i bc hittar vi så här: Max@bcD Vilket är det nu? Tittar vi på listan verkar det ligga mitt i. Vi kan plocka ut det tionde elementet i listan såhär: bc@@10dd Binomial@20, 10D Det finns förstås ett inbyggt kommando i Mathematica för att hitta de index där ett element förekommer:

2 2 Arbetsblad3.nb Slutligen kan vi plotta alla koefficienterna JJ = ListPlot@bc, PlotStyle Ø PointSize@0.02DD Vi kan förena punkterna (i ordningsföljd) genom kommandot Joined Æ True. Show@JJ, ListPlot@bc, Joined Ø TrueDD Här är några fler exempel på listor och linjeteckningar. Nedanstående kommando skapar en lista av 1000 slumpade punkter i planet vars koordinater ligger mellan 0 och 1. Aktivera cellerna! slumppunkter = Table@RandomReal@80, 1<, 2D, 8i, 20<D; ListPlot@slumppunkterD ListPlot@slumppunkter, Joined Ø True, Axes Ø FalseD 1 (svårighetsnivå 1). Bilda en lista l1 båstående av slumpade heltal i intervallet [1,20000]. a) Avgör om elementet ligger i listan l1 (genom lämpligt kommando i Mathematica - sök i hjälpen!). b) Bestäm antalet unika element i listan l1 (genom lämpligt kommando i Mathematica - sök i hjälpen!). c) Finn ett tal i l1 med högsta frekvens (genom lämpligt kommando i Mathematica - sök i hjälpen!). 2 (svårighetsnivå 3). Bestäm hur många perfekta blandningar av en kortlek man behöver utföra för att få tillbaka kortleken i den ordning man började med. Med en perfekt blandning menar jag detta: Dela upp högen i två likadana högar och alternera kort från vardera högarna. 2. Hitta primtalstvillingar Det finns oändligt många primtal, fast de ligger glesare och glesare bland heltalen. Vissa av dem som 11 och 13 eller och skiljer sig bara med 2 och kallas för primtalstvillingar. Ingen vet om det finns oändligt många sådana eller inte. Det närmaste man har kommit är att man lyckats visa att det finns oändligt många primtal som skiljer sig med 246. Detta är ett mycket nytt resultat, det är från 2014 och bygger på ett banbrytande arbeta av Yitang Zhang från Här ska vi leka lite och se att det finns primtalstvillingar större än en miljard. Mathematica kan avgöra om ett tal är ett primtal: PrimeQ@65 537D PrimeQ@65 536D Vi kan få det 1000:de primtalet Prime@1000D Och då kan vi använda Table för att göra en lista av de första hundra primtalen(som vanligt ger vi ett påhittat namn åt den) primtalstabell = Table@Prime@iD, 8i, 1, 100<D; Nu vill vi veta vilka av dessa som är primtalstvillingar. Vi vill alltså gå igenom listan och konstruera dellistan av de x för vilka x+2 också är ett primtal.

3 Arbetsblad3.nb 3 Den vägledande insikten är att Mathematica har kommandon för allt som svarar mot sedvanliga matematiska operationer. Att ur en mängd välja ut de x som uppfyller ett visst kriterium är ju ett vanligt matematiskt tillvägagångssätt. Alltså ska det finnas ett lätt sätt att göra detta på. Variabeln som löper över mängden kallas #. Så här väljer vi ut de # i primtalstabell som är mindre än 10. Select@primtalstabell, Ò < 10 &D 82, 3, 5, 7< För att få primtalstvillingar kan vi då göra så här: Select@primtalstabell, PrimeQ@Ò + 2D &D 83, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521< Select[lista,kriterium] väljer ut de element i listan som uppfyller kriteriet. Här är listan primtalstabell, # är som tidigare namnet på variabeln som löper över elementen amanda och kriteriet är att # + 2 ska vara ett primtal. D v s vi väljer ut det första primtalet i varje par av primtalstvillingar. Nu kan vi ställa och snabbt besvara frågan om det finns några primtalstvillingar bland primtal nummer och storaprimtal = Table@Prime@iD, 8i, , <D; storatvillingar = Select@storaprimtal, PrimeQ@Ò + 2D &D , , , , , , < Vi har alltså flera primtalstvillingar större än 2 miljarder. Det man framförallt ska imponeras av är med vilken lätthet vi kan hantera mängder eller listor. 1. (svårighetsnivå 1) Bestäm dellistan till l1 från föregående avsnitt som består av alla tal i l1 som är primtal. 2. (svårighetsnivå 2) Hitta den 2024:e förekomsten av par av primtal på formen p,p Rekursionsföljder. En idealiserad modell för kanintillväxt ser ut så här. Antalet kaninpar efter n månader kallas f[n], och uppfyller rekursionsformeln f[n] = f[n - 1] + f[n - 2]. Startvillkoren är f[0]=1 och f[1]=1. En rekursiv definition lämpar sig förstås för att beräknas på dator. Clear@fD f@0d = 50; f@1d = 10; f@n_d := f@nd = f@n - 1D + f@n - 2D Observera formen av definitionen f[n_] := f[n]=. Kolonet efter f[n_] talar om för matematica att skjuta upp beräkningarna tills den verkligen behöver göra det. Att det också står upprepat f[n_] := f[n]= garanterar att programmet visserligen skjuter upp beräkningen tills det behövs, men att den också kommer ihåg redan beräknade värden, och inte upprepar beräkningen för dessa. f@10d

4 4 Arbetsblad3.nb 8n, 1, 20<D För att få grepp om hur snabbt antalet kaninpar växer gör vi nu en tabell av (närmevärden) av kvoterna mellan ett värde och det nästa: - 1D ê 8n, 1, 20<D Vi kan jämföra gränsvärdet med det tal som kallas gyllene snittet. - 1L ê 2D 1 (svårighetsnivå 1). Nu har du lärt dig hur man definierar en rekursiv funktion. I Mathematica finns det förstås en inbyggd funktion för att beräkna fakultet. Finn denna funktion. Skriv därefter en egen rekursivt definierad funktion i Mathematica som beräknar fakultet. 2 (svårighetsnivå 2). Vi har sett att succesiva kvoter av på varandra följande fibonaccital (det är så de heter) närmar sig gyllene snittet. Vad händer om man istället tittar på kvoten f[n-a]/f[n]? Experimentera och redovisa en förmodan (du behöver inte bevisa din förmodan). Experimentera även med olika startvärden på rekursionen. Vad händer? 4. Sannolikheten för att ett tal är ett primtal. PrimePi[x] talar om hur många primtal, som är mindre än x. PrimPi[x]/x är då sannolikheten att ett slumpvis valt heltal mindre än x ska vara ett primtal. Det finns en sats som säger att för stora x är PrimPi[x]/x av samma storleksordning som 1/ln(x+1). Först några exempel. Antalet primtal mindre än 100: PrimePi@100D Andelen av talen mindre än 100 som är primtal: PrimePi@100D ê 100 êê N Andelen av talen mindre än 1000 som är primtal: PrimePi@1000D ê 1000 êê N En fjärdedel av alla tal mindre än 100 är primtal, men bara en sjättedel av de mindre än Sannolikheten minskar alltså---men hur snabbt? Vi kan använda tekniken ovan: primsannolikhet = Table@8x, PrimePi@xD ê x<, 8x, 2, <D; gprim = ListPlot@primsannolikhetD Jämför den sedan med grafen till 1/log(x), för att se en illustration av primtalssatsen. Vi ska ta kvoten mellan de två funktionern och påståendet är alltså att att PrimePi(x)Log[x]/x går mot 1 när x blir stort. ff = Table@8x, PrimePi@xD Log@xD ê x<, 8x, 2, <D; gprim2 = ListPlot@ffD Ett av de sju Clay-priserna om en miljon dollar styck handlar om att ge en bättre uppskattning. 1 (svårighetsnivå 1). Primtalen kan delas in i tre grupper. Jämna, udda på formen 4k+1, udda på formen 4k +3. Skriv en funktion som ger alla primtalen på formen 4k+3 som är mindre än n. (För n = 12 är dessa 3,7,11.) 2. (svårighetsnivå 2) Skriv en funktion som också ger alla primtalen på formen 4k+1 som är mindre

5 Arbetsblad3.nb 5 2. (svårighetsnivå 2) Skriv en funktion som också ger alla primtalen på formen 4k+1 som är mindre än n. (För n = 12 finns det bara ett, nämligen 5.) Undersök hur fördelningen mellan primtal på formen 4k+3 och primtal på formen 4k+1 ser ut asymptotiskt med en plot av kvoten av de två funktionerna liknande den ovan. 3. (svårighetsnivå 3) Det verkar som att antalet primtal mindre än eller lika med x är mycket större än x/ln(x) när x är litet. Vi säger att ett primtal p är stort om det är större än Formulera en hypotes om antalet stora primtal mindre än x och gör en plot motsvarande plotten ovan.

Laboration 3: Rekursiva definitioner, listor och ett olöst problem

Laboration 3: Rekursiva definitioner, listor och ett olöst problem Laboration 3: Rekursiva definitioner, listor och ett olöst problem I detta arbetsblad finns ett antal exempel på hur man kan använda Mathematica för att få översikt över listor och dessutom ett antal exempel

Läs mer

I detta arbetsblad finns ett antal exempel på hur man kan använda Mathematica för att få översikt över funktioner och datamängder.

I detta arbetsblad finns ett antal exempel på hur man kan använda Mathematica för att få översikt över funktioner och datamängder. Laboration 2: Grafritning och visualisering av data I detta arbetsblad finns ett antal exempel på hur man kan använda Mathematica för att få översikt över funktioner och datamängder. Du har redan förra

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Texten är en omarbetning av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp).

Texten är en omarbetning av en text skriven av Rikard Bögvad för kursen Matematik I (30 hp). Introduktion Med hjälp av dator kan man utföra omfattande matematiska beräkningar, men också få datorn att producera lösningar på icke-triviala uppgifter. I det här momentet av kursen ska vi bekanta oss

Läs mer

xmax f d x. Om du tycker att texten i arbetsbladet är för liten kan du förstora den genom att ändra Magnification under Windows i den övre menyn.

xmax f d x. Om du tycker att texten i arbetsbladet är för liten kan du förstora den genom att ändra Magnification under Windows i den övre menyn. Arbetsblad 2 Vi fortsätter i samma stil som i arbetsblad 1. Det finns fyra avsnitt som alla åtföljs av övningar. För att lösa övningarna kan man ibland behöva söka i Documentation Center. Om man redan

Läs mer

Block 2 Algebra och Diskret Matematik A. Följder, strängar och tal. Referenser. Inledning. 1. Följder

Block 2 Algebra och Diskret Matematik A. Följder, strängar och tal. Referenser. Inledning. 1. Följder Block 2 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Följder 2. Rekursiva definitioner 3. Sigmanotation för summor 4. Strängar 5. Tal 6. Övningsuppgifter Referenser Följder, strängar

Läs mer

, S(6, 2). = = = =

, S(6, 2). = = = = 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.

Läs mer

Hela tal LCB 1999/2000

Hela tal LCB 1999/2000 Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

Medan du läser den är det meningen och viktigt att du ska aktivera de celler där det står Mathematicakommandon(i fetstil).

Medan du läser den är det meningen och viktigt att du ska aktivera de celler där det står Mathematicakommandon(i fetstil). Laboration 1: Interpolation OBS! I denna notebook finns det mesta du behöver för att lösa webworkövningarna. Resten är det meningen att du ska leta reda på genom att söka i documentation centre. Medan

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den juni 015, kl 1.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon

Läs mer

KOMBINATORIK. Exempel 1. Motivera att det bland 11 naturliga tal finns minst två som slutar på samma

KOMBINATORIK. Exempel 1. Motivera att det bland 11 naturliga tal finns minst två som slutar på samma Explorativ övning 14 KOMBINATORIK Kombinatoriken används ofta för att räkna ut antalet möjligheter i situationer som leder till många olika utfall. Den används också för att visa att ett önskat utfall

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 28 oktober 2001 1 Heltalen Det första kapitlet handlar om heltalen och deras aritmetik, dvs deras egenskaper som

Läs mer

SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall

SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall Rekursiva funktioner Föreläsning 10 (Weiss kap. 7) Induktion och rekursion Rekursiva funktioner och processer Weiss 7.1-3 (7.4, 7.5.3 utgår) Fibonaccital (7.3.4) Exempel: Balansering av mobil (kod se lab

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper

Läs mer

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom: 6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga

Läs mer

Algoritmer och datastrukturer H I HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T

Algoritmer och datastrukturer H I HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T Algoritmer och datastrukturer H I 1 0 2 9 HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T Föreläsning 1 Inledande om algoritmer Rekursion Stacken vid rekursion Rekursion iteration Möjliga vägar

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = =

1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = = Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF630, den 20 maj 2009 kl 08.00-3.00. Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.

Läs mer

Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl

Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl 1 Matematiska Institutionen KTH Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A

Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.

Läs mer

Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl

Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2006-12-08.kl.08-13 Uppgift 1 ( Betyg 3 uppgift ) Implementera följande funktion: fun(1) = 1 fun(n) = fun(n / 2), för jämna n fun(n) = n / (fun(n - 1) + fun(n + 1)), för udda n Exempel på korrekta resultat:

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om kombinatorik Mikael Hindgren 24 september 2018 Vad är kombinatorik? Huvudfråga: På hur många sätt kan en viss operation utföras? Några exempel: Hur många gånger

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla

Läs mer

Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl

Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF131 och SF130, den 10 januari 2011 kl 14.00-19.00. Examinator: Olof Heden, tel. 0730547891.

Läs mer

MAPLE MIKAEL STENLUND

MAPLE MIKAEL STENLUND MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal

Läs mer

När du gjort detta kan du öppna motsvarande övning i WebWork: Självstudie 3(algebra), och lösa problemen där med samma metoder.

När du gjort detta kan du öppna motsvarande övning i WebWork: Självstudie 3(algebra), och lösa problemen där med samma metoder. Tillämpning 3: Mathematica och vektorer Vi ska nu använda Mathematica för att lösa problem med vektorer. Läs, som de andra noteböckerna, först igenom denna text, medan du löpande evaluerar de celler som

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e

1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e 1 Lösning till MODELLTENTA DISKRET MATEMATIK moment B FÖR D2 och F, SF1631 resp SF1630. DEL I 1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. Lösning: Vi

Läs mer

Föreläsning 6: Induktion

Föreläsning 6: Induktion Föreläsning 6: Induktion Induktion är en speciell inferensregel. En mängd är välordnad om varje delmängd har ett minsta element Exempel: N är välordnad (under ) Låt P(x) vara ett predikat över en välordnad

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl

Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

LABBA MED PRIMTAL OCH DELBARHET. Andreas Wannebo

LABBA MED PRIMTAL OCH DELBARHET. Andreas Wannebo LABBA MED PRIMTAL OCH DELBARHET Andreas Wannebo Vi ska studera egenskaper för heltalen. Det finns heltal såsom 1,2,3,4,... De är de positiva heltalen och det är dem vi vill studera. Först kan man ställa

Läs mer

1 Talteori. Det här kapitlet inleder vi med att ta

1 Talteori. Det här kapitlet inleder vi med att ta 1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens

Läs mer

TALTEORI FÖR ALLA 1 Juliusz Brzezinski

TALTEORI FÖR ALLA 1 Juliusz Brzezinski TALTEORI FÖR ALLA 1 Juliusz Brzezinski För exakt 10 år sedan publicerade Andrew Wiles sitt bevis av Fermats Stora Sats. Nyheten om hans resultat väckte enorm uppmärksamhet i hela världen. Vägen till lösningen

Läs mer

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt. "!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer

Laboration 4: Integration på olika sätt

Laboration 4: Integration på olika sätt Laboration 4: Integration på olika sätt I detta arbetsblad finns dels ett antal exempel på hur man kan använda Mathematica för att beräkna integraler och sedan ett exempel på Monte-Carlo integration. Exempel

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2005-06-09.kl.08-13 Uppgift 1 ( Betyg 3 uppgift ) Ett plustecken kan se ut på många sätt. En variant är den som ses nedan. Skriv ett program som låter användaren mata in storleken på plusset enligt exemplen

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element. Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Fri programvara i skolan datoralgebraprogrammet Maxima

Fri programvara i skolan datoralgebraprogrammet Maxima Per Jönsson & Thomas Lingefjärd Fri programvara i skolan datoralgebraprogrammet Maxima I takt med att priserna sjunker utrustar allt fler skolor sina elever med små bärbara datorer. Detta innebär nya och

Läs mer

Matematisk problemlösning

Matematisk problemlösning Matematisk problemlösning För utveckling av personliga och professionella förmågor Linda Mattsson och Robert Nyqvist Blekinge tekniska högskola Institutionen för matematik och naturvetenskap 16 augusti

Läs mer

Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare

Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare Umeå universitet Tentamen i matematik Institutionen för matematik Introduktion till och matematisk statistik diskret matematik Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare,

Läs mer

Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM

Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg II Del 1: Om programmering Aktiviteter Del 1 Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM Ni

Läs mer

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4. Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två

Läs mer

Diskret matematik, lektion 2

Diskret matematik, lektion 2 Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A

Läs mer

3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.

3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt. Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Mängdlära. Kapitel Mängder

Mängdlära. Kapitel Mängder Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

Allmänt om Mathematica

Allmänt om Mathematica Allmänt om Mathematica Utvecklades av Wolfram Research (Stephen Wolfram) på 80-talet Programmet finns bl.a. till Windows, Mac OS X, Linux. Finns (åtminstone) installerat i ASA B121 (Stansen), i matematik

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Ett försök att generalisera konjugatregeln av Ulrika Söderberg 2016 - No 17 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Programkonstruktion och Datastrukturer

Programkonstruktion och Datastrukturer Programkonstruktion och Datastrukturer VT 2012 Tidskomplexitet Elias Castegren elias.castegren.7381@student.uu.se Problem och algoritmer Ett problem är en uppgift som ska lösas. Beräkna n! givet n>0 Räkna

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6 freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik

Läs mer