Nobelpriset i fysik topologiska fasövergångar

Relevanta dokument
Märkliga företeelser i materiens plattland

Introduktion till gruppteori Matematisk fysik FTF13, 2017

Topologiska material. Kvantmekaniska effekter med stora konsekvenser. Annica Black-Schaffer.

Andra föreläsningen kapitel 7. Patrik Lundström

Experiment Swedish (Sweden) Studsande kulor - En modell för fasövergångar och instabiliteter

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin

Fysik TFYA86. Föreläsning 11/11

Spinntronik och upptäckten av jättemagnetoresistans

Avdelning för Kondenserade Materia & Kvant Optik (40pers)

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

Nobelpriset i fysik En ordningsfråga! Mats Jonson. Nobelkommittén för fysik, KVA

Instuderingsfrågor, Griffiths kapitel 4 7

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Milstolpar i tidig kvantmekanik

GÖTEBORGS UNIVERSITET Institutionen för fysik Curt Nyberg, Igor Zoric

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism

9. Materiens magnetiska egenskaper

Materialfysik2010 Kai Nordlund

Denna pdf-fil är nedladdad från Illustrerad Vetenskaps webbplats ( och får ej lämnas vidare till tredjepart.

Föreläsning 1. Elektronen som partikel (kap 2)

Fysikaliska modeller

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

Lågtemperaturfysik. Maria Ekström. November Första utgåvan

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Nord och syd. Magiska magneter. Redan de gamla grekerna. Kinesisk kompass. Magnetfält. Magnetfältets riktning

Roterande Bose-Einstein-kondensat: en populärvetenskaplig sammanfattning

1.5 Våg partikeldualism

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

Välkomna till Kvantfysikens principer!

Tentamen i Modern fysik, TFYA11/TENA

Nmr-spektrometri. Matti Hotokka Fysikalisk kemi

Fasta tillståndets fysik FFFF05

Tentamen i Materia, 7,5 hp, CBGAM0

Tentamen i Modern fysik, TFYA11, TENA

Vågfysik. Ljus: våg- och partikelbeteende

RIKSFINAL 2017 Lagen

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1

KOSMOS VÅR KVANTVÄRLD KVANTFYSIK I MATERIAL: FRÅN TRANSISTORN TILL TOPOLOGISKA SUPRALEDARE ANNICA BLACK-SCHAFFER SÄRTRYCK UR:

Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik

Fysikaktuelltnr 4. Nobelpriset Bokrecension: Vårt klot så ömkligt litet. Laserdriven acceleration av elektroner i plasma

Föreläsning 2 - Halvledare

GESTALTANDE UNDERSÖKNING

Information om kursen

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

F3: Schrödingers ekvationer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)

( ) = B 0 samt att B z ( ) måste vara begränsad. Detta ger

Räkneövning 5 hösten 2014

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

Termodynamik och inledande statistisk fysik

Metallers resistivitet vid 0 K

Måndag 29 september: Resonansfenomen (Janusz)

Kvantteknologi. Superpositioner, entanglement, kvantbitar och helt döda katter

Studieanvisningar i statistisk fysik (SI1161) för F3

1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv.

Materiens Struktur. Lösningar

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

Strängar och extra dimensioner

Upptäckten av Higgspartikeln

LABORATION 1 AVBILDNING OCH FÖRSTORING

Kursplanen är fastställd av Naturvetenskapliga fakultetens utbildningsnämnd att gälla från och med , vårterminen 2016.

Utveckling mot vågbeskrivning av elektroner. En orientering

IM2601 Fasta tillståndets fysik

Magnetism. Uppdaterad:

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Kosmologi. Programkurs 6 hp Cosmology TFYA71 Gäller från: Fastställd av. Fastställandedatum. Programnämnden för elektroteknik, fysik och matematik, EF

Fysikum Kandidatprogrammet FK VT16 DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

Kvantteknologi. Superpositioner, entanglement, kvantbitar och helt döda katter

Kvantfysik SI1151 för F3 Tisdag kl

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Oscillerande dipol i ett inhomogent magnetfält

Re(A 0. λ K=2π/λ FONONER

Välkomna till kursen i elektroniska material! Martin Leijnse

Välkomna till kursen i elektroniska material!

Atomer, ledare och halvledare. Kapitel 40-41

Tentamen Fysikaliska principer

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik

Föreläsning 2 - Halvledare

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

Tentamen i FUF050 Subatomär Fysik, F3

Tentamen Fysikaliska principer

SF1624 Algebra och geometri

Fysik TFYA68 (9FY321) Föreläsning 6/15

F2: Kvantmekanikens ursprung

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011

Bengt Edlén, atomspektroskopist

Introduktion till kursen. Fysik 3. Dag Hanstorp

Nobelpriset i fysik 2007

Dugga i FUF040 Kvantfysik för F3/Kf3

Föreläsning 5 Att bygga atomen del II

Transkript:

Nobelpriset i fysik 2016 - topologiska fasövergångar Magnus Johansson Professor i Teoretisk Fysik, Linköpings Universitet Vetenskapsdagen, Linköping, 5 oktober 2017 Referenser: Kungliga Vetenskapsakademiens web-sida: http://www.kva.se/sv/pressroom/pressmeddelanden/nobelpriset-i-fysik-2016 1) Populärvetenskaplig information: Märkliga företeelser i materiens plattland 2) Scientific Background on the Nobel Prize in Physics 2016: Topological Phase Transitions and Topological Phases of Matter 1 Tack till Prof. Igor Abrikosov för inspiration och bidrag till slides!

Till vem - och varför?: Ena hälften till: David J. Thouless (f.1934, Bearsden, Storbritannien) University of Washington, Seattle, USA Andra hälften till: F. Duncan M. Haldane (f.1951, London, Storbritannien) Princeton University, NJ, USA och J. Michael Kosterlitz (f.1943, Aberdeen, Storbritannien) Brown University, Providence, USA för teoretiska upptäckter av topologiska fasövergångar och topologiska materiefaser. Obs: Inte en enskild upptäckt, utan en serie (ca 4..) olika upptäckter mellan 1972-1988! Avgörande för de tre pristagarnas upptäckter var att de använde topologiska begrepp inom fysiken. 2

Topologiska begrepp: intuitiv bild Topologi: gren av matematiken som beskriver egenskaper som förändras bara stegvis Topologiska egenskaper förblir intakta när objekt deformeras kontinuerligt (t.ex. dras ut, vrids,..), men kan förändras genom diskontinuiteter (t.ex. genom att slita itu, borra hål,...) (Ägg = skål kaffekopp = bagel glasögonbåge...) Topologiska objekt kan karakteriseras av antalet hål; heltal! Obs. skillnad mellan geometri och topologi: Geometriska egenskaper är lokala (hur ser objektet ut kring varje enskild punkt...?) Topologiska egenskaper är globala (hur ser objektet ut som helhet...?) Vi måste se hela objektet för att veta antalet hål! 3

Fasövergångar: intuitiv bild Övergång från välordnade till mer kaosartade materiefaser vid ökande temperaturer. Termodynamiken: Stabil materiefas vid given temperatur T och volym V minimerar Helmholtz fria energi: F = E - TS. Låga temperaturer: Energitermen E vinner, Systemet i (eller nära) grundtillståndet Höga temperaturer: Entropitermen S vinner Systemet i mest oordnade tillståndet (max S, flest ekvivalenta konfigurationer) Liknande fasövergångar förekommer i andra sammanhang, t.ex. för ferromagneter: (pilar motsv spinn magn. moment) Övergång till oordnad, ickemagnetisk fas vid kritisk temperatur Tc (Curie-temp.) 4

Virvlar och antivirvlar - topologiska objekt i magnetiska system Pilar: Riktning θ på lokala magnetiska moment Gå runt systemet ett varv motsols Pilarna vrider sig också ett varv motsols! Virvel med Vorticitet v = +1 Men...finns förstås också antivirvlar där pilarna vrider sig ett varv medurs! Vorticitet v = -1 Och allmänt, virvlar med vorticitet v godtyckligt heltal! Obs. singulariteten i centrum (vart skulle pilen peka där...???) Topologisk defekt! Ett virvel-antivirvel par har total vorticitet v=0 (gå runt hela systemet!) Till skillnad från enskild (anti-)virvel så kan paret kontinuerligt deformeras till det ferromagnetiska grundtillståndet (vrid alla pilar så att de pekar nedåt!) Vorticitet är topologisk invariant! (jfr antal hål, som dock alltid är positivt heltal...) 5

Kosterlitz-Thouless (KT-)övergången (1972) (Anm. Vadim Berezinskij (1935-1980) framförde liknande men ej fullständiga ideer 1971, och ofta används akronymen BKT-övergången) Heuristiska argument med enkel modell: Hamiltonian för att excitera en (anti-)virvel från grundtillståndet för a: virvelns kärna system med storlek L krävs energi Krävs hög energi, dvs höga temperaturer, för stora system! För ett virvel-antivirvel-par: E = r: avstånd mellan virvlarna Bundna par av virvlar/antivirvlar kan exciteras vid låga energier, dvs låga temperaturer!! Topologisk fasövergång då virvelpar löses upp! Fria energin för en virvel: Entropitermen vinner då T > Antal möjliga positioner för en virvel i systemet 6 kritiska temperaturen

KT-övergångens universalitet Tjusningen med resultat från enkla teoretiska modeller är, att de ofta kan appliceras många, fundamentalt olika, fysikaliska sammanhang! KT applicerade direkt resonemanget på supraledare och supravätskor, som kan karakteriseras av en makroskopisk kvantmekanisk vågfunktion ( ett stort antal kvantmekaniska partiklar vars materievågor svänger i fas ). Komplex vågfunktion För en tvådimensionell supraledare eller supervätska spelar fasen θ samma roll som spinnriktningen gjorde i magnetiska fallet! Materiens plattland : Supraflytande helium, tunna filmer av supraledare, etc... Upptäckten av en ordnad fas (supraledande, supraflytande, ferromagnetisk,...) vid låga temperaturer och en fasövergång till en oordnad ( normal, omagnetisk,.. ) fas vid TKT stred mot rådande teorier, som förutsåg att termiska fluktuationer skulle förstöra all ordning genast då T > 0 för 2D material! En rad experiment har visat att KT hade rätt! 7

Kvantiserade Halleffekten Vanliga Halleffekten: (Edwin Hall, 1879) Elektroner i magnetfält beter sig som myggor i sidvind Hallresistans prop. mot magnetfält under normala förhållanden. Kvantiserade halleffekten: (Klaus von Klitzing 1980, Nobelpris 1985) Vid låga temperaturer, starka magnetfält, och tvådimensionell elektronrörelse kan Hallresistansen bara ändras stegvis! RH = h/(ne2), n heltal Viss, men ej fullständig, teoretisk förklaring av detta gavs av Robert Laughlin 1981 (Nobelpris 1998) 8 https://www.nobelprize.org/nobel_prizes/physics/laureates/1998/illpres

Kvantiserade Halleffekten förklarad med topologiska begrepp (DavidThouless m.fl. 1982) Skulle behövas (minst..) en separat föreläsning för att förklara ordentligt... Mycket förenklat: Mängden av tillgängliga kvanttillstånd för elektroner i ett 2D material kan representeras med en krökt yta. Ledningsförmågan är proportionell mot ett s.k. Chern-tal karakteristiskt för ytan, som alltid är ett heltal! Chern-talet är en topologisk invariant som bestäms av elektronernas samlade tvådimensionella rörelse i hela systemet. (Jfr vorticitet tidigare!) Topologisk kvantvätska Små deformationer (variationer i magnetfält, temperatur, föroreningar,...) ändrar därför inte Chern-talet, och platåerna i Hall-resistansen förblir exakta! Vid kritiska värden på magnetfältet ändras antalet tillgängliga kvanttillstånd för kvantvätskan, och Hall-resistansen ändras stegvis! 9

Kvantiserade Hall-effekten utan magnetfält!! (Haldane 1988) Universalitet: Kvantiserade Hall-effekten beror på existens av en kvantvätska med fundamentala topologiska egenskaper, och inte på den specifika fysikaliska realiseringen! Haldane insåg, att magnetfältets roll var att bryta tidsinversionssymmetrin och föreslog en enkel modell med samma topologiska egenskaper men utan externt magnetfält! While the particular model presented here is unlikely to be directly physically realizable, (Haldane -88) Bose-Einstein kondensat av ultrakalla K-atomer fångade i periodisk potential genererad av stående laser-vågor! 10

Schematiskt om kedjor av atomära magneter (1D spinnkedjor) Ex. 1D antiferromagnet: Haldane 1983: Kedjorna får fundamentalt olika egenskaper beroende på om de atomära spinnen S är hel- eller halvtaliga! Jfr virvlarna i 2D...: Om S är halvtal kan man excitera långvågiga spinnvågor från grundtillståndet med godtyckligt liten energi (jfr. virvel-antivirvel par, icke-topologiskt!) Om S är heltal finns ett energi-gap! (Jfr excitation av enskild virvel, topologiskt!) De topologiska egenskaperna avslöjas i kanten! Fraktionalisering av grundtillståndet då S=1: Ett oparat spinn-1/2 blir över vid varje kant! Från E.J. Bergholtz, Fysikaktuellt Nr 4, Dec 2016 Haldane's teoretiska förutsägelse har bekräftats i flertal experiment, och lett till en rad nya upptäckter 11 av liknande topologiska faser i andra sammanhang, även för tredimensionella material.

Någon sorts sammanfattning och utblick... citat från Emil J. Bergholtz, Fysikaktuellt Nr 4, Dec 2016; mycket läsvärd artikel på lagom (?) nivå! Tillämpningar? JA, förhoppningsvis i en nära(??) framtid: Topologiska kvantdatorer, med topologiska egenskaper som robusta informationsbärare, är en kittlande dröm med oerhörd potential även om de teknologiska utmaningarna ännu är monumentala. På vägen dit kanske vi får ta del av effektiva kvantminnen, högprecisionskretsar immuna mot defekter och komponenter med låg energiförbrukning och värmegenerering baserade på topotronik Men en (minst..) lika viktig lärdom av detta Nobelpris är den teoretiska fysikens roll : Teoretisk fysik är, och bör inte heller vara, begränsat till att återskapa kurvor som med allt högre precision stämmer överens med mätdata. I stället påvisar priset vikten av den nyfikenhetsdrivna teoretiska fysiken, av att studera enkla men kvalitativt annorlunda leksaksmodeller och att titta i riktningar dit ingen tidigare sett. Och vikten av att inte ha för bråttom med att bedöma forskningsresultats relevans..: Trots att årets pris ligger bakom en så pass omfattande revolution inom flera områden tog det tid innan arbetena fick uppmärksamhet. Samtliga av de prisbelönta artiklarna citerades faktiskt bara en handfull gånger under de första åren, medan de nu har citerats flera tusen gånger var. Även vad gäller möjliga användningsområden är tidsskalorna långa. Dock visar historien att väsentligen alla grundläggande upptäckter inom fysiken förr eller senare leder till betydande teknologiska framsteg, och topologisk kvantmateria kommer knappast att utgöra ett undantag. 12

Quantum Hall Effect (slide from Igor Abrikosov's presentation, IFM, December 2016) M. Z. Hasan and C. L. Kane: Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010)