Discrete choice models with multiplicative error terms

Relevanta dokument
Automatization of test rig for microwave ovens

Automatiserad panoramasekvensdetektering på Narratives platform

st tt r s s ss r t r r r t rs r st ä r st r

Självkalibrering av varvtalsregulator

Chapter 2: Random Variables

Snickerier. Räcken & Stolpar, Snickarglädje, Hyllplan, Trädgård, Stolpsystem. Trädetaljer och Produkter som håller stilen på ditt hus

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 16 January 2015, 8:00-12:00. English Version

Tentamen MVE301 Sannolikhet, statistik och risk

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.

Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa.

VECKANS LILLA POSTKODVINST á kronor Inom nedanstående postkoder vinner följande 219 lottnummer kronor vardera:

PÅ VÄGaRna. applikati On/Off- Off- TÄVLING TÄVLINGSDAGAR HYPERSPORT SUPERSPORT SPORT-TOURING ÄVENTYR GP RACER D211 SPORTSMART QUALIFIER II

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Exempel på tentamensuppgifter

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Språkljud Test. Kartläggning av uttal med bilder. Gunnel Wendick

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Preliminär timplanering: Plasmafysik

STATISTISK ANALYS AV KOMPLEXA DATA

Kvadratisk regression, forts.

Simuleringsbaserad optimering av tidtabeller (KAJT-projekt: FlexÅter) Johan Högdahl

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5

Systemteknik/Processreglering F6

CHAINJAPAN. sprockets MOTORCYCLE. Key-Parts Front Sprockets Key-Parts Rear Sprockets EK Chains: 50 cc. Street/MX/Enduro/Trial

Tentamen i Matematisk statistik Kurskod S0001M

Föreläsning 13: Multipel Regression

Föreläsning 15: Faktorförsök

VAR REFERENS Our reference UK

Tentamen i Matematisk statistik Kurskod S0001M

Skrivning i ekonometri lördagen den 25 augusti 2007

TENTAMEN I STATISTIK B,

Application Note SW

1 Föreläsning V; Kontinuerlig förd.

SVENSK STANDARD SS-EN 978

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Föreläsningsanteckningar till kapitel 8, del 2

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Vägytemätning -mått, metoder och hjälpmedel. NVF seminarium 27/1-05. Innehåll. Bakgrund - vägytemätning idag.

Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

Robust och energieffektiv styrning av tågtrafik

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on

Termoakustik motor för återvinning av spillvärme

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

= ( 1) xy 1. x 2y. y e

S0005M, Föreläsning 2

STATISTISK ANALYS AV KOMPLEXA DATA

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys.

Snickerier. Räcken & Stolpar, Snickarglädje, Ett företag inom Södra

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Föreläsning 3 Kap 3.4, 3.6, G71 Statistik B

STATISTISK ANALYS AV KOMPLEXA DATA

Statistiska metoder för säkerhetsanalys

10.1 Enkel linjär regression

Oberoende stokastiska variabler

Lösningsförslag envariabelanalys

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Bilaga B. B.1 Lösningar till uppgifter i kapitel 1

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

Transportfenomen i människokroppen

SF1901: Sannolikhetslära och statistik

Support for Artist Residencies

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.

Silvelyn Zwanzig/Niklas Gunnarsson 14:e juni 2005

Matematik för språkteknologer

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014

F11. Kvantitativa prognostekniker

Formelsamling i Hållfasthetslära för F

Demonstration av laboration 2, SF1901

Porösa medier Transvaskulär transport

Finansiell statistik. Multipel regression. 4 maj 2011

3300M 3300A 4400M 4400A 3400M 3400A 4405M 4405A 3305M 3305A 3405M 3405A. 6305M 6305A mm inch

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Regressions- och Tidsserieanalys - F7

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

äkta Bredband, ett krav för framtidens multiservice nät?

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning och exempel, del II

7. Låt f(x) vara en 2π-periodisk, integrerbar funktion. Visa noggrant att om

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Innehållet i denna fil får endast användas för privat bruk. Kopiering eller annan användning kräver tillstånd från Martin Holmstrand, Medtronic

Matematisk statistik för B, K, N, BME och Kemister

TENTA:t\IEN I STATISTISK TEORJ NIED TILLÄNIPNINGAR Il

Tentamen MVE301 Sannolikhet, statistik och risk

SF1649, Vektoranalys och komplexa funktioner Tentamen, måndagen den 19 december Lösningsförslag. F n ds,

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Peak Car. Anne Bastian, Maria Börjesson och Jonas Eliasson. Associate Professor Transport Systems Analysis, KTH. Director Centre for Transport Studies

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

STATISTISK ANALYS AV KOMPLEXA DATA

SVENSK STANDARD SS-EN ISO

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Transkript:

Munich Personal RePEc Archive Discrete choice models with multiplicative error terms Fosgerau, Mogens and Bierlaire, Michel Technical University of Denmark 2009 Online at https://mpra.ub.uni-muenchen.de/42277/ MPRA Paper No. 42277, posted 04 Nov 2012 15:08 UTC

s r t s t t t rr r t r s s r r r t r r s rs s tt r ss t r s rt t s r P rt rs t2 r tr s rt t P 2t q r s r s rt t2 r t r2 t t s t3 r r r

Abstract t r t t t2 2 r t t2 1 3 t s r t s s s s s 1 V s r s t r t r ε r t rs s st t s s r r 1 s s t V t t r t r t s r t s t s r 1 r t r t r t s t V ε s r 2 t t s s s st t t t t t t rs 2 s t s t r t r s V t t r t s r t r t s t r s s r rt s t s t2 s t t s r s s t r t t t t r t t s t V 2 t r r t t s t s r t t t r tr r ts V

1 Introduction s r t s r 2 s 2 r t r t t t t2 t r2 t t r r st s r s r2 r 1 r tr s r t s 1 st t t 2 t t t s s t r s r r r s r s s st r t r s s 2 s s t t ss t s t t r s t r s t s s t t2 s 2 s t s t r r ts t t t r q r t r t rs t st t r s s t s s t t t r r r r t t2 1 3 t r s s s r s ts t t s t t r st s r s ts r t r r t rs t t s ts r 3 t s r s ts t s r s t s t r st r t r s r r r r t r r t t2 1 3 t s r t r rst r s s s s t t r t t t2 ss t t t r t j s t s r s r ttr t s z j ε j t t r t s r s r r t r st s s v t t s U (z j,s, ε j,v). rt r s t t s s ss r2 r t t t rt r s 2 s t t2 r t r t j 2 V j = V(z j,s, v), s t s r r t r st s t t r t r r t ss t t t t r s r r s r s t s 2 V t r r t rs t st t t s U (V j,ε j ), s t ss t t t t r s z j,s v 2 s r 3 2 V j s s t 1 ss t r V j s t

1 rr s s P(i z,s) = P(i z, s, v)f(v)dv, r f(v) r r s ts t str t v t t P(i z,s,v) = Pr[U (V i,ε i ) > U (V j,ε j ) j]. st t s t s s s s t t t t rr r t r s t t s U (V j,ε j ) = V j + ε j, r ε j s t V j r 3 t s r q r r t t s 2 str t 2 r s tr s r t t t2 t t s r t s t s ss r2 t st t 1 t t s t t2 s 2 2 s str ts t str t t rr r t r t s t t V j r r t r s t s V j r s r t r t2 r 2 s t t s V j = V(z j,s, v) = β x(z j,s), s t t 4 s s t P(i z,s) = Pr(β x(z i,s) + ε i > β x(z j,s) + ε j j), t 1 s r t s r s s ss t s t t s tr t ε j ss 1tr str t s s t t t t s r2 s ss t ts t t 2t tr t t2 t r t 1tr r s r s s s s t s s t t s r q r t s t s s t 2 st t s st t 2 s s r r 3 1tr s 2 r t s s s r 2 r t 1tr str t s s s

s r 1 t ss t t 1t r s t s s r r t t r s r t r t2 s 4 s s r t2 t t r 1 t2 r r t s st 2 t r s r r 2 t r t r t r s s r s 2 V rt 2s r s t t t r t rs V s t r r t t s t r s st t s r r r t s s st t t s s ss t 2 rt r t r r t rs s t 4 s r2 t s t s r tr t t s t V s 1 s t s t t rr r str t r t r q r V t r r t rs s s t V t ss t t t rr rs s t s t s str t t s r t r r t t t s r r t t t2 ss t s t t r t s r r t t r s t t t st t t t Vs 2 r2 tr st t 2 t Vs 2 s t st t s t t r t s s 2 r 2 t q t s r t s r r t s q t t t rr rs r t r s st t t ss t 2 t t s rs t t r t s t r s r t r s V s s s s t 2 r t t 2 1 r t t t s t V t s t r q t str t r r s t 2 s t s 2 s s 2 t r t V j s 2 s r t s r r t t r s t t t st t t t V j s st t 2 r t t r s t t t t V j s 2 s t st t s s t t r r r t r st s t s s st t 2 s r r t ss t t t rr r t r s s r 2 ss t t t t rr r t r s r t s 1 r s t r s t r t rs r 1 t ss t rr rs 2 1

t 2 s 2 t r t t rr r t r s t s r s r r t r st s t t 3 3 r ss t t r s r s t ss t rr rs 2 r t ss t 2 ts t t t r rt U (V j,ε j ) = V j ε j. r t ss t t t s s V j ε j r t r t t s t t t r t s t s t r V j s r 2 V j r 3 t t t t r r t r t s t t t s t t t2 s t r s r t t r t r t r tr t t tr s s s r t s t t s r s s t r t r s r t3 (MICHEL INSERT REF: bibtex code included in this doc). t t r t s s t t t 1t s t t r s s r rt s t t t r t t r s str t 1 s t s 2 Model formulation ss r t t t t2 t r t s t C J t r t s 2 r V j < 0 s t s2st t rt t t t2 t ε j > 0 s r r t V j ss t t t ε j r r ss s s r str t V j s t r ss t 2 t s r 1 t s s r 3 st t t s r t ttr t s t s t s s s tr t st r t rs t t r r r t t r t s r t s r 2 P(i z,s,v) = Pr(V i ε i V j ε j, j). t t s t s r t t t ss s t t

t t rr r t r s s s r t r t r t s str t 2 r s t s q t 2 P(i z,s,v) = Pr(V i ε i V j ε j, j) = Pr( ( V i ) (ε i ) ( V j ) (ε j ), j). (ε j ) = ξ j /λ, r ξ j r r r s λ > 0 s s r t r ss t t ξ j t P(i z,s,v) = Pr( V i + ξ i V j + ξ j,j C) = Pr( λ ( V i ) + ξ i λ ( V j ) + ξ j,j C). s q t 2 t s s r tt t r t t2 r r t t s t r V s r 2 r t r V i = λ ( V i ). t r r t V j = β x j t t rr rs t t r q r s t t x j s t t r t t s st t r ss t r t s q t r 3 t t t t s s t 1 r t r t t r r s t 2 V 2 s t st t s q t t st t t ln(v) s r t s t r 3 t st t r s t t s t t t r ts r 2 t r r t s ss t 2 t rs s s t s r 2 r s r t s r t s s ss t tr t r r t ss t s r r t rr r t r s ξ i t r t rs s V i r s 2 t 1t r s s r st s t P(i z,s) = e λ ( V i) j C e λ ( V j) = λ Vi j C V λ j. r r t rs r t s ss r2 t s r t t P(V i 0) = 0 s r t r r str t s 1 t

r st β s r str t t 1 (β) s s t r r t r st r t rs 2 s 2 s s rt t st t r tr s r t s s s t 1 t 2 s t r str t t s s r s q t s t t t t rr r t r s ts t t ss r r s 1t r s t s r t V s r r r t rs t q t t s t s r r r st t r t s st s t t r t s r s ts r s t t s r r t s t s t r biogeme.epfl.ch r r r r s r t st t 1 t r s s t r t t2 t s 3 Model properties s ss s s r rt s t t t t rr r t r s s t 2 s 2 r t r r t t t 2 V i +ξ i s r V i s r s r r t 2 s t r t s t s t rr r t r s s t t st r t r2 2 Distribution r r t ε i s F εi (x) = 1 F ξi ( λ x). t s r ξ i s 1tr str t t ξ i s t r r F ξi (x) = e e x F εi (x) = 1 e xλ. s s r 3 t 1 t str t t t λ = 1 t t t t 1 t str t s t 1 tr 2 str t t s str t s t s t

1 s t t t s r t t t t t t s t V i s t t2 s t s s s t r r t r rr r t r Elasticities r t st t2 t r t i t r s t t t tr t t it t r t x k s s e ik = P(i) x k x k P(i) = P(i) V i x k V i x k P(i), r V i / x k = β k V i s r s t t e ik = P(i) V i V i x k V i V i x k P(i) = λ P(i) V i x k V i V i x k P(i) r P(i)/ V i 2 r r t rr s t r st t t s P(i) V i = P(i)(1 P(i)), e ik = λ V i (1 P(i)) V i x k x k. r 2 t r ss st t2 e ijk t r t i t r s t t ttr t x k t r t j s 2 e ik = λ V j P(i) V j V j x k x k P(i) r P(i)/ V j r r t rr s t r st t t s P(i) V j = P(i)P(j), e ik = λ V i P(j) V j x k x k.

Trade-offs tr s r t t 1 t s 2 s r t t t s U i / x ik U i / x il = V i/ x ik V i / x il, s ε i / x ik = ε i / x il = 0 s ε i s t V i Expected maximum utility 1 t t2 r t t t t2 s U = 1 i C U i = 1 i C V iε i = 1 i C V ie ξ i λ, r ξ i s 2 ss t t (ξ 1,...,ξ J ) s str t t t s F(ξ 1,...,ξ J ) = e G(e ξ 1,...,e ξ J), r G s σ s t t rt r rt s s 2 r r r t s t 1 t 1 t t2 s 2 s r t 1 ( [U ] = (G ) 1 σλ Γ 1 + 1 ), σλ r Γ( ) s t t G = G(( V 1 ) λ,...,( V J ) λ ), r t s t t 1 t 1 t t2 t t2 s t t λ ( V i )+ξ i s t r s t t 1 t 1 t t2 s t 1 σ (lng + γ) t s t s r t t t r t s t V t t t t t s t s t t q t r t 1 t t t s t ss t 2 t V i t r t 1 t 1 t t2 t r G t 1 r ss s t r 1 t 1 t t2 t s V i 2 t r t t2 t s r t r r t

Marshallian consumer surplus rs s r s r s r t t 1t r V i t t t s t t2 t r t i s t r r t s r 3 st t s s s rt r t dv i s t s t r t s s 2 dv i t r t i s s t r s r r t s t r t r r dv i V i s P(i)dV i, t s t r t r V i r a t b s 2 b a P(i)dV i. P(i) s 2 ss t s t r s t t s r P(i) s 2 t t t t rr r t t r s t s r r r t r t st r r r r t r r t s r str8 r s ss s t r t t t 1t s r t Heterogeneity of the scale of utility ss t t t t t2 s s U (V j,ε j ) = 7V(z j,s)µ(s,v)ε j. t s s r s r t r t2 v ts 2 t s t t t2 r t t s t s P(i z,s,v) = Pr( 7V(z i,s)µ(s,v) + ε i > 7V(z j,s)µ(s,v) + ε j j), r t t t s t s P(i z,s,v) = Pr( 7V(z i,s)µ(s,v)ε i > 7V(z j,s)µ(s,v)ε j ) j), rs r str s s r r s r t s r s t r st r r s r r t s r 1 r ss s r r t t r s λ t λ s st t 2 t t r

s s t P(i z,s,v) = Pr( 7V(z i,s)ε i > 7V(z j,s)ε j ) j). t s t t2 s rr t r r t s r t t t r t s t s t t2 s str t t t 4 Empirical applications 23 t r st t t s ts st rt t t t s ts r t st t r r t3 r r t s t r t s t tr t3 r s s t t st t s t t st t 4.1 Value of time in Denmark t 3 t r t s t st 2 s t 1 r t t t s s r ttr t s t t tr t st r rt t 2s s r t tr s t t r s r2 r t s r r r s ts 1 r t s r2 r t t t r t s rst s s t t r r t rs s t t2 t s ttr t s r t st t r s 2 t t ss r ss t s t t2 t s s V i = λ( st +β 1 +β 2 s + β 3 2 +β 4 +β 5 t ), r t st t s r 3 t t r t r λ s st t s t t2 t r s t st t s t r r t t t s t s s V i = λ ( st β 1 β 2 s β 3 2 β 4 β 5 t ).

st t r s ts r r rt r t t s t r t t t s t s r s t r t t r t t t s t r t t t t s t r s s r t st t r t2 ts st t ts r t t r t t s t t s t t2 s V i = λ( st e β 5+β 6 ξ Y i ) r Y i = + e β 1 + e β 2 s + e β 3 2 + e β 4 t, ξ s r r t r str t r ss s s N(0, 1) s t t e β 5+β 6 ξ s r 2 str t 1 t s r t t s t t2 t r t rs s t t2 t r s t st t s t r r t t t s t s s V i = λ ( st + e β 5+β 6 ξ Y i ), r Y i s 2 st t r s ts r r rt r t t s t r t t t s t t r t t ss t r t t t s r r 2 r s t t r t s r s r t r t2 s t t s t t2 s r Y i s 2 V i = λ( st e W i Y i ) W i = β 5 + β 6 + β 7 + β 8 ss + β 9 + β 10 ξ ξ s r r t r str t r ss s s N(0, 1) s t t2 t r s V i = λ ( st + e W i Y i ).

r s r t s r s t t t r t s r t tr t s t r s r t s r s t t t r t s r t s t s t st t r s ts r r rt r t t s t r t t t s t t r r t t ss t r t t t t s t r s r s r 3 r s st t t s t r t s t s r 3 r s ts r r rt s t t s t s t 2 s2st t 2 t r r s t t s t t s 1 s t 2 t t t r t st t r t2 s t ts t t tt r t t t r t s r s r t r t2 r

r s r t s r s t t t r t s r t r t s t 4.2 Value of time in Switzerland st t t s t t s s t t s t ss t t s t t s t t t r t r t 1 r t 2 r r t r s rs s r r t s t t s t s t tt t ttr t s ae waiting t r s t t s t s t t r s r r rt t t r s ts r r rt s 4 t t s t s t t r r t t r t 1 r t rs tr r r t rs t s t r s t t s t t t t t s t r 2 t st t t r t s t s r s r t s t s t t t t r 1 r t rs r t rs r t ss t s t 4.3 Swissmetro str t t t t s t t r t 2s s t r s tr t3 r r r t t r t s r

r tr ss tr t t r s tr r r s 2 st t t t st str t r TRAIN SM CAR NESTA NESTB t s t s t t s V i r s s t r t s P r TRAIN SM CAR B TRAIN TIME tr t B SM TIME tr t B CAR TIME tr t B HEADWAY r q 2 r q 2 B COST tr st tr st tr st r r ts t s t r t t t r s t r t r t r st s t t r s t t s t t2 t r t s SM CAR B GA r 2P ss B MALE B PURP t r r i =SM CAR rr r t r 2 str t rr r t s t t t r t r t s t t r t s st r rr r t tr t t t t tr t r s t s r t r st s

1 r 2P ss B MALE B PURP t r r TRAIN SM CAR t t ts r tr t 2 r str t t r str t r r t st t t t t t s t s t s t t r s ts r r rt t t t r s ts r t r ts t ss tr t s r t t r s s t t t s t t r r s t t r t s s t ss r 2 tr r r 1 s r t t t s t r r s tt r r ts t r r t s 1 t t t

t t s 1 t s t rs 2 tt r s t s2st t 2 r rr r t s t 2 rt t st t s t s r t t t r 1 t t tt r 5 Concluding remarks t s s t r t t t s r t s s r t t2 1 3 t st t t rr r t r s s s t t s s s ss t s r t 2 t t r s t s s t s t s t t2 t s r r r t t ss t t r t t t t r 2 st t t 1 st s t r r r r s t V t s t ss t t r t t t r t r tt r t t t t r t r t r t2 t s s t t t t t t r t ts t t tt r q t s s t r t s r2 r s t s r r t t r t r r s r t r t2 s 3 t t r r rt t t st r s ts t t t t r t 2 t r t t t s s t t 2 2 t t2 s t r t s r q 2 r t r2 t t t t r t s s r q st s s r 2 t t2 s t t t rs s s t s t t2 t rs ss s s st r r t s r r s t t r t s r t t r t t t t r t t q 2 r t r r rt2 r t t t s t r t r s t s t r t r rt s t t s t s t r t 2 r t s t t2 2 V j = λln( V j ) s 1 st t r2

6 Acknowledgments t rs t t tr rt r r2 t t r s r s s st rs r str r ts t r s r s t t r t rst r s t s s r t s r 3 t P 2t q r s t3 r t r s s r s s rt r t s s r r 2 s r rs r s t r2 ts r s rs s t s rt References t r t r t2 st t s tr str t r t t t r t2 tr r s rt t s r P rt t 31 4 r r r r t st t s r t s Pr s t r ss r s rt t s r r s t3 r str r r tr t t rs r r 1 s 2 t t t s t ss tr Pr s t st ss r s rt t s r r s t3 r str ss rt 3 r 33 s r ss ss t s s s st t 1 r t st t s r s rt t s r P rt t 39 4

s r str8 s t r t s r t s r t t2 s t t r r t s 72 4 2 r r r r t r r s t t r s 1tr s r s rt t s r P rt t 40 4 2 r2 r t s r s t r ts tr 1 s ss 1 r r s r rt tr t 2 tr t t st t t r2 r r t r r s r r s 3 r s s ts r st t r r t s t ts 1 t2 s st 2 r r t s t 44 4 s r st t t str t t tr t s s r s rt t s r P rt t 40 4 s r s r tr s t s 2 t s r t tr t r s rt t s r P rt 41 4 s r t t s s s r tr 52 4 s r q 2 str t t 1 r s t r ts rt r 2 r t 2 t r t2 81 4 2 1 s s 2 t t tr t s s s t3 r Pr s t r ss r s rt t s r r tt str P r

t r r t r r t r t2 t r 3 st t t t st tr r r s rt t s r P rt t 39 4 r 1 s r s r t r s s r tr s 15 4 t r s t t r q st t t t r t t r2 r s t t rt st r 4 r r s r t t t tr s rt s s r r s rt s P 2 5 4 t 3 r t r t 1 t2 s r r t r t r r r r r t s 1 t2 t s s r r 3 t r s Pr ss s 86 4 r s s r t s r r s ss t 2 s r r s t s s t t s r t r s r s s r t s s r s r r 4

A Derivation of the expected maximum utility r t 1 t t2 s U = 1 i C V ie ξ i λ, r ξ i s 2 t t t U 0 ss t t (ξ 1,...,ξ J ) s str t U s t s s r t < 0 F(t) = Pr(U t) = Pr(U i t, i) = Pr(ξ i λ (tv 1 i ), i) = 1 ( G((tV 1 1 )λ,...,(tv 1 J )λ ) = 1 ( ( t) σλ G(( V 1 ) λ,...,( V J ) λ ) = 1 ( ( t) σλ G ) s t σ t2 G t t G rt s ( F 1 (x) = x ) 1 ( σλ = (G ) 1 G σλ t t U 2 f(t) = F (t) [U ] = 0 s t tf(t)dt = 1 0 F 1 (x)dx = (G ) 1 σλ ( )) 1 1 σλ. x 1 0 ( ( )) 1 1 σλ dx x

B Parameter estimates for the Danish Value of Time data st r s2 t r s r t st t st rr r t st t p s 2 t t t λ r s r t s L(0) 2394.824 L(^β) 1970.846 2[L(0) L(^β)] 847.954 ρ 2 0.177 ρ 2 0.175 t 1 r t rs t rr r t r s

st r s2 t r s r t st t st rr r t st t p s 2 t t t λ r s r t s L(0) 2394.824 L(^β) 1799.086 2[L(0) L(^β)] 1191.476 ρ 2 0.249 ρ 2 0.246 t 1 r t rs t t rr r t r s

st r s2 t r s r t st t st rr r t st t p s 2 t t s r t r t2 s r t r t2 st rr λ r s r t s r s r r s r L(0) 2394.824 L(^β) 1925.467 2[L(0) L(^β)] 938.713 ρ 2 0.196 ρ 2 0.193 s r t r t2 5 t rr r t r s

st r s2 t r s r t st t st rr r t st t p s 2 t t s r t r t2 s r t r t2 st rr λ r s r t s r s r r s r L(0) 2394.824 L(^β) 1700.060 2[L(0) L(^β)] 1389.528 ρ 2 0.290 ρ 2 0.287 t s r t r t2 5 t t rr r t r s

st r s2 t r s r t st t st rr r t st t p s 2 t t ss s r t r t2 s r t r t2 st rr λ r s r t s r s r r s r L(0) 2394.824 L(^β) 1914.180 2[L(0) L(^β)] 961.286 ρ 2 0.201 ρ 2 0.196 t s r s r t r t2 5 t rr r t r s

st r s2 t r s r t st t st rr r t st t p s 2 t t ss s r t r t2 s r t r t2 st rr λ r s r t s r s r r s r L(0) 2394.824 L(^β) 1675.412 2[L(0) L(^β)] 1438.822 ρ 2 0.300 ρ 2 0.296 t s r s r t r t2 5 t t rr r t r s

C Parameter estimates for the Swiss Value of Time data st r s2 t r s r t st t st rr r t st t p tr t s 2 λ r s r t s r s L(0) 2426.708 L(^β) 1668.070 2[L(0) L(^β)] 1517.276 ρ 2 0.313 ρ 2 0.311 t 1 r t rs t rr r t r s

st r s2 t r s r t st t st rr r t st t p tr t s 2 λ r s r t s r s L(0) 2426.708 L(^β) 1676.032 2[L(0) L(^β)] 1501.353 ρ 2 0.309 ρ 2 0.308 t 1 r t rs t t rr r t r s st r s2 t r s r t st t st rr r t st t p s r t r t2 s r t r t2 st rr s 2 λ r s r t s r s r r s r L(0) 2426.708 L(^β) 1595.092 2[L(0) L(^β)] 1663.233 ρ 2 0.343 ρ 2 0.341 t s r t r t2 5 t rr r t r s

st r s2 t r s r t st t st rr r t st t p s r t r t2 s r t r t2 st rr s 2 λ r s r t s r s r r s r L(0) 2426.708 L(^β) 1568.607 2[L(0) L(^β)] 1716.202 ρ 2 0.354 ρ 2 0.352 t s r t r t2 5 t t rr r t r s