Tentamen i Beräkningsvetenskap I, 5.0 hp,

Relevanta dokument
Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp,


Facit Tentamen i Beräkningsvetenskap I, STS ES W K1


Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

( ) = 3 ( + 2)( + 4) ( ) =


2E I L E I 3L E 3I 2L SOLUTIONS


ÁÒÒ ÐÐ ÓÑ ØÖ Ð Ö Ð Ñ ÒØ ÓÔ ÒØÓ Ð¹Ã Û Ö ÞÑ Ð Ö Ø Ð Ö ÔÖ Ø ÙØ ÓÖÑ ÙÒ Ö ½ ¼¼¹ Ó ½ ¼¼¹Ø Рغ Î Ø º ÖØ ¾

Tentamen i TMME32 Mekanik fk för Yi

ÁÒÒ ÐÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ½ ½º½ ÝÒ Ñ Ð Ø Ð Ò Ö Ò Ú ÔØ Ú È ¹Ð Ö º º º º º º º ½ ½º¾ ÃÓÖØ ÓÑ ØÓÖ ÑÙÐ Ö Ò Ö º º º º º º º º º º º º º º º º º º º º ¾ ¾ Ø Ð Ö

Å Ø Ñ Ø Ø Ø Ø ÌÓÑÑÝ ÆÓÖ Ö ¾ Ù Ù Ø ¾¼¼ ÓÖÑÐ Ö Ó Ø ÐÐ Ö Ø ÐÐ Å Ø Ñ Ø Ø Ø Ø Ô ÙÒ Ú Ö Ø Ø Ó Ø Ò ÓÐÓÖ


Ð ÓÖ Ø Ñ Ö ÙÖ Ä Ò ½ Å ËË ¹ ÁÒØÖÓ ÙØ ÓÒ ÔÖÓ Ö ÑÑ Ø ÓÒ Â Î Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ Ñ Ö ¾¼¼

Föreläsning 13 5 P erceptronen Rosen blatts p erceptron 1958 Inspiration från mönsterigenk änning n X y = f ( wjuj + b) j=1 f där är stegfunktionen.

x 2 + ax = (x + a 2 )2 a2

ÝÖ Ö Ò ØØ Ò Ø ÓÒ Ù ØÖ Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ Ó Ú ÓÒ Ö ØÑ Ø ÙØØÖÝ ÙØ Ö Å ÌÄ Ñ ÓÔ Ö ØÓÖ ÖÒ ¹» Ü ÑÔ Ðº ÇÑ Ø Ö ØÑ Ø ÙØØÖÝ Ø ½ ¾ Ò Ú Å ÌÄ ¹ÔÖÓÑÔØ Ò ÒÑ ØÒ Ò Ò Ú

Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394


Î Ö Ä Ì ½º Ì Ö Ò Ø ÜØ¹ Ð ÓÑ ÒÔÙØº ¾º ÈÖÓ Ö Ö Ð Ò Ó ØÑÑ Ö Ø ÓÔØ Ñ Ð ÙØ Ò Øº º Ö ÙØ Ò ÎÁ¹ Ð Ú ¹ÁÒ Ô Ò ÒØµº º ÎÁ¹ Ð Ò Ò ÓÒÚ ÖØ Ö Ø ÐÐ Ü ÑÔ ÐÚ Ò È ¹ к

s N = i 2 = s = i=1

Ö Ò histogramtransformationº

Stapeldiagram. Stolpdiagram

1 S nr = L nr dt = 2 mv2 dt

x + y + z = 0 ax y + z = 0 x ay z = 0

Ö ÆË Ò Ö ÚÒ Ò Ö Ð Ö Î À ØÓÖ Ó Ò Ö ÐÐ Ö ÚÒ Ò Ò Ð Ö Ø Ò Æ ÑÒ ÖÚ ÖÒ ÐÐ Ö ÒØÐ Ò ÐÚ ÓÒ Ö Ó Ö ÒÒ Ðк ÍÔÔ Ð ÔÖÓ Ò ÐÐ Ö ÙÖ Ñ Ò Ð Ø Ö Ø º ÇÔ Ö Ø Ú Ô Ø Öº Ë Ö Ø


u(t) = u 0 sin(ωt) y(t) = y 0 sin(ωt+ϕ)

huvudprogram satser funktionsfil utparametrar anrop av funktionsfil satser satser

f(x) = f t (x) = e tx f(x) = log x X = log A Ö Ð e X = A f(x) = x X = A Ö Ð X 2 = A. (cosa) 2 + (sin A) 2 = I, p (k) (α) k=0

σ ϕ = σ x cos 2 ϕ + σ y sin 2 ϕ + 2τ xy sinϕcos ϕ

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp,

ÁÒØÖÓ ÙØ ÓÒ ËÎ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ¾ ÒÓÚ Ñ Ö ¾¼¼

ÁÒÒ ÐÐ Á ÝÖ ÖÒ ÓÑ ËÙÖ Ð¹ Ö ÓÑ ØØ Ö ÁÁ ÌÖ Ö ÓÑ Ñ Ò Ñ Ø ÒÒ Ø ÐÐ Ó Ò Ð Ø Ö ÁÁÁ йÀ Ò Ö Ñ Ö Ð ÓÒ ÁÎ Ò Ö Ø ÖÙÒ Ò Î Ò Ò Ö ÖÙÒ Ò ÃÒÒ ÓÑ ÓÑ ÚÖ Ö Ð ÓÒ Á ¹ Ð Ñ

PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 1 Tal och räkning Kapitel : 2 Stort, smått och enheter. Elevens namn: Datum för prov

Tentamen i Beräkningsvetenskap II, 5.0 hp,

1 = 2π 360 = π ( 57.3 ) 2π = = 60 1 = 60. 7π π = 210


Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Ä Ò Ô Ò ÙÒ Ú Ö Ø Ø ÄÖ ÖÔÖÓ Ö ÑÑ Ø Å Ö Ã Ð Ö Ò ÅÓØ Ú Ø ÓÒ Ó ÐÚÙÔÔ ØØÒ Ò ÀÙÖ Ò Ò ÐÖ Ö ÔÚ Ö Ü Ñ Ò Ö Ø ½¼ ÔÓÒ ÄÁÍ¹Ä Ê¹Ä¹ ¹¹¼»½¼ ¹¹Ë À Ò Ð Ö ÂÓ Ñ Ë ÑÙ Ð ÓÒ

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Verktyg för visualisering av MCMC-data. JORGE MIRÓ och MIKAEL BARK

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Sammanfattninga av kursens block inför tentan

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Imperativ programering

½ ÐÐ Ö À ÖÖ ÇÐÓ Ó ÐÚÓÖÒ À ÖÖ ÇÐÓ Ö Ö ÓÑ ÓØØ ¹ Ö Û Ö ÐÐ Ö Ö Ñ¹ Ð Ù Ò ÓÒÓÑ ØÝ Ø ¹À ÖÖ ÇÐÓ ÓÑÑ Ö Ñ ÒÖ Ó Ò Ö Ð Û Ö Òº À ÖÖ ÇÐÓ Ö Ö Ö Ö ÒÒ Ö Ò ÒØÞ Ñ Ð Û Öº

0, x a x a b a 1, x b. 1, x n. 2 n δ rn (x), { 0, x < rn δ rn (x) = 1, x r n


Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Imperativ programering

ÁÒ Ò Ö Ñ Ø Ñ Ø ÁÁ Ö Ð Ò Ò Ñ Ø Ö Ð ÑÑ Ò ØÐÐØ Ú ÌÓÑ Ö Ñ Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ Ö ÙÔÔÐ Ò ¾¼½

Â Ú ËÖ ÔØ ÇŠغ ÈÖÓ Ö ÑÑ Ø ÓÒ Ï Ä Ò Ò ÓÖÑ Ø ÕÙ Ë Ø Ò Î Ö Ð Ú Ö Ð ºÙÒ º Ö ÛÛÛº ºÙÒ º Ö» Ú Ö Ð ÕÙ Ô ËÓ ¹ ÍÒ Ú Ö Ø Æ ËÓÔ ¹ ÒØ ÔÓÐ ½ ÓØÓ Ö ¾¼¼

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Införande av objektorienterade mönster för ökad förändringsbarhet i mjukvarusystem

Frågetimmar inför skrivningarna i oktober

Dlnx = 1 x. D 1 4 x4 = 1 4 4x3 = x 3. F(x) = x3 + x2. + x2. F (x) = G (x) = x 2 + x = f(x). Ó G(x) =

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

Multivariat tolkning av sensordata

a = ax e b = by e c = cz e

¾ ÓÖ ÓÖ ØÓÚ ½ ¼ ½ µ Ó ÙÚÐ º Ñ Ð Ò Ì Ö º ÊÓÑ Ò ½ µº ÇÖ Ò Ð Ø Ø Ø Ð Æ ÔÓ ÓÖ ÒÒÝ º ÖÒ ÖÝ Ò Ú ËÚ Ò ËØÓÖ ½ µº Ä Ù ÖÐ ËØÓ ÓÐѺ ÌÖÝ Ø Ó ÐØ Ø ÓÐ ËØÓ ÓÐÑ ½

Vattenabsorption i betong under inverkan av temperatur

Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A

º º ËÝÒ ÔØ ÔÐ Ø Ø Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º Æ ÙÖÓØÖ Ò Ñ ØØ Ö º º º º º º º º º º


ÁÒØÖÓ Ù Ø ÓÒ Ø ÐÐ Å ÔÐ ½ Ñ ¾¼¼

ÌÁÄÄ ÅÈ ÁËÃÊ Ì ËÌÊÍÃÌÍÊ Ê ÂÙÐ Ù ÖÞ Þ Ò Ó Â Ò ËØ Ú Ò Å Ì Å ÌÁÃ À ÄÅ ÊË Ì ÃÆÁËÃ À ËÃÇÄ Ì ÇÊ Ë ÍÆÁÎ ÊËÁÌ Ì Ì ÇÊ ¾¼¼½

Tentamen i: Beräkningsvetenskap I och KF

Ö Ð Ò Ò ÒØ Ò Ò Ö Ö Ú Ö ÙÖ Ò Ê Ô Ø Ø ÓÒ ÙÖ Å ¹ Ø Ñ Ø Ôº Ì˵ Ö Ö Ø Ö Ø ØÙ Ö Ò ÙÐØ Ø ÓÑÖ Ø Ö Ò ØÙÖÚ Ø Ò Ô Ö Ó Ø Ò Ó Ñ º ÃÙÖ Ò Ú Ø Ö ØØ ÖÑ Ò Ó Ò Ú Ô Ö ÙÒ

G(h r k r l r ) = h r A + k r B + l r C (1)


Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter

Anpassning av copulamodeller för en villaförsäkring

Ë ÑÑ Ò ØØÒ Ò ÃÓ ÑÓÐÓ ÑÑ ÙØ ÖÓØØ Ö Ð Ò Ñ Ø Ò Ö Ö ÒÓÑ Ò ÓÑ Ó ÖÚ Ö Ø ÍÒ Ú Ö ÙѺ ÍÖ ÔÖÙÒ Ø Ö Ö Ø Ð ÜØ Ö Ú Ñ¹ Ñ ØÖÐÒ Ò Ö Ö Ð Ø ÚØ Ó ÒØ Ñ Ò ØÖÓ ÓÑÑ ÙÖ ÓÐÐ Ó

¾¼ Ë Ò ÓÐ ÖØ Ö Ò ÓÒÒ Ö ËØÓ ¹ ÓÐÑ ½ ¼ º ½½ º Í ÍÍ Ë ÄÍÅ ÆÍ Å Ú Ò ØØ Ö Ú Ë Ö ØÖ Ѻ ÀÒÚ ÖÒ ¾½ ¾¾ ¾ ¾¾ ¾ ½¼½ ¾ ¾ ¾ ½¾ ½ ½ ¾ ¾º ¾½ Ö À Ò ËÚ Ò Ú Ö º ÍÖ ÇÖ Ó

¾

Tentamen i: Matematisk fysik Ämneskod M0014M. Tentamensdatum Totala antalet uppgifter: 6 Skrivtid Lärare: Thomas Strömberg

Ú Ö Ö ÐÒ Ö ØØ Ö Ú Ø Ú Ò Ò ¹ Ú Ö ÓÑ Ò Ø ÓÒ Ö Ú Ñ Ò Ö ¹ Ø Öº ËØÝÖ Ú ØØ Ø ÜØ ÖÒ Ð Ò ÑÓØ Ð ÙÐÐ º Á Ó Ç ÓÐ ÔÖ Ð Ú ÝÒº ÍÒ Ø Ö ÖÒ ÐÒ Ø Ñ ÐÐ Ò ÔÓ Ò ÀÓÑ ÖÓ Ö Ø

Från det imaginära till normala familjer

ERE 102 Reglerteknik D Tentamen

Problemlösning och miniprojekt

TENTAMEN: DEL A Reglerteknik I 5hp

Ê Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ Ö Ò Ò ÀÓÐÐ Ò Ö Â «Ö Ý º ËØ ØÖ Ø ÁÒ Ø Ô Ô Ö Û Ú ÙÖÚ Ý Ó ÓÑ Ö ÒØ Ö ÙÐØ ÓÖ Ö Ò ÓÑ Û Ð Ò Ö Ò ÓÑ Ò ÖÝ ÊÏÊ˵º

ÖÓÖ ØØ ÓÑÔ Ò ÙÑ Ö ÙØÚ Ð Ø ÙÒ Ö ¾¼¼ ¹¾¼½ Ó Ö Ú ØØ ÓÑ Ò Ð Ú ÙÖ Ñ Ø Ö Ð Ø Ø ÐÐ ÙÖ Ò ÅÓ ÐÐ Ö Ò Ú ÝÒ Ñ Ý Ø Ñ ÓÑ Ô ËÌ˹ Ó Á̹ÔÖÓ Ö ÑÑ Ø Ô Ö Ó ¾ µº Ò Ð Ð Ú Ñ

ÁÑÔÐ Ñ ÒØ Ö Ò Ó Ö Ø Ö Ö Ò Ú ÔÙÒ Ø Ö ÔØÓÖ Ö Ö Ö ÐØ Ò Ð Ò Ú ÓØÓ Ø Ö Ñ Ö Ø ØÖ Ø Ò Ú Ö Ò ÂÇÀ Æ ÃÊÁËÌ ÆË Æ Ü Ñ Ò Ö Ø ËØÓ ÓÐÑ ËÚ Ö Å ¾¼½¾ ʹ ¹Ë ¾¼½¾ ¼¼

1 k j = 1 (N m ) jk =

TENTAMEN: DEL A Reglerteknik I 5hp

Transkript:

Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, 5.0 hp, 2008-03-25 OBS! Denna tentamen avser nya versionen av kursen Beräkningsvetenskap I, som ges för årskurs 1, med delvis annat och mindre omfattande kursinnehåll än gamla versionen av kursen, som ges för årskurs 2. Skrivtid: 09 00 14 00 Hjälpmedel: Miniräknare, Mathematics Handbook. OBS bifogat formelblad. För full poäng krävs fullständiga räkningar och utförliga resonemang samt motivering till alla svar. Betygsnivåer: Betyg 3: minst 18 poäng på del A Betyg 4: minst 18 poäng på del A och minst 8 poäng på del B Betyg 5: minst 18 poäng på del A och minst 8 poäng på del B samt godkänd essä i del C. Del A 1. Att lösa ett ekvationssystem Ax = b med LU-faktorisering innebär att genomföra följande tre steg: (1) LU-faktorisera A, ger matriserna L, U och P ; (2) Lös Ld = P b; (3) Lös Ux = d. (Om ytterligare system ska lösas, där alla systemen har samma koefficientmatris A, så behöver man inte upprepa steg (1)). (a) Vad kallas den algoritm som används i steg (3). (b) Om systemet har n ekvationer och lika många obekanta, vad blir då storleksordningen på antalet flyttalsoperationer i respektive steg ovan. (Det räcker med svar utan motivering.) (c) Beskriv stegen i den algoritm som används i steg (3). Beskrivningen ska vara tydlig och detaljerad. Du kan välja att göra beskrivningen i ord eller som pseudokod. (1p) (3p) (5p) 1

2. Dammen vid Newton s Mill är fylld med vatten upp till nivån 20 fot. Vattnet i dammen utövar ett så kallat hydrostatiskt tryck på fördämningen. Låt y vara den koordinat som går från dammens botten, y = 0, och uppåt. Dammen är vattenfylld upp till y = 20. Dammens bredd på nivå y är w(y). Det hydrostatiska trycket kan då uttryckas 20 0 där p = 62.5 lb/ft 3. p (20 y) w(y)dy Följande värden på w(y) har uppmätts: y 0 5 10 15 20 w(y) 20.00 20.05 20.25 20.51 21.18 Använd Simpsons formel med h = 5 för att beräkna ett approximativt värde på det hydrostatiska trycket. 3. I intervallet 1 x 0.5 finns en skärningspunkt mellan kurvorna y = e x och y = x 2. Ett sätt att bestämma skärningspunkten är att ställa upp den ickelineära ekvationen e x = x 2 och tillämpa Newton- Raphsons metod på den. Gör detta och utför två iterationer utgående från x (0) = 0.75. (8p) (8p) 2

Del B 4. Vi återvänder nu till dammen vid Newton s Mill. Vattennivån i dammen varierar under året. Allmänt kan vi säga att vattennivån är D fot. Det motsvarande hydrostatiska trycket betecknar vi med F (D): F (D) = D 0 p (D y) w(y)dy fortfarande med p = 62.5 lb/ft 3. Låt oss anta att värden på w(y) för olika y är givna som mätdata med sådan noggrannhet att integranden g(y) = p(d y)w(y) kan beräknas med två korrekta decimaler. Mätfelen sätter då en gräns för hur noggrant vi kan beräkna F (D). Hur stort kan felet i det beräknade värdet på F (D) bli som följd av mätfelen i w(y)-värdena? (Bortse från alla andra felkällor.) För full poäng krävs härledning av en övre gräns för det sökta felet. (8p) 5. Dammen vid Newton s Mill är i behov av renovering. Du ingår i en projektgrupp som ansvarar för detta. Tanken är att förstärka dammens väggar. Detta kommer att göras på så vis att dammen får en mycket regelbunden form, så att bredden w(y) ges av formeln w(y) = 40 20e (0.01y)2 fot För att bedöma hur fördämningen ska dimensioneras ur säkerhetssynpunkt vill ni i projektgruppen beräkna hur stort det hydrostatiska trycket kommer att bli när dammen fått sin nya, regelbundna form. Detta beror i sin tur på vattennivån i dammen, som varierar under året. Vattennivån D kan vara mycket låg under sensommaren, medan den under våren kommer upp till nära 100 fot. Din uppgift i projektet är att föreslå en algoritm för att numeriskt beräkna F (D) för alla heltalsvärden på D från och med 10 till och med 100 fot. För varje sådant värde på D ska algoritmen automatiskt ställa in diskretiseringsparametern h så att F (D) beräknas med minst cirka fyra korrekta decimaler. Du ska nu formulera ett förslag till hur algoritmen skulle kunna se ut. OBS! Det krävs inte att du genomför några beräkningar i denna 3

uppgift. I stället handlar det om att uttrycka en lösningsidé så att den framgår tydligt. För full poäng krävs att idén dels presenteras översiktligt, dels preciseras i form av pseudokod. Det är viktigt att lösningsidén är väl utmejslad och att du motiverar den med väl underbyggda argument. I pseudokoden får du anta att grundläggande beräkningsalgoritmer för numerisk kvadratur finns tillgängliga som färdiga kommandon, och inte behöver beskrivas i detalj. (8) 4

Del C Essäuppgift Du ska nu behandla problemställningen i uppgift 5 i en essä. Essän ska innehålla en diskussion om det förslag till angreppssätt som du föreslagit som lösning till uppgift 5. Diskussionen ska ta upp olika beräkningsvetenskapliga frågeställningar och begrepp som ingått i kursen. Diskussionen ska relatera frågeställningarna och begreppen till det specifika sammanhang som är aktuellt här (problemställningen i uppgift 5 och det angreppssätt som du har föreslagit). Frågeställningar. Du väljer själv vilka frågeställningar och begrepp du vill fokusera på i diskussionen. Du bör dock se till att behandla minst tre olika aspekter och dessa bör väljas så att både datavetenskapliga och matematiska infallsvinklar på beräkningsvetenskap framkommer. Omfattning. Essäns längd bör begränsas till högst ca två A4-sidor (men även en kortare essä kan ge full poäng; det är kvaliteten som bedöms). Bedömning. Det ställs höga krav på essän, eftersom den ska ligga till grund för betyget 5. För att essän ska godkännas för detta betyg krävs att diskussionen lyfter fram relationerna mellan olika begrepp i sammanhanget och gärna också går utöver vad som direkt kan utläsas ur läroboken och föreläsningsanteckningarna. 5

ÍÔÔ Ð ÙÒÚÖ ØØ ÁÒ Øº Ö ÒÓÖÑØÓÒ ØÒÓÐÓ Úº Ö ØÒ ØÒÐÒ ÐÒ ÓÖÑÐÖ ½º ÐÝØØÐ Ó ÚÖÙÒÒÒ Ð ØØ ÝØØÐ Ð(Ü) ÖÔÖ ÒØÖ ÒÐØ Ð(Ü) = ˆÑ ˆÑ = ( 1 2 Ô ) 0 1 = 0 Ä Í Ö ØÒÖ Ó Ô ÔÖ ÓÒº ØØ ÝØØÐ Ý ØÑ ÒÖ È ( Ô Ä Í)º Å ÒÔ ÐÓÒ ÚÖÙÒÒÒ ÒØÒµ Å = 1 2 1 Ô Ó Ò ÒÖ ÓÑ Ø ÑÒ Ø ØÐ ÒØ ØØ Ð(1 + ) 1º ¾º ÄÒÖ Ó ÐÒÖ ÚØÓÒÖ ÆÛØÓÒ¹ÊÔ ÓÒ ÑØÓ Ü (+1) = Ü () (Ü () ) ¼ (Ü () ) Ö Ý ØÑ Ü (+1) = Ü () [ ¼ ] 1 (Ü () ) Ö Ü Ó (Ü ) Ö ÚØÓÖÖ Ó ¼ Ö ÂÓÒÒº ÜÔÙÒØ ØÖØÓÒ Ö Ü = (Ü) Ü (+1) = (Ü () ) ÐÐÑÒ ÐÙÔÔ ØØÒÒ Ü () Ü (Ü() ) min ¼ (Ü) ÃÓÒØÓÒ ØÐØ cond() = 1 ÑØÖ Ò ÐØÒ Ö ØÖÒÒÖ Ó ÚØÓÒ Ý ØÑØ Ü = º Ø ÐÐÖ ØØ Ü Ü cond() Ö Ü = Ü ˆÜ Ó = ˆº ÆÓÖÑÖ ÚØÓÖ¹ Ö ÔØÚ ÑØÖ ÒÓÖѵ Ü 2 = Ô Ü 1 2 + + Ü Ò 2 Ü 1 = È Ü Ü ½ = max Ü 1 = ÑÜ ( È ) ½ = ÑÜ ( È ) º ÔÔÖÓÜÑØÓÒ ÆÛØÓÒ ÒØÖÔÓÐØÓÒ ÔÓÐÝÒÓÑ Ô(Ü) Ú Ö Ò ÔÙÒØÖ (Ü 1 Ý 1 ) (Ü Ò Ý Ò ) ÝÖ Ô Ò Ø Ò Ô(Ü) = 0 + 1 (Ü Ü 1 ) + 2 (Ü Ü 1 )(Ü Ü 2 ) + + Ò 1 (Ü Ü 1 ) (Ü Ü Ò 1 ) ÅÒ ØÚÖØÔÔÖÓÜÑØÓÒÒ ØÐÐ ÔÙÒØÑÒÒ (Ü 1 Ý 1 ) (Ü 2 Ý 2 ) (Ü Ñ Ý Ñ ) Ñ ØØ ÒÖ ÔÓÐÝÒÓÑ Ô(Ü) = 0 1 + 1 Ü + + Ò Ü Ò Ò ÓÖÑÙÐÖ ÓÑ ØØ ÚÖ ØÑØ ÚØÓÒ Ý ØÑ Ü = Ö Ö Ñ Ò Ñ Òº ÅÒ ØÚÖØÐ ÒÒÒ Ò ÙÖ ÒÓÖÑÐÚ¹ ØÓÒÖÒ Ì Ü = Ì

º ÇÖÒÖ ÖÒØÐÚØÓÒÖ ÙÐÖ ÑØÓ ÜÔÐØ ÙÐÖµ Ý +1 = Ý + (Ü Ý ) ÒºÓº ½ ÁÑÔÐØ ÙÐÖ ÙÐÖ Øµ Ý +1 = Ý + (Ü +1 Ý +1 ) ÒºÓº ½ ÌÖÔØ ÑØÓÒ Ý +1 = Ý + 2 ((Ü Ý ) + (Ü +1 Ý +1 )) ÒºÓº ¾ ÀÙÒ ÑØÓ ØÐÐÖ ÖÙÔÔÒ ÊÙÒ¹ÃÙØØÑØÓÖµ à 1 = (Ü Ý ) à 2 = (Ü +1 Ý + à 1 ) Ý +1 = Ý + 2 (à 1 + à 2 ) ÒºÓº ¾ ÃÐ ÊÙÒ¹ÃÙØØ Ã 1 = (Ü Ý ) à 2 = (Ü + 2 Ý + 2 à 1) à 3 = (Ü + 2 Ý + 2 à 2) à 4 = (Ü +1 Ý + à 3 ) Ý +1 = Ý + 6 (à 1 + 2à 2 + 2à 3 + Ã4) ÒºÓº º ÆÙÑÖ ÒØÖØÓÒ ÌÖÔØ ÓÖÑÐÒ ÖÒÒ Ô ØØ ÐÒØÖÚÐÐ Ñ ØÐÒ = Ü +1 Ü Ü+1 Ü (Ü) Ü = 2 [(Ü ) + (Ü +1 )] ËÑÑÒ ØØ ÓÖÑÐ Ô ÐØ ÒØÖÚÐÐ [ ] Ú ØÒØ ØÐÒ = (Ü) Ü 2 [(Ü 0) + 2(Ü 1 ) + + 2(Ü Æ 1 ) + (Ü Æ )] Ê ÐØ Ê Ô ÐØ ÒØÖÚÐÐ [ ] Ú (Ü) Ü = Ì () + Ê Ö Ê = ( ) 2 ¼¼ () 12 ËÑÔ ÓÒ ÓÖÑÐ ÖÒÒ Ô ØØ ÐÒØÖÚÐÐ Ñ ØÐÒ Ü+2 Ü (Ü) Ü = 3 [(Ü ) + 4(Ü +1 ) + (Ü +2 )] ËÑÑÒ ØØ ÓÖÑÐ Ô ÐØ ÒØÖÚÐÐ [ ] Ú ØÒØ ØÐÒ = (Ü) Ü 3 [(Ü 0) + 4(Ü 1 ) + 2(Ü 2 ) + 4(Ü 3 ) + + 2(Ü Æ 2 ) + 4(Ü Æ 1 ) + (Ü Æ )] Ê ÐØ Ê Ô ÐØ ÒØÖÚÐÐ [ ] Ú (Ü) Ü = Ë() + Ê Ö Ê = ( ) 180 4 ¼¼¼¼ ()

º ÊÖ ÓÒÜØÖÔÓÐØÓÒ ÇÑ 1 () Ó 1 (2) Ö ØÚ ÖÒÒÖ Ø Ü ØØ Ø Ò ÖÒÒ Ú Ò ÒØÖÐ ÐÐÖ Ò Çµ Ñ Ò ÑØÓ Ú ÒÓÖÒÒØ ÓÖÒÒ Ô Ñ ØÐÒ Ö ÔØÚ ÙÐ ØÐÒ 2 Ö Ê() = 1() 1 (2) 2 Ô 1 Ò ÙÔÔ ØØÒÒ Ú Ò ÐÒ ØÖÑÒ ØÖÙÒÖÒ ÐØ 1 ()º ÃÒ ÚÒ ÒÚÒ Ö ØØ ÖØØÖ ÒÓÖÒÒØÒ 1 () ÒÓÑ () = 1 () + 1() 1 (2) 2 Ô 1 º ÖÒ ÓÖÑÐÖ ÖÒ ÓÖÑÐÖ Ö Ö Ø¹ Ó ÒÖÖÚØ Ý ¼ 0 Ý = Ý +1 Ý 1 2 ÒØÖÐÖÒ Ý ¼ + Ý = Ý +1 Ý ÖÑØÖÒ Ý ¼ Ý = Ý Ý 1 ØÖÒ Ý ¼¼ + Ý = Ý +1 2Ý +Ý 1 2 º ÌÝÐÓÖÙØÚÐÒ ÌÝÐÓÖÙØÚÐÒ Ú Ý(Ü + ) ÖÒ Ü Ý(Ü + ) = Ý + Ý ¼ + 2 2! ݼ¼ + 3 3! ݼ¼¼ + Ç( 4 )