Experimental investigations of relativistic hydrodynamics and the ideal fluid scenario at RHIC

Relevanta dokument
12.6 Heat equation, Wave equation

Module 6: Integrals and applications

A Study of Number-Ratio Fluctuations in Gold-Gold Interactions at sqrt(s_nn)=200 GeV

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Chapter 2: Random Variables

Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra

Grafisk teknik. Sasan Gooran (HT 2006)

Module 1: Functions, Limits, Continuity

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Energy and Quality oriented modeling and control of REFiners

The Arctic boundary layer

NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

cosmology near the general relativity limit

Sammanfattning hydraulik

Gradientbaserad Optimering,

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,

A QUEST FOR MISSING PULSARS

Lisa Randall, Harvard University

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Adding active and blended learning to an introductory mechanics course

Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter

PFC and EMI filtering

Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Boiler with heatpump / Värmepumpsberedare

Solutions to exam in SF1811 Optimization, June 3, 2014

Preliminär timplanering: Plasmafysik

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs

Undergraduate research:

Name: (Ifylles av student) Personnummer: (Ifylles av student)

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

Har Du frågor angående uppgifterna: kontakta någon av lärarna, vid lektionerna, via e-post eller på deras rum:

NO NEWS ON MATRIX MULTIPLICATION. Manuel Kauers Institute for Algebra JKU

Kursplan för kursen Partikelfysikfenomenologi, [LADOK-kod] engelsk titel: Particle Physics Phenomenology

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Introduktionsföreläsning i FTF Kristallstruktur, elekronstruktur+excitationer, egenskaper (optiska, magnetiska )

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

Isometries of the plane

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Module 4 Applications of differentiation

Sett i ett lite större perspektiv

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

2. For which values of the parameters α and β has the linear system. dy/dt x + y

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

Preschool Kindergarten

Om Particle Data Group och om Higgs bosonens moder : sigma mesonen

Abstract In-medium width of the

and the dimuon spectrum from NA60

Second handbook of research on mathematics teaching and learning (NCTM)

IE1206 Embedded Electronics

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

Tentamen i Matematik 2: M0030M.

Introduktion till partikelfysik. CERN Kerstin Jon-And Stockholms universitet

The Municipality of Ystad

D-RAIL AB. All Rights Reserved.

Characterization of the Spin of Dark Matter at the LHC.

Accomodations at Anfasteröd Gårdsvik, Ljungskile

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

Numerisk modellering av självkompakterande betongs flöde diskret och kontinuumbaserad ansats

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Inverse magnetic catalysis in dense matter

Tentamen i Matematik 2: M0030M.

Service och bemötande. Torbjörn Johansson, GAF Pär Magnusson, Öjestrand GC

FAFA55, 2015 Föreläsning 16, läsvecka 7 14 december 2015

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Pre-Test 1: M0030M - Linear Algebra.

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Indikatorer för utvecklingen av de Europeiska energisystemen

Consumer attitudes regarding durability and labelling


On Aspects of Anyons and Quantum Graphs

Affärsmodellernas förändring inom handeln

Radioaktivt sönderfall Atomers (grundämnens) sammansättning

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

MOLECULAR SHAPES MOLECULAR SHAPES

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

EVALUATION OF ADVANCED BIOSTATISTICS COURSE, part I

Gaussian processes for emulating chiral effective field theory describing few-nucleon systems

Support for Artist Residencies

State Examinations Commission

Libers språklåda i engelska Grab n go lessons

Webbregistrering pa kurs och termin

Mekanik FK2002m. Kraft och rörelse I

Kyltekniska Föreningen

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

Transkript:

Experimental investigations of relativistic hydrodynamics and the ideal fluid scenario at RHIC Juan F. Castillo Hernandez Relativistische Schwerionenphysik Seminar 15.01.009 Juan Castillo RHI seminar 1

Outline Introduction Relativistics Hydrodynamics and the Equation Of State (EOS) Heavy Ion Collisions (HIC) Initial Conditions: the Bjorken picture and the Landau picture Hidrodynamic evolution, freeze-out conditions and flow Hadron spectra and flow: low viscosity (agree with the ideal fluid) Radii (HB puzzle) Mixed approaches (parton cascade, hadron cascade) Connections with Cold Atoms Summary 15.01.009 Juan Castillo RHI seminar

Introduction : Relativistic Hydro A non-relativistic ideal fluid: Continuity ρ + t A relativistic ideal fluid Current conservation μ ( ρv) = 0 Navier-Stokes Energy-momentum conservation Assumptions to have it ideal: We can define local 4-velocity Small variations in space-time Local thermal equilibrium Equation Of State (EOS) t x ( ρv ) + Π = 0 = 0 μ J μ = 0 i μν i ij See "K. Heckmann - Relativistic hydrodynamics and the Bjorken model ()" 15.01.009 Juan Castillo RHI seminar 3

15.01.009 Juan Castillo RHI seminar 4 Introduction : the EOS General relation: p(x) = p(є(x),n(x)) p(x) pressure Є(x): local energy density n(x): baryon density x = (t,x) (spacetime) EOS I: "hot"ideal gas of massles partons EOS H: "cold" Hagedorn hadron resonance gas EOS Q: Connection of EOS I and EOS H via a firstorder phase transition Stefan-Boltzmann approach: 4 1 4 4 4 90 90 ) ( 90 ) ( 4 1 Δ = = = = = g B g P P B g P P c c H C H c c I C I c π π π

HIC: Bjorken vs Landau Spacetime picture(s) Landau Hydrodynamics Expanding Fireball Bjorken Hydrodynamics Longitudinal flow "pancakes" 15.01.009 Juan Castillo RHI seminar 5

HIC: Bjorken vs Landau Landau assuptions: Full thermalization in the whole volume Ideal EOS (p= Є/3) All chemical potentials (baryon, meson) zero Bjorken assuptions: space-time evolution: the same in all center-of-mass frames symmetry "leading baryon" effect (baryon number found in the pancakes) one dimensional flow Initial conditions: gaussian entropy density (ds/dη) in the whole rapidity Resulting in: Gaussian dn/dη Resulting in: dn/dη constant entropy is constant of the motion ( τ ) τ = ( τ ) 0 τ s s EOS not ideal Є =3p Є >3p 0 15.01.009 Juan Castillo RHI seminar 6

HIC: the hydro evolution Hydrodynamic range "Crossing" Expansion and cooling Hadronization Inelastic dispersions Elastic dispersions τ 0 ~1 fm/c Initial conditions: - Є 0 ~ 10 GeV/fm 3 (SAR 30-60) - 0 ~ 00-300 MeV - ρ 0 ~ -0 fm -3 (see PHENIX white paper)? QGP hadrons: - C ~ 160-190 MeV τ ch ~10 fm/c τ fo ~1 fm/c Chemical Freeze-out: - ch ~ 160 MeV - ρ ch ~ 0.1 fm -3 Kinetic Freeze-out: FO ~ 80-130 MeV 15.01.009 Juan Castillo RHI seminar 7

HIC: freeze-out conditions freeze-out interactions cease inelastic interactions chemical freeze-out particle rates elastic interactions kinetic freeze-out particle spectra n V j = (J + 1) j 3 ( ) π μ = μ Q + μ B + μ S j p + m j + μ j exp Q j if abundances determined by thermodynamical equilibrium particle ratios described by two parameters:, µ B B d 3 j p S ± 1 j What about data? first approach: Boltzmann fit m : transverse mass, m: mass 1 m dn dm m exp( FO freeze-out temperature particle-independent? What is transverse flow? + apparent temperature kinetic freeze-out temperature ) 1 m < v > transv. flow velocity 15.01.009 Juan Castillo RHI seminar 8

HIC: Chemical freeze-out chemical freeze-out particle rates SAR: central 00 GeV Au+Au ch = 163 ± 4 MeV μ B = 4 ± 4 MeV γ s = 0.99 ± 0.07 MeV Where: γ s strangeness undersaturation factor: for each particle, a factor γ s N(s+s) e.g.: [Becattini et al.: hep-ph/0310049] 15.01.009 Juan Castillo RHI seminar 9

HIC: Chemical freeze-out ch = 165 MeV ( μ B = 0) 15.01.009 Juan Castillo RHI seminar 10

HIC: kinetic freeze-out dn/dydm (particle spectra) SAR: mid-rapidity, 00 GeV Au+Au After fit: Ω and φ give higher..but thermal spectra, by themselves, do not imply thermalization or collectivity! let's have a more detailed look!! m mass = p c + mass mass 15.01.009 Juan Castillo RHI seminar 11

HIC: Kinetic freeze-out kinetic freeze-out particle spectra data from NA35 S+S 00 A GeV Wrong approach! he inverse slope, or apparent temperature increases with the particle mass 15.01.009 Juan Castillo RHI seminar 1

HIC: Blast wave model & flow A more detailed model is needed. Let's describe m distribution as combined result of thermal motion () collective transverse expansion (β) Blast wave model d N m dydm j RG mt cosh ρ pt sinh ρ = Ajm K1 I0 rdr 0 1 ρ( r) = tanh β ( r) β ( r) = β S r R G n r R G β r (r) : transverse velocity distribution β s : surface velocity ρ(r) : boost angle no flow β s = 0 ρ = 0 d N m dydm m exp( ) there is flow [Schnedermann et al.: Phys. Rev. C48 (1993) 46] NA49 158 GeV, 10% cent y (0% for W); constant velocity profile (n=0) 15.01.009 Juan Castillo RHI seminar 13

HIC: transverse and elliptic flow transverse flow: β elliptic flow: v y Au Au x coordinate space elipticity p y ε = y y + x x p x SAR, 00 GeV Au +Au, showing centrality bins Higher strangeness as a probe of early stages momentum space dn/dφ = 1 + V cos (φ - ψ) + 15.01.009 Juan Castillo RHI seminar 14

HIC: elliptic flow elliptic flow: v SAR, 00 GeV Au +Au dashed: hydro calculations, assuming: - early thermalization - ideal fluid expansion - phase transition ( c = 165 MeV) -EOS Q - Kinetic freezeout @ FO = 130 MeV 15.01.009 Juan Castillo RHI seminar 15

HIC: elliptic flow dn/dφ elliptic flow (v ) SAR, 00 GeV Au +Au, dashed: analytical fit dotted: hydro calculations Low p : ideal fluid with low viscosity (null) High p : hydro doesn't work? 15.01.009 Juan Castillo RHI seminar 16

HIC: elliptic flow dn/dφ elliptic flow (v ) CGC Glauber CGC: reats the nucleus as a saturated gluon field From Hallman, QM'08 15.01.009 Juan Castillo RHI seminar 17

HIC: elliptic flow dn/dφ elliptic flow (v ) mid-rapidity, mid-central A ~ 00 AGS, SPS, RHIC Hydro limits: assuming no phase transition! 15.01.009 Juan Castillo RHI seminar 18

RHIC data: Radii (HB puzzle) Hydro should be coherent with -particle correlation measurements (HB) SAR measurements from pion HB correlations, central Au+Au (using Bertsch- Partt parameters R long,r side, R out )... C [ ] q ( q K ) = 1+ exp R ( K ) q R ( K ) q R ( K ), out out side side long long correlation function, with q = p 1 +p, K= (p 1 +p )/ 15.01.009 Juan Castillo RHI seminar 19

RHIC data: Radii (HB puzzle) Possible solutions to HB puzzle: 1) the collective flow does not last in reality as long as considered in hydro ) hydrodynamics is NO responsible of the observed v 3) freeze-out in hydro ton realistic (hyperspace moving inwards) 4) short-lived resonances 5) Gauss initial distribution instead of Glauber 6) Measure the viscosity, use an hybrid model... Can we measure the viscosity of this "ideal" fluid? Not up to now! Solution 1) heory shear viscosity of a classical massless gas with constant σ Solution ) Comparison with other systems cold quantum gases? η = 1.64 / σ 0 15.01.009 Juan Castillo RHI seminar 0

HIC: hybrid approaches Parton Cascade Model (PCM): to explore the mechanisms for the formation of QGP and to determine the initial condition of the equilibrated state. AKA string fragmentation. Related BAMPS perturbative QCD approach Hadronic cascade: color strings are formed and they decay into hadrons according to Lund string model PYHIA. URQMD approach Hadrons hydro range q q partons Space-ime Parton Cascade in High-Energy Collisions :(K. Geiger, B. Müller: 199) initial conditions String final conditions 15.01.009 Juan Castillo RHI seminar 1

Connection with cold atoms Similar Elliptic Flow Strongly Interacting Degenerate 6 Li gas = 10-7 K Duke, Science (00) O Hara et al. Is a Strongly-interacting atomic Fermi gas a fluid with the minimum shear viscosity? Can we directly compare them with HIC data? 15.01.009 Juan Castillo RHI seminar

Connection with cold atoms Viscosity/entropy density (units of h / k B ) He near λ point QGP simulations String theory limit 15.01.009 Juan Castillo RHI seminar 3

Summary Hydro model is working relatively fine for low p HB puzzle (discrepancy with hydro) needs to be solved We need still to prove without ANY doubt the EOS (is there a phase transition?) Promising common points with cold atoms 15.01.009 Juan Castillo RHI seminar 4

Literature RHIC white papers (SAR, PHENIX, PHOBOS, BRAHMS) Results from the first 3 years at RHIC (April 18, 005) J.Letessier-J.Rafelski. Hadrons and Quark-Gluon Plasma. Cambridge monographs on particle physics, nuclear physics and cosmology. Cambridge University Press 005. High relativistic nucleus-nucleus collision: he central rapidity region. J.D.Bjorken. Phys.Rev.D (1 January 1983) From AGS-SPS and onwards to the LHC. L.McLerran. doi: 10.1088/0954-3899/35/10/104001 Landau Hydrodynamics and RHIC Phenomena Peter Steinberg. arxiv:nucl-ex/04050v1 (4 May 004) he formation of QGP in ultra-relativistic nucleus-nucleus collisions. K. Heckmann (previous RHI seminar, 10.1.008) J/Ψ Suppression and Enhancement. he Statistical Hadronization Model. Jun Nian (previous RHIC seminar, 4.1.008) QCD Phasendiagramm Katja Grossmann, Katharina Lohnert. QGP meets Cold Atoms. EMMI workshop. September 008 QM008 talks: L. McLerran : SPS to RHIC and Onwards to LHC. P. Seyboth : Recent Results from the Study of the Nucleus-Nucleus Collisions at the CERN SPS 15.01.009 Juan Castillo RHI seminar 5

Shear viscosity/entropy ratio in Cold Atoms Addendum to: "Experimental investigations of relativistic hydrodynamics and the ideal fluid scenario at RHIC" Juan F. Castillo Hernandez alk based on the one given by J. homas @ the EMMI workshop Quark-Gluon Plasma meets Cold Atoms "Measuring Entropy and Quantum Viscosity in a Strongly Interacting Atomic Fermi Gas". 15.01.009 Juan Castillo RHI seminar 6

Connection with cold atoms Viscosity/entropy density (units of h / k B ) He near λ point String theory limit QGP simulations how to measure these points? We need η, s, E, E F 15.01.009 Juan Castillo RHI seminar 7

Short outline Experimental settings hermodynamics of strongly-interacting Fermi gases: Model-independent measurements of entropy and energy Calibrating the endpoint temperature for adiabatic sweeps Quantum viscosity in strongly-interacting Fermi gases: Expansion dynamics of rotating Fermi gases Comparison to the minimum viscosity conjecture 15.01.009 Juan Castillo RHI seminar 8

Optically rapped Fermi Gas Our atom: Fermionic Μagnet coils 1 1 =,1 =, 0 electron spin, nuclear spin 15.01.009 Juan Castillo RHI seminar 9

Universal Regime Ideal Fermi Gas = 0 Parameters: R 0 = range of the interatomic potential L = Interparticle spacing a = scattering length Strongly Interacting Fermi Gas B = 58 G Scattering lenght Fermi Energy E ideal a = 0 h ml Universal Regime when: Interparticle spacing L is the only length scale. he gas is: diluted R 0 << L strongly interacting a >> L E gnd = (1 + β ) B = 840G a >> L E ideal Baker 1999, Heiselberg, 001 heory: Carlson (003) β = - 0.560 Strinati (004) β = - 0.545 ground state 15.01.009 Juan Castillo RHI seminar 30

Quantum Viscosity in the Universal Regime d v F A =η d v η Viscosity Viscosity natural unit: p η = σ h / L L η hn Entropy density natural unit: s nk B Ratio natural unit: η / s h / k B 15.01.009 Juan Castillo RHI seminar 31

Energy E Measurement Universal hermodynamics Ho, PRL (004) Harmonic Potential: ε = ( n + n + n hν x y z) Virial heorem in HO potential E = U Energy per particle E = 3 mω z z Measure energy E from the cloud size 15.01.009 Juan Castillo RHI seminar 3

Entropy S Measurement by Adiabatic Sweep of Magnetic Field B Start 840 G B Weakly interacting: Entropy at 100 G known from cloud size Ideal Fermi gas End 100 G classical thermodynamics (adiabatic process) ΔS = 0 = ΔQ = ΔU + ΔW 15.01.009 Juan Castillo RHI seminar 33

Expansion Dynamics: Comparison to theory E = 0.56 E F, Ω 0 = 178 rad/s y I I rig0 x Moment of inertia I = L/Ω I I = δ x rig x + y y deformation parameter δ 15.01.009 Juan Castillo RHI seminar 34

Comparison to the minimum viscosity conjecture Red normal fluid Blue superfluid Cold Atoms: Normal fluid rotates like a Superfluid! very low η!! η =αh n Superfluid: Irrotational Flow v = 0 15.01.009 Juan Castillo RHI seminar 35

Comparison to the minimum viscosity conjecture y α α = =1 x θ is the angle of the principal axes with respect to the laboratory axes θ 15.01.009 Juan Castillo RHI seminar 36

Literature Measuring Entropy and Quantum Viscosity in a Strongly Interacting Atomic Fermi Gas. J. homas EMMI Quark-Gluon Plasma meets Cold Atoms Introductory workshop Virial heorem and Universality in a Unitary Fermi Gas J. E. homas, J. Kinast, and A. urlapov. Phys. Rev. Lett. 95, 1040 (005) Virial theorems for trapped cold atoms. Félix Werner. Phys. Rev. A 78, 05601 (008) Ratio of shear viscosity to entropy for trapped fermions in the unitary limit.. Schäfer. Phys. Rev. A 76, 063618 (007) heory of ultracold atomic Fermi Gases. Stefano Giorgini, Lev P. Pitaevskii and Sandro Stringari arxiv:0706.3360 (June 007) 15.01.009 Juan Castillo RHI seminar 37