cosmology near the general relativity limit
|
|
- Ulla Danielsson
- för 6 år sedan
- Visningar:
Transkript
1 Thirteenth Marcel Grossmann Meeting - MG3 Stockholm, 6 July 202 (I) Scalar-tensor and (II) Multiscalar-tensor cosmology near the general relativity limit Laur Järv University of Tartu, Estonia (I) LJ, Piret Kuusk, Margus Saal Phys Rev D8: (200), Phys Lett B694: -5 (200), Phys Rev D (202) (II) LJ, Piret Kuusk, Erik Randla forthcoming
2 (I) Scalar-tensor gravity (STG) One scalar field Ψ non-minimally coupled to gravity, Brans-Dicke like parametrization, Jordan frame S = 2κ 2 d 4 x [ g ΨR(g µν ) ω(ψ) ] Ψ ρ Ψ ρ Ψ 2κ 2 V (Ψ) +S m (g µν, χ mat ) Family of theories, each pair ω(ψ) and V (Ψ) specifies a theory Variable gravitational constant set by the dynamical scalar field, 8πG = κ2 Ψ, assume 0 < Ψ < Assume positive energy density: 2ω(Ψ) + 3 0, V (Ψ) 0 Paradigmatic example of a modified gravity theory Eg comes from higher dimensions, braneworlds, effective field theory approach to dark energy; several proposed modifications to Einstein s general relativity can be cast in the form of STG, or contain STG as a subsector Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 2/6
3 The limit of general relativity Observations point towards a specific corner of the solutions space: CMB: Grec Gnow G now 005, hence Ψ CMB: 2ω(Ψ rec) Solar System PPN: Solar System PPN: 2ω(Ψ now)+3 The limit of general relativity : Assume ( ) d 0, dψ 2ω(Ψ) + 3 Ψ dω dψ (2ω(Ψ now)+3) 2 (2ω(Ψ now)+4) 0 4 2ω(Ψ ) + 3 = 0, Ψ = 0 2ω(Ψ) + 3 is differentiable at Ψ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 3/6
4 Outline We study flat (k = 0) FLRW STG cosmology with arbitrary ω(ψ) and V (Ψ) in the potential dominated and dust matter dominated regimes Derive the approximate equations that govern the dynamics near the limit of general relativity (Nonlinear, nonautonomous system!) Find the general analytic form of solutions for these equations, ie Ġ Ψ(t), H(t), can also compute w eff (t), G, etc (Complete classification!) Argue that the full and approximate phase spaces are in qualitative agreement (Can trust the results!) Determine the conditions on a STG for its solutions to dynamically converge to the GR limit (Select viable theories!) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 4/6
5 Scalar-tensor cosmology Flat FLRW, barotropic matter fluid p = wρ H 2 = H Ψ Ψ + Ψ 2 6 κ2 ω(ψ) + Ψ2 3 ρ Ψ + κ2 V (Ψ) 3 Ψ, 2Ḣ + 3H2 = 2H Ψ Ψ Ψ 2 Ψ ω(ψ) 2 Ψ2 Ψ κ2 κ2 wρ + Ψ Ψ V (Ψ), Ψ = 3H Ψ 2ω(Ψ) + 3 2κ 2 + 2ω(Ψ) + 3 dω(ψ) dψ Ψ 2 + [ 2V (Ψ) Ψ κ 2 2ω(Ψ) + 3 ], dv (Ψ) dψ ( 3w) ρ ρ = 3H (w + ) ρ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 5/6
6 Remark: STG ja GR cosmology In the general realtivity limit get the usual GR Friedmann equations with a cosmological constant (V (Ψ) = Λ) H 2 = H Ψ Ψ + Ψ 2 6 κ2 ω(ψ) + Ψ2 3 ρ Ψ + κ2 V (Ψ) 3 Ψ, 2Ḣ + 3H2 = 2H Ψ Ψ Ψ 2 Ψ ω(ψ) 2 Ψ2 Ψ κ2 κ2 wρ + Ψ Ψ V (Ψ), Ψ = 3H Ψ 2ω(Ψ) + 3 2κ 2 + 2ω(Ψ) + 3 dω(ψ) dψ Ψ 2 + [ 2V (Ψ) Ψ κ 2 2ω(Ψ) + 3 ], dv (Ψ) dψ ( 3w) ρ ρ = 3H (w + ) ρ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 6/6
7 Approximation near the GR limit (ρ = 0 case) Consider small deviations (x ẋ) Ψ(t) = Ψ + x(t), Ψ(t) = ẋ(t) Expand in series, keeping the leading terms, obtain an approximate equation ẍ = C ẋ + C 2 x + ẋ 2 2x, () where C ± 2ω(Ψ ) + 3 0, A d ( dψ 2ω(Ψ) + 3 ( 3κ 2 V (Ψ ), C 2 2κ 2 A 2V (Ψ) Ψ encode the behavior of the functions ω and V near this point ) Ψ, ) dv (Ψ) dψ Ψ Ψ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 7/6
8 Solutions to the approximate equation (ρ = 0 case) The solutions of () in cosmological time fall into three classes, depending on C C 2 + 2C 2: exponential, linear-exponential, or oscillating, ] 2 e [M Ct e 2 t C M 2 e 2 t C, if C > 0, Ψ(t) = Ψ ± e Ct [M t M 2 ] 2, if C = 0, 2 e [N Ct sin( 2 t C ) N 2 cos( 2 C )] t, if C < 0 Here M, M 2, N, N 2 are constants of integration (determined by initial conditions) Also H(t) = C 3 ± Eg oscillating solutions oscillate across the phantom divide line (w eff = ) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 8/6
9 Classification of phase portraits (Ψ, Ψ) C > 0 C > 0 C = 0 C < 0
10 Classification of phase portraits (Ψ, Ψ )
11 Approximation near the GR limit (V = 0 case) Again consider small deviations x(t), h(t), Ψ(t) = Ψ + x(t), H(t) = H (t) + h(t) where H (t) = 2 3(t t s ) is the Hubble parameter corresponding to Ψ Expand in series, keeping the leading terms, obtain approximate equations ẍ = ẋ 2 2x 3H ẋ + 3A Ψ H x 2, (2) ḣ + 3H h = ( + ) ẋ 2 4Ψ 2A Ψ x + H ẋ 3 2Ψ 2 A H x 2 (3) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit /6
12 Solutions to the approximate equation (V = 0 case) The solutions fall again into three classes, depending on D A Ψ : polynomial, logarithmic, or oscillating, ( D ) t M t 2 M 2 t D 2 2, if D > 0, Ψ(t) = Ψ ± t (M ln t M 2 ) 2, if D = 0, [ ( ) ( 2 D D t N sin 2 ln t N 2 cos 2 ln t)], if D < 0, where M, M 2, N, N 2 are constants of integration (determined by initial conditions) Also H(t) = 2 [ ± t ] 3t ( ) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 2/6
13 Conditions for GR to be an attractor Observational constraints are naturally satisfied, if the GR limit is an attractor, ie solutions dynamically converge towards it GR limit exists, if Ψ, such that 2ω(Ψ ) + 3 = 0 Attractor in the dust matter dominated era ( d dψ 2ω(Ψ) + 3 ) Ψ Ψ < 0 Attractor in the potential dominated era [ ] Ψ dv (Ψ) V (Ψ ) > 0, < 2V (Ψ) dψ Ψ Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 3/6
14 (II) Multiscalar-tensor gravity (MSTG) N non-minimally coupled scalar fields Φ a, Jordan frame S = 2κ 2 d 4 x g ( FR Z ab g µν µ Φ a ν Φ b 2κ 2 U ) +S(g µν, χ matter ), where F = F(Φ, Φ 2,, Φ N ), Z ab = Z ab (Φ, Φ 2,, Φ N ), U = U(Φ, Φ 2,, Φ N ) are arbitrary functions Can use N redefinitions of the scalar fields to cast the theory in the form where only one of the scalar fields, Ψ, is non-minimally coupled, while the others, φ i, are minimally coupled to gravity, S = 2κ 2 d 4 x g ( ΨR Z ij ρ φ i ρ φ j ω ) Ψ ρψ ρ Ψ 2κ 2 U +S m (g µν, χ m ), however F = F (φ, φ 2,, φ N, Ψ), Z ab = Z ab (φ, φ 2,, φ N, Ψ), U = U(φ, φ 2,, φ N, Ψ)) Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 4/6
15 Two fields case (and ρ = 0) Now expand Ψ(t) = Ψ + x(t), φ(t) = φ + x(t) around 2ω(Ψ, φ ) + 3 = 0, Z(Ψ, φ ) = 0 Derive approximate equations hard to solve generally For instance, if φ Ψ(t) = Ψ ± Ω(t) = ( 2ω + 3 ) Ψ,φ = φ ( e mt aω(t) dt + k ) 2 k2 J n+(ξ) e C t J n(ξ) 4e (m+c)t aω(t) dt, ξ = 2Dk3 2C e C t, ( ) = Z Ψ,φ φ U Ψ,φ = 0 t = Ψ ±D e Ct ( M e Ct M 2 e Ct) 2 m = C 2 + 2C2, n = m 2C, a = 2D k 3 C, C 2, C, D, D constants that specify MSTG, k, k 2, k 3, M, M2 integration constants, J n Bessel function Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 5/6
16 Summary (I) We studied flat FLRW STG cosmology with arbitrary ω(ψ) and V (Ψ) in the potential dominated and dust matter dominated regimes Determined the conditions on a STG for its solutions to dynamically converge to the GR limit Can use to select viable theories Found the general analytic form of solutions near the GR limit, ie Ġ Ψ(t), H(t), can also compute w eff (t), G, etc Complete classification Can use to compare with actual expansion history (cosmography, statefinder diagnostic, etc), Can use as the background for the growth of cosmological perturbations (parameterized post-friedmannian formalism, etc) (II) We also studied MSTG The same methods can be applied here, analytic results are harder to obtain, but still possible in some cases Laur Järv Scalar-tensor and Multiscalar-tensor cosmology near the general relativity limit 6/6
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Solutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Tentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
The Arctic boundary layer
The Arctic boundary layer Interactions with the surface, and clouds, as learned from observations (and some modeling) Michael Tjernström Department of Meteorology & the Bert Bolin Center for Climate Research,
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
Algoritmer och Komplexitet ht 08. Övning 6. NP-problem
Algoritmer och Komplexitet ht 08. Övning 6 NP-problem Frekvensallokering Inom mobiltelefonin behöver man lösa frekvensallokeringsproblemet som lyder på följande sätt. Det finns ett antal sändare utplacerade.
2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Gradientbaserad Optimering,
Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos
NP-fullständighetsbevis
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 9 NP-fullständighetsbevis På denna övning är det också inlämning av skriftliga lösningar av teoriuppgifterna till labb 4 och
Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling
Vågkraft Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Avd. För 751 05 Uppsala, Sweden Introduction PhD-student Uppsala University Avd. För Field of Research: Electromagnetic
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
Webbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en
1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA11 Single Variable Calculus, TEN Date:
Module 4 Applications of differentiation
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 4 Applications of differentiation Chapter 4 of Calculus by Adams and Essex. Three lectures, two tutorials, one seminar. Important concepts.
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
IE1206 Embedded Electronics
E1206 Embedded Electronics Le1 Le3 Le4 Le2 Ex1 Ex2 PC-block Documentation, Seriecom, Pulse sensor,, R, P, series and parallel KC1 LAB1 Pulse sensors, Menu program Start of program task Kirchhoffs laws
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
NO NEWS ON MATRIX MULTIPLICATION. Manuel Kauers Institute for Algebra JKU
NO NEWS ON MATRIX MULTIPLICATION Manuel Kauers Institute for Algebra JKU ( ) ( ) ( ) a1,1 a 1,2 b1,1 b 1,2 c1,1 c = 1,2 a 2,1 a 2,2 b 2,1 b 2,2 c 2,1 c 2,2 c 1,1 = a 1,1 b 1,1 + a 1,2 b 2,1 c 1,2 = a 1,1
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
MOLECULAR SHAPES MOLECULAR SHAPES
Molecules with 2 electron pair groups around Linear molecules have polar bonds, but are the central atom form a linear shape. usually non-polar. is 180 linear 2 electron pairs around the central atom 1
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
Grafisk teknik. Sasan Gooran (HT 2006)
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN2 Date:
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
English Version. + 1 n 2. n 1
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN 205-0-23 (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.
Linköpings Universitet, Hållfasthetslära, IEI/IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-10-16 kl 14-18 L Ö S N I N G A R ---- SOLUTIONS 1. Ange sambanden mellan vinkelfrekvens ω,
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =
TAMS11: Probability and Statistics Provkod: TENB 11 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel
1. Find an equation for the line λ which is orthogonal to the plane
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-04-23
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix
Umeå University Exam in mathematics Department of Mathematics Linear algebra and Mathematical Statistics 2012-02-24 Gerold Jäger 9:00-15:00 T ( ) 1 1 2 5 4 1. Compute the following matrix 7 8 (2 p) 2 3
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version
Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN Date:
FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP
FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP En studie av svensk utbildningsvetenskaplig forskning vid tre lärosäten VETENSKAPSRÅDETS RAPPORTSERIE 10:2010 Forskningskommunikation
Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version
Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling
Calculate check digits according to the modulus-11 method
2016-12-01 Beräkning av kontrollsiffra 11-modulen Calculate check digits according to the modulus-11 method Postadress: 105 19 Stockholm Besöksadress: Palmfeltsvägen 5 www.bankgirot.se Bankgironr: 160-9908
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,
Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt, robert.feldt@bth.se Vad är på gång i forskningen? (ICST 2015 & 2016) Security testing Mutation testing GUI testing Model-based
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
English Version. Number of sold cakes Number of days
Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325
MATEMATIK Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 08 kl 0830 30 Tentamen Telefonvakt: Jonatan Kallus Telefon: ankn 535 MMG00 Envariabelsanalys Tentan rättas och bedöms anonymt
1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-02-15
Övning 3 ETS052 Datorkommuniktion IP, TCP och
Övning 3 ETS052 Datorkommuniktion - 2015 IP, TCP och 802.11 September 22, 2015 Uppgift 1. Bestäm klassen på följande IPv4-adresser: 1.1 1.2 1.3 1.4 1.5 208.34.54.12 238.34.2.1 114.34.2.8 129.14.6.8 241.34.2.8
. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:
IE1206 Embedded Electronics
E106 Embedded Electronics Le1 Le3 Le4 Le Ex1 Ex P-block Documentation, Seriecom, Pulse sensor,, R, P, series and parallel K1 LAB1 Pulse sensors, Menu program Start of program task Kirchhoffs laws Node
Scalable Dynamic Analysis of Binary Code
Linköping Studies in Science and Technology Dissertations, No. 1993 Ulf Kargén FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertations, No. 1993, 2019 Department of
2 4xy. and classify each of them with respect to the corresponding linearized system. x 2 dy + 2xy = y2
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA316 Differential Equations, foundation
EBBA2 European Breeding Bird Atlas
Methodology Sergi Herrando, Verena Keller, Petr Voříšek et al. objectives 1. To document breeding evidence for all bird species at a resolution of 50x50 km 2. To estimate abundance for all bird species
PFC and EMI filtering
PFC and EMI filtering Alex Snijder Field Application Engineer Wurth Elektronik Nederland B.V. November 2017 EMC Standards Power Factor Correction Conducted emissions Radiated emissions 2 Overview of standard
Exam MVE265 Mathematical Statistics,
Exam MVE65 Mathematical Statistics, 016-05-31 The exam consists of eight exercises with a total of 50 points. You need as least 0 points to get a 3, at least 30 points for a 4 and at least 40 points for
The reception Unit Adjunkten - for newly arrived pupils
The reception Unit Adjunkten - for newly arrived pupils Shortly on our work Number of received pupils: - 300 for school year 2014-2015 - 600 for school year 2015-2016 - 220 pupils aug-dec 2016 - ca. 45
Theory 1. Summer Term 2010
Theory 1 Summer Term 2010 Robert Elsässer 1 Introduction Summer Term 2010 Robert Elsässer Prerequisite of Theory I Programming language, such as C++ Basic knowledge on data structures and algorithms, mathematics
och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4
Kursen bedöms med betyg, 4, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SVENSK STANDARD SS
Provläsningsexemplar / Preview SVENSK STANDARD Handläggande organ Fastställd Utgåva Sida Allmänna Standardiseringsgruppen, STG 1998-01-30 1 1 (13) SIS FASTSTÄLLER OCH UTGER SVENSK STANDARD SAMT SÄLJER
Room E3607 Protein bioinformatics Protein Bioinformatics. Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski
Room E3607 Protein bioinformatics 260.841 Protein Bioinformatics Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski Outline of today s lab Topic Suggested time 1 Find a protein
MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)
Chalmers tekniska högskola Datum: 7--9 kl. 8.3.3 Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade
6. a) Visa att följande vektorer är egenvektorer till matrisen A = 0 2 0 0 0 0 1 1, och ange motsvarande
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA5 Vektoralgebra TEN2 Datum: juni 25 Skrivtid: 3
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan
Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0
Schenker Privpak AB Telefon 033-178300 VAT Nr. SE556124398001 Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr 033-257475 Säte: Borås
Schenker Privpak AB Interface documentation for Parcel Search 2011-10-18 Version: 1 Doc. no.: I04306 Sida 2 av 5 Revision history Datum Version Sign. Kommentar 2011-10-18 1.0.0 PD First public version.
EXAM IN MODELING AND SIMULATION (TSRT62)
EXAM IN MODELING AND SIMULATION (TSRT62) SAL: ISY:s datorsalar TID: Tuesday 25th October 2016, kl. 14.00 18.00 KURS: TSRT62 Modeling and Simulation PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL
Undergraduate research:
Undergraduate research: Laboratory experiments with many variables Arne Rosén 1, Magnus Karlsteen 2, Jonathan Weidow 2, Andreas Isacsson 2 and Ingvar Albinsson 1 1 Department of Physics, University of
EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09
EXTENAL ASSESSENT SAPLE TASKS SWEDISH BEAKTHOUGH LSPSWEB/0Y09 Asset Languages External Assessment Sample Tasks Breakthrough Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Tentamen MMG610 Diskret Matematik, GU
Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,
Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2
Sida 1(6) Kursplan Matematik III 30 högskolepoäng, Grundnivå 2 Mathematics III 30 Credits*, First Cycle Level 2 Lärandemål Det övergripande målet för kursen är att den studerande ska vidga och fördjupa
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 Fastställd/Approved: 2015-07-23 Publicerad/Published: 2016-05-24 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.70 Geografisk information Modell
is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA19 Linear Algebra Date: 015-08-1 Write
NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans
NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans Nuclear Magnetic Resonance Viktiga kärnor: 1 and 13 NMR används för strukturanalys av organiska föreningar Väteatomer med olika omgivning tar upp
http://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/
Name: Year 9 w. 4-7 The leading comic book publisher, Marvel Comics, is starting a new comic, which it hopes will become as popular as its classics Spiderman, Superman and The Incredible Hulk. Your job
, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA9 Linear Algebra Date: 05-06-0 Write time:
STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)
STORSEMINARIET 1 uppgift SS1.1 A 320 g block oscillates with an amplitude of 15 cm at the end of a spring, k =6Nm -1.Attimet = 0, the displacement x = 7.5 cm and the velocity is positive, v > 0. Write
SkillGuide. Bruksanvisning. Svenska
SkillGuide Bruksanvisning Svenska SkillGuide SkillGuide är en apparat utformad för att ge summativ återkoppling i realtid om hjärt- och lungräddning. www.laerdal.com Medföljande delar SkillGuide och bruksanvisning.
Eternal Employment Financial Feasibility Study
Eternal Employment Financial Feasibility Study 2017-08-14 Assumptions Available amount: 6 MSEK Time until first payment: 7 years Current wage: 21 600 SEK/month (corresponding to labour costs of 350 500