ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY

Relevanta dokument
ALGEBRA I SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Module 1: Functions, Limits, Continuity

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Pre-Test 1: M0030M - Linear Algebra.

Tentamen i Matematik 2: M0030M.

Preschool Kindergarten

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

1. Find an equation for the line λ which is orthogonal to the plane

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

12.6 Heat equation, Wave equation

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Styrteknik: Binära tal, talsystem och koder D3:1

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

Support Manual HoistLocatel Electronic Locks

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

Module 6: Integrals and applications

Chapter 2: Random Variables

Isometries of the plane

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Second handbook of research on mathematics teaching and learning (NCTM)

Module 4 Applications of differentiation

Accomodations at Anfasteröd Gårdsvik, Ljungskile

1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1

(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?

Tentamen i Matematik 2: M0030M.

Isolda Purchase - EDI

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

Sammanfattning hydraulik

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

Solutions to exam in SF1811 Optimization, June 3, 2014

INSTALLATION INSTRUCTIONS

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Tentamen i matematik. Högskolan i Skövde

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.


A study of the performance

Beijer Electronics AB 2000, MA00336A,

Calculate check digits according to the modulus-11 method

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

- den bredaste guiden om Mallorca på svenska! -

2.1 Installation of driver using Internet Installation of driver from disk... 3

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Documentation SN 3102

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

1. Find for each real value of a, the dimension of and a basis for the subspace

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3. Engelsk version

sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.

Webbreg öppen: 26/ /

Adding active and blended learning to an introductory mechanics course

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

IE1206 Embedded Electronics

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

Webbregistrering pa kurs och termin

For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D


1. Antag att g är en inverterbar funktion definierad på intervallet [0, 4] och att f(x) = g(2x).

Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs kl

Rep MEK föreläsning 2

Tentamen i Matematik 3: M0031M.

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.

Regler Övriga regler:

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

Manhour analys EASA STI #17214

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

2. For which values of the parameters α and β has the linear system. dy/dt x + y

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

the standard scalar product, i.e. L E 4. Find the orthogonal projection of the vector w = (2, 1, 2, 1) on the orthogonal complement L of L (where

JUNE 2013 ABSORPTION REPORT

Problem. 2. Finn alla heltalslösningar till ekvationen xy = 2x y.

2. Find, for each real value of β, the dimension of and a basis for the subspace

Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation

WindPRO version feb SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

Transkript:

ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Sllabus Objective NV State Standard 1 Graph a polnomial function. 1.1.7.1 Analze graphs of polnomial functions to determine.1.4.8 characteristics 4.1.9 3 Graph quadratic functions. Identif the domain and range of linear, quadratic, or polnomial functions. Develop a mathematical model to solve real world problems. Organize data using matrices. Simplif matri epressions. Multiple Choice # Objective Sllabus Objective NV State Standard Practice Ke A/B 1 Differentiate among subsets of real number sstems. 1.1 1.1.8 C / Evaluate algebraic epressions. 1..1.3 A / 3 Simplif algebraic epressions. 1..1.3 D / 4 Solve linear equations. 1.4.1. C / 5 Solve for a given variable in a given equation with more than one variable. 1.5.1.4 D / Solve for a given variable in a given equation with more than one variable. 1.5.1.4 B / 7 Solve an absolute value equation or inequalit. 1..1. C / 8 Solve a compound inequalit. 1..1. A / 9 Applications of linear models. 1.7.1. B / 10 Differentiate between a relation and a function..1.1.4 C / 11 Identif the domain and range of functions...1.4 A / 1 Write the equation of a line..5 4.1.5 C / 13 Write the equation of a line..5 4.1.5 D / 14 Calculate the slope of a line.. 4.1.5 D / 15 Recognize slope as a rate of change of one variable in terms of another..7 4.1.5 C / 1 Use slopes to classif lines as parallel, perpendicular, or neither..8 4.1.5 A / 17 Graph linear and absolute value equations and inequalities..10 4.1.5 D / 18 Solve application problems using linear models and appling direct variation.1.1. A / 19 Define, graph, or evaluate piecewise functions..13 4.1.5 B / 0 Solve sstem of equations. 3.1.1.5 4.1.5 D / 1 Solve sstem of equations. 3.1.1.5 4.1.5 C / Solve sstem of equations. 3.1.1.5 4.1.5 B / 3 Graph solution set of a sstem of inequalities. 3. 4.1.5 A / 4 Solve application problems involving sstems of equations or inequalities. 3.3.1. B / 5 Solve application problems using linear programming. 3.4 5.1.1 C / Organize data using matrices. 4.1 1.1.7 B /. 5.1 1.7 4.1 4..1.3.1.4 1.1.7.1. Final Ke 008 009 Page 1 of 3 Revised: 8/18/08 Clark Count School District

ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Multiple Choice # Objective Sllabus Objective NV State Standard Practice Ke A / B 7 Simplif matri epressions. 4. 1.1.7 A /.1. 8 Simplif matri epressions. 4..1.5 B / 4.1.5 9 Find the determinant of a matri. 4.3.1. C /.1. 30 Solve sstems using matrices. 4.5.1.5 D / 4.1.5 31 Graph quadratic functions. 5.1.1.3.1.4 D / 1.1. 3 Solve quadratic equations. 5. 1.1.7 C /.1.3 1.1. 33 Solve quadratic equations. 5. 1.1.7 D /.1.3 1.1. 34 Solve quadratic equations. 5. 1.1.7 C /.1.3 1.1. 35 Solve quadratic equations. 5. 1.1.7 D /.1.3 1.1. 3 Analze the nature of the roots of a quadratic equation. 5.3 1.1.7 B /.1.4 37 Solve quadratic equation with comple solutions. 5.4 1.1.7 A / 38 Perform operations with comple numbers. 5.5.1.3.1.4 B / 1.1. 39 Graph and solve quadratic inequalities. 5. 1.1.7.1.3 D / 4.1.5 40 Develop models involving quadratic equations to solve realworld problems. 5.9 1.1.7 B / 41 Graph a polnomial function..1.1.4 D / 4 Graph a polnomial function..1.1.4 A / 43 Simplif polnomial epressions.. 1.1.7.1.4 B / 1.1.7 44 Solve polnomial equations b factoring and graphing..3.1.3 C /.1.4 1.1.7 45 Solve polnomial equations b factoring and graphing..3.1.3 C /.1.4 4 Find rational zeros of a polnomial..4.1.3.1.4 A / Final Ke 008 009 Page of 3 Revised: 8/18/08 Clark Count School District

ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Multiple Choice # Objective Sllabus Objective 47 Use the Fundamental Theorem of Algebra to determine the number of zeros. NV State Standard Practice Ke A / B.5 1.1.7 D / 48 Divide polnomials.. 1.1.7 A / 49 Analze graphs of polnomial functions to determine 1.1.7.8 characteristics. 4.1.9 B / 50 Analze graphs of polnomial functions to determine 1.1.7.8 characteristics. 4.1.9 B / Final Ke 008 009 Page 3 of 3 Revised: 8/18/08 Clark Count School District

1. To which sets of numbers does 5 belong? I. integers II. natural numbers III. rational numbers IV. real numbers V. whole numbers II and IV onl III and IV onl I, III, and IV onl III, IV, and V onl. Evaluate b c =. 3 17 17 5 4ac for a = 3, b = 1, and 3. Which is a simplified form of the epression 1( 1) ( 18)? 3 1 4 8 4 + 8 4. What is the value of n if 9 n + = 5? 7 3 14 7 n = 4 39 n = 98 13 n = 54 43 n = 54 5. Below is the formula for the surface area of a right circular clinder. A = π rh + π r Which is a correct formula for the height, h, epressed in terms of radius, r, and surface area, A? π r A h = π r A h = π r π r h= A π r π r A h= r π r. Which represents in terms of for the equation 3 + = 5 +? = + = = 8 = 8+ 008 009 1 GO ON

7. Rewrite the absolute value inequalit as a compound inequalit: + > 7. 13 < < 1 > 13 or < 1 < 13 or > 1 no solution 8. Which epresses all of the solutions for the compound inequalit below? ( z + 4) and 15 9 + 3z 3 z 8 z = 3 and z = 8 z 3 and z 8 no solution 9. In 000 the average price of a home in West Count was $95,000. B 007 the average price of a home was $13,000. Which of the following is a linear model for the price of a home, P, in West Count in terms of the ear, t? Let t = 0 correspond to 000. P= 13,000 4,000t P= 95,000 + 4,000t P= 13,000 8,000t P= 8,000 + 95,000t 10. Which relation is a function? = + 4 + = 3 5 1 {( 1, ), (3, ), ( 5, )} {(, 5), (, ), (, 1)} 11. What is the range of the following relation? {(,0),(1, 3),(5, )}? { 3,, 0} {, 1, 5} {0,, 3} { 5, 1, } 1. Write the standard form of the equation of the line that passes through the point (,) and is parallel to the line 5+ = 1. 5 = 8 5 = 1 5+ = 5+ = 1 008 009 GO ON

13. Which equation describes the pattern in the table? 1 3 4 5 7 11 15 19 3 = 3 4 = 3+ 4 = 4 3 = 4 + 3 14. Use the graph below. 15. William is hiking in the hills. He began the hike at 10:00 a.m. at an elevation of,000 ft. He reached a peak of 4,000 ft. at :00 p.m. What is the average rate of change in Bill s elevation? 00 ft. per hour 50 ft. per hour 500 ft. per hour 1000 ft. per hour 1. Write an equation in standard form that is perpendicular to = 5 and goes through ( 10,3). + 5 = 5 5 = 5 5 = 5 + 5 = 4 What is the slope of the line? 5 1 1 5 5 1 1 5 008 009 3 GO ON

17. Graph the linear equation 9 7 = 3. 18. Joe s pa (P) varies directl with the square of the number of widgets (w) he produces. When he produces widgets, he is paid $1. How man widgets would he have to produce to make $144? 8 1 3 19. Evaluate f ( 3) for the piecewise function f( ) = f ( 3) = 18 f ( 3) = 3 f ( 3) = 0 f ( 3) = 18, 0. 3, > 0 0. Solve the following linear sstem. (0, 4) (, 8) 5 = 8 5 = + 3 infinitel man solutions no solution 008 009 4 GO ON

1. Find the -coordinate of the solution to the linear sstem. 3 4 = 1 + = 5 5 3 no solution 3. Graph the sstem of inequalities. + 1 + 3 10 10 10. What is the -coordinate of the solution to the following sstem of equations? 14 5 1 + z = 5 + 3z = 14 3 + z = 10 10 10 10 10 10 10 10 10 10 10 10 10 008 009 5 GO ON

4. For one month of internet access, Southern Nevada Web charges $4.00 per hour with a base fee of $0.00. Silver State Internet does not charge a base fee, but charges $.00 per hour for internet access. How man hours of use will the costs for the two companies be the same? hours 10 hours 1 hours 4 hours 5. Using linear programming procedures, the equation C = 4+ 7 is to be maimized subject to the following constraints: 0 0 + 3+ 4 8 5 10 The grid ma be used to sketch the feasible region. 51 14 8 0 What is the minimum value for the objective function? 008 009 GO ON

. A school fundraiser sells different sizes of gift baskets with a varing assortment of books and pencils. A basic basket contains 3 books and 4 pencils. A big basket contains 7 books and 8 pencils. Books cost $5, and pencils cost $. Which of the following shows the use of matrices to find the total cost for each size of basket? 3 4 7 8 = 5 54 3 4 5 3 7 8 = 51 3 7 41 4 8 = 5 48 3 7 5 9 4 8 = 3 7. Which is the sum A + B, given that 9 3 A = 1 5 8 and 5 4 0 B = 4 3 7? 14 3 3 1 14 3 3 1 4 3 3 8 1 14 3 5 8 15 8. Given A 0 1 = 5 1 0 and find the product A 0 8 5 1 5 1 5 19 7 3 1 not possible 9. Calculate the determinant 50 30 0 30. Solve for and : ( 8,1) 3, 3 11 5, 3 4 ( 5,3 ) 1 4 B = 0 1, 5 1 3 0 4 1 3. 0 5 5 11 = 3 7 5 008 009 7 GO ON

31. Which graph from a graphing calculator represents the function = 4( + 8+ 15)? (Assume the scale on each graph is one unit per tick mark.) 3. Solve the equation factoring. = ± 9 = 9 = 9 no solution 18+ 81 = 0 b 33. Which is the solution set for + 7+ 1= 0, using the quadratic formula? 7+ 41 7 41, 4 4 7+ 57 7 57, 4 4 7+ 57 7 57, 4 4 7+ 41 7 41, 4 4 34. Which are solutions for + 40= 0 when solved b completing the square? = 10 or = 4 = 10 or = 4 = 10 or = 4 = 10 or = 4 008 009 8 GO ON

35. Which is the solution set of ( + 4) = 77? 4 77 4+ 77, 1 1 4 77 4+ 77, 4 77 4+ 77, 1 1 4 77 4+ 77, 38. Write the epression 7 + 3 i 3+ 9i number in standard form. 1 3 1 4 i 8 3 15 5 i 8 4 15 + 5 i 1 1 + i as a comple 3. Use the discriminant to determine the number and tpes of solutions of the equation 9 30+ 5= 0. no real solutions, imaginar solutions 1 real solution, no imaginar solutions 1 real solution, 1 imaginar solution real solutions 37. What are the solutions of the quadratic equation 3 + 5 = 4? 5+ i 3 =, 5+ i 73 =, = = 5 i 3 5 i 73 5+ i 3 =, 5+ i 73 =, = = 5 i 3 5 i 73 008 009 9 GO ON

39. Which of the following screens from a graphing calculator represents 4? (Assume the scale on each graph is one unit per tick mark.) 40. For the scenario below, use the model h= 1t + v0t+ h0, where h = height (in feet), h 0 = initial height (in feet), v 0 = initial velocit (in feet per second), and t = time (in seconds). A cheerleading squad performs a stunt called a basket toss where a team member is thrown into the air and is caught moments later. During one performance, a cheerleader is thrown upward leaving her teammates hands feet above the ground with an initial vertical velocit of 15 feet per second. When the girl falls back, the team catches her at a height of 5 feet. How long was the cheerleader in the air? 1 1 second 1 second 9 1 1 seconds seconds 008 009 10 GO ON

41. Which graph represents the factored function f ( ) = ( 3)( + )? (Assume the scale on each graph is one unit per tick mark.) 4. Graph the polnomial function: 4 f( ) = + 1. 008 009 11 GO ON

43. Multipl the following polnomials. ( + 4)( + + 4) 4. Which of the following represents the solution set of the polnomial equation below? 3 + + 1 3 + 5 + 8 + 1 3 + 3 + 8 + 1 3 + 5 + 1 44. Factor the polnomial completel. + + ( 1)( 1)( 9) ( 8) 9 + + ( 3)( 3)( 1) ( + 1) ( 3)( + 3) 8 9 4 f 3 ( ) = 4 8 + 1 1,, 1 1,, { 0, 1, } 1,, 47. According to the Fundamental Theorem of Algebra, how man solutions does the 3 5 polnomial f ( ) = 10 + 3+ 4 have? 45. Factor the polnomial equation ( + 3) 3 3 3 ( )( + ) ( + 3)( 4 + 9) ( 3)( 4 + + 9) 3 8 + 7 3 4 5 48. What is 3 divided b 5? 3 44 + + 10+ 5 0 8+ 40 5 4 8 5 + + 5 4 008 009 1 GO ON

49. State the end behavior of the graph of f = + 7+ 4 as. ( ) 3 f( ) f( ) + f( ) 4 f( ) 0 50. Which best represents the polnomial 4 3 function = 5? (Assume the scale on each graph is one unit per tick mark.) 008 009 13

Free Response 1. Let p( ) ( 3) ( 1) = +. Sketch the graph of p( ). Label all intercepts. Find another polnomial function, q( ), that has the same zeros as ( ) point ( 1,1). p and goes through the Eplain how to determine the end behaviors of a polnomial function. 008 009 14 GO ON

Free Response. Let ( ) f = + 15. Find the verte and the ais of smmetr. ( 0, 15) is a point on f ( ) parabola to find another point on = f ( ). =. Eplain how ou can use the smmetric properties of a Sketch the graph of = f ( ). Include and label at least 5 points on our graph including the verte and intercepts. Find the domain and range of f ( ). 008 009 15 GO ON

Free Response 3. A baker chain displas prices in a 1 3matri and dail sales at its three stores in a 3 3 matri as shown below: Prices Cupcakes Cookies Cakes [ $ $1 $10 ] Number of Items Sold Store A Store B Store C Cupcakes 1 10 0 Cookies 5 40 80 Cakes 4 1 Find the product of the two matrices. Eplain what the product represents. How would ou find the total gross revenue from all three stores? 008 009 1