Övningsexempel och labuppgifter, Lab 5-2D1242

Relevanta dokument
12.6 Heat equation, Wave equation

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen i Matematik 3: M0031M.

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Tentamen i Matematik 2: M0030M.

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Tentamen i Matematik 2: M0030M.

Pre-Test 1: M0030M - Linear Algebra.

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Isometries of the plane

1 Find the area of the triangle with vertices A = (0,0,1), B = (1,1,0) and C = (2,2,2). (6p)

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Module 6: Integrals and applications

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Solutions to exam in SF1811 Optimization, June 3, 2014

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Module 1: Functions, Limits, Continuity

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4

is a basis for M. Also, find the coordinates of the matrix M = with respect to the basis M 1, M 2, M 3.

Module 4 Applications of differentiation

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

1. Antag att g är en inverterbar funktion definierad på intervallet [0, 4] och att f(x) = g(2x).

Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.

For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

the standard scalar product, i.e. L E 4. Find the orthogonal projection of the vector w = (2, 1, 2, 1) on the orthogonal complement L of L (where

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

2. For which values of the parameters α and β has the linear system. dy/dt x + y

Sammanfattning hydraulik

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

1. Find, for x > 0, the general solution of the differential equation. dy/dt 4xy + 10y + 6y 2,

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

1. Find for each real value of a, the dimension of and a basis for the subspace

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Rep MEK föreläsning 2

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

Grafisk teknik. Sasan Gooran (HT 2006)

a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

English Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =

MMA129 Linear Algebra academic year 2015/16

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version

IE1206 Embedded Electronics

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

Second handbook of research on mathematics teaching and learning (NCTM)

1. Find an equation for the line λ which is orthogonal to the plane

Lösningsförslag, version 1.0, 13 september 2016

Preschool Kindergarten

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

Försättsblad till skriftlig tentamen vid Linköpings universitet


Calculate check digits according to the modulus-11 method

(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?

Chapter 2: Random Variables

EXAM IN MODELING AND SIMULATION (TSRT62)

Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180)

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Lösningsförslag, preliminär version april 2017(reservation för fel) Högskolan i Skövde

Flervariabel Analys för Civilingenjörsutbildning i datateknik

FÖRSÄTTSBLAD TILL TENTAMEN

Plan: M0030M, LP2, 2017

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

FYTA11-ma1, ht13. Respondents: 11 Answer Count: 9 Answer Frequency: 81,82 %

Hur fattar samhället beslut när forskarna är oeniga?

M0030M: Maple Laboration

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

6 th Grade English October 6-10, 2014

7,5 högskolepoäng. Väveriteknik, skriftlig tentamen 51TV10 och AX10VT TD

2. Find, for each real value of β, the dimension of and a basis for the subspace

Tentamen i matematik. Högskolan i Skövde

for M, the matrix of the linear transformation F : R 3 M defined as x1 + x F ((x 1, x 2, x 3 )) = 2 + x 3 2x 1 + x 2 + 3x 3

Gamla tentor från 2000 dags dato

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

MÄTNING AV VÄGT REDUKTIONSTAL MEASUREMENT OF THE WEIGHTED SOUND TRANSMISSION LOSS

Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Adding active and blended learning to an introductory mechanics course

The Finite Element Method, FHL064

2. Find to the differential equation 2y + (y ) 2 = 0 the solution whose graph at the point with the coordinates (1, 0) has the tangent line x + y = 1.

Transkript:

Övningsexempel och labuppgifter, Lab 5-2D242 Uppgifter markerade med Lab skall redovisas med skriftlig rapport, övriga uppgifter behöver ej redovisas. Flera av uppgifterna kommer att diskuteras på övningarna.. Ange den allmänna lösningen till differensekvationen y n+2 + y n+ 2y n =, Bestäm den lösning som svarar mot begynnelsevillkoren y =,y =. 2. Lös differensekvation y n+2 +2y n+ +5y n =, y =,y = 3. Lab Bestäm den analytiska lösningen till differensekvationen y n+2 5.2y n+ + y n = y = y =.2 Använd därefter dator för att utföra 2-4 steg i beräkningarna y n+2 =5.2y n+ y n y = y =.2 Åskådliggör talföljden som funktion av n och jämför med den analytiska lösningen. Det kan vara intressant att beräkna och skriva ut skillnaden mellan lösningarna med många siffror. Förklara resultaten! Ledning: Avrundningsfelen har stor betydelse. 4. Eigensolutions of a tridiagonal matrix Given a real, symmetric tridiagonal N N matrix B =trid(c, b, c), i.e. bc cbc B = cbc cb a. Show that we can get the eigenvalues of B from the eigenvalues λ(t ) of a a T = a a What is the relation between λ(t ) and λ(b), and between a, b, c? 34

b. Show that the components x i of an eigenvector x of T satisfies a linear difference equation. Then use that difference equation to show that the eigenvalues and eigenvectors of B are given by λ k (B) = b +2c cos ϕ k ϕ k = kπ N + x k = (sinϕ k, sin 2ϕ k,...,sin Nϕ k ) T k =, 2,...,N c. Use b. to show that for T =trid( /h 2, 2/h 2, /h 2 ) λ k (T ) = 2 h 2 2 h cos ϕ 2 k = 4 ϕ h 2 sin2 k 2 x k = (sinϕ k, sin 2ϕ k,...,sin Nϕ k ) T = I(e ϕ k,e 2ϕ k,...,e Nϕ k ) T k =, 2,...,N ϕ k = kπ N + Background: In Dq sec. 8.5 p 367-372 the solution of a single linear difference equation is discussed. We assume here that you are familiar with such solutions. 5. Bestäm stabilitetsområdet för Eulers metod, Baklänges Eulers metod och trapetsregeln. 6. Lab Differentialekvationen y = y + e t, y() =. löstes approximativt med Eulers metod med steglängden h =., dvs{y n } beräknades enligt y =. y n+ = y n + h( y n + e tn ), n =,, 2,... Följande resultat erhölls på en dator med avkortningsenheten.5 8 (unit roundoff, machine epsilon, Heath sec.3.5): 35

t y t y..e 2..73E +5. 9.E 3.2.559E +6.2 8.584E 3.3.49E +7.3 3.76E 3.4.29E +8.4 3.986E 2.5.75E +9.5 2.957E.6.69E +.6 2.75E +.7 9.73E +.7 2.498E +.8 8.854E +.8 2.274E +2.9 8.57E +2.9 2.69E +3 2. 7.332E +3..883E +4 2. 6.672E +4 Förklara! I förklaringen bör du beräkna hur fel i begynnelsevärdet fortplantas till t =2såväl i differentialekvation som differensekvation. OBS: Detärlämpligtattstuderaskillnaden mellan två lösningar med olika begynnelsevärden för både differentialekvation och differensekvation. För vilka steglängder h kommer Eulers metod att ge rimliga lösningar till problemet. 7. We shall study the system y = Ay, y() = c. We assume that A has linearly independent eigenvectors. a. Formulate the solution y(t) using eigenvalues and eigenvectors of A. b. Formulate the solution y(t) using the matrix exponential. 8. We shall study the backward Euler method y n+ = y n + hf(t n+, y n+ ) on the system y = Ay, y() = c. We assume that A is diagonalizable. a. Formulate the solution y n. b. Express the solution y n using eigenvalues and eigenvectors of A. c. Examine the stability of the method. 9. Define the five-point operator 2 5 used to approximate the Laplace operator 2.Draw the computational molecule. Derive an expression for the error 2 5 u ij 2 u(x i,y j ).. Lab Consider the problem 2 u x + 2 u = f(x, y)(x, y) Ω 2 y2 u = g(x, y) Ω u x = Ω 2 An approximate solution is calculated. The region is discretized using the steps x and y in x and y-directions. 36

Omega 2 y x Omega : boundary marked Omega 2: boundary marked 2 The differentialequation and boundary conditions are discretized with suitable formulas. We then obtain a set of linear equations for the approximate solution.introduce the notation U(x, y, x, y) for the solution obtained with the discretization steps x, y. Th discretization error is assumed to satisfy U(x, y, x, y) =u(x, y)+c (x, y)( x) 2 + c 2 (x, y)( y) 2 + O(( x) 4, ( y) 4 ) Olle and Nisse each develop a program, based on slightly different discretization formulas and experiment with different stepsizes to convince themselves that their programs work properly. For some different points and some different discretization steps they obtain the following results Olle: x y x y U(x, y, x, y).5.5...4.5.5.5.5..5.5.25.25.25.4.2...87.4.2.5..825.4.2..5.8625.4.2.25..838.4.2..25.866 x y x y U(x, y, x, y).5.5...9.5.5.5.5.35.5.5.25.25.5 Nisse:.4.2...8.4.2.5..85.4.2..5.835.4.2.25..83.4.2..25.86 Are the results consistent with the assumed error expansion formula? Motivate your answers. Simple arithmetical calculations with calculator or Matlab should be in- 37

cluded in your motivation. One of the programs seems to contain an error; which program? Make a qualified guess of where to seek for the error. Use the tabulated results to find an even better approximation to the solution at the points (.5,.5) och (.4,.2).. Lab Poissons ekvation på oregelbundet område, Helmholtz ekvation Studera häftet Glesa matriser från randvärdesproblem, speciellt programmet randv2dgles.m och modifiera detta program så att följande två problem löses (två olika modifikationer). a. b. 2 u = in an annulus with outer radius one and inner radius.5, the center is in the origin. (like the cross section of a pipe with a thick wall). On both inner and outer boundary u(x, y) is prescribed. Choose a testproblem with known solution, eg u(x, y) =x 5 x 3 y 2 +5xy 4 2 u + p(x, y)u = f(x, y) on square x, y with p(x, y) = 6(x 2 + y 2 ) +.5(x 4 + y 4 ) f(x, y) = 2(x2 + y 2 )((x 2 )2 +(y 2 )2 ) +.5(x 4 + y 4 ) 8 On the boundary u(x, y) =2((x 2 )2 +(y 2 )2 ) 2. Lab Use Taylor expansions (operator calculus) to analyze the scheme u n+ k u n k = r(u n k+ 2u n k + u n k ), r = α t x 2 for the heat equation u t = αu xx. We introduce the notation R n k = u(x k,t n+ ) u(x k,t n ) r(u(x k+,t n ) 2u(x k,t n )+u(x k,t n )) t for the local truncation error of the method. Here u(x, t) is the exact solution of the PDE. Show that the local truncation error can be written c u tt + c 2 u xxxx +... What are the values of c and c 2? Show that if r =/6 then the scheme is more accurate than for any other value of r. 38

3. Lab Numerical experiments with the heat equation Study the heat equation u t = u xx with initial values and boundary conditions u(x, ) = { *x, x.5 *(-x),.5 x u(,t)=u(,t)= a. Discretize in space using equidistant step x and central differences to obtain a system of ordinary differential equations du dt = Au Write down u and A. b. Solve the system in a. with the Euler method with timestep t. Write your method in the form U ij+ =... Do you recognize the method? To make the calculations reasonably efficient you should use a sparse representation for the matrix A, soa timestep can be taken as a matrix-vector product. Store the whole approximate solution in a large matrix and use e.g. surf to draw a 3D-plot of the solution u(x, t). Experiment with different values for the discretization steps x and t and study stability and convergence for your method. Explain your findings. c. Solve the system in a. with the Backward Euler method using timestep t. Make exeperiments similar to the ones in b. Explain your results. d. Modify your program to study the heat equation backwards u t = u xx with initial values and boundary conditions u(x, ) = cos(πx/2) u(,t)=u(,t)= Experiment and explain your results. d. (not compulsory ) Solve the system in a. using one of MATLABs routines for stiff problems and constant Jacobian (e.g. ode23s). You should present your solutions as e.g. the solutions to quite another problem on the next page. 39

.5.5.5..5 2 4 6 8 n=4, k=.4.5.5.5..5 2 2 n=9, k=.4.5.5.5..5 2 4 6 8 n=9, k=.2 4