Ljus? Övergripande mål. Ljus är strålar Geometrisk optik. ReflectionLawIncident. Beskrivna av grekiska filosofer fkr
|
|
- Astrid Blomqvist
- för 9 år sedan
- Visningar:
Transkript
1 Praktisk optik för ST-läkare Hjärtligt välkomna! Wireless finns tillgängligt plan 3, Ögonklinikens administrativa område WEP-nyckel finns på visitkort i fönstret till kursadministratörerna Kursmiddagen kommer att hållas på restaurang. Restaurang meddelas under dagen. Lunch: Bord har förbokats i sjukhusmatsalen Lärobok: Clinical Optics, American Academy of Ophthalmology Upprop, uppdatering deltagarainfo Stort tack till Alcon som sponsrar årets kursmiddag, och Zeiss, Abbot och B& L som sponsrar kursfika, Medocular som skänkt aberrometer. Presentationen finns på: Övergripande mål Beskriva ljus och dess interaktion med materia ur ett oftalmologiskt perspektiv Ge kunskap om ljusbrytning och avbildning i optiska system för att kunna förstå hur ögat och oftalmologiska instrument fungerar Ge kunskap om hur oftalmologiska instrument fungerar och hanteras i kliniken UPALA UPALA CSS_18Solstrålning Css_005_01_01 Ljus är strålar Geometrisk optik Ljus? UPALA Beskrivna av grekiska filosofer fkr UPALA Pcr_008_08_04Pterygium ReflectionLawIncident UPALA SJUKHUS UPALA 1
2 Reflektion ReflectionLaw Refraktion i r i=r Ljus tar den väg som är kortast mellan två punkter Hero 200 fkr-250 ekr SJUKHUS UPALA ImagingThroughRefraction UPALA Cgl_Eliachim1493 Munkar avbildade med glasögon, 1300-talet Linssystem Mikroskopet, (Janssen, 1590-talet) Teleskopet (Lippershey (Gallilei), 1608) Kepplerkikaren (Keppler, 1611) Schedel, Buch der Chroniken, Nurnberg, 1493 UPALA UPALA Teori geometrisk Refraktion2 optik - Brytningslagen Apo_1DecartesPhysiologicalOptics Empirisk lösning Snell, 1621 Trigonometrisk lösning Descartes, 1637 Ljuset tar den väg som tar kortast tid Fermat s princip, Fermat, 1657 SJUKHUS UPALA UPALA 2
3 CSS_1_1Rainbow Rainbow Decartes, 1637 Svenska akademins ordbok 1650 När en lägger en Spegel i ett Bäcken fullt med Watn, tå gör han medh sitt wederskeen en Regnbåge på Wäggen UPALA SJUKHUS UPALA Newton (1665) arbetar med dispersion och presenterar hypotesen att ljuset är partiklar som vibrerar: Rött ljus långsam vibration Blått ljus snabb vibration Dispersion Night myopia chromatic aberration UPALA SJUKHUS UPALA Garimaldi Ljus en vågrörelse? Fysikalisk optik Screen Intensity Vilka bollar ligger längst bort? Grimaldi, början av 1600-talet Det räcker inte alltid att betrakta ljus som strålar UPALA SJUKHUS UPALA 3
4 Interferens i tunna skikt Ljus är en vågrörelse Huygens vågteori (Slutet av 1600-talet) Diffraction Brp_0_1_2_DiffractionThinLayer Hook, 1600-talets mitt Interferens uppstår pga samverkan mellan reflexen i främre och bakre ytan UPALA UPALA HuygensPrincip Polarisation Huygens, slutet av 1600-talet Upptäcker polarisation SJUKHUS UPALA Applikationer oftalmologi * Scanning laser polarometry (SLP) nervfiberlagrets tjocklek * Polariserande solglasfilter SJUKHUS UPALA Gdx Ljusets hastighet bestämd och mycket hög (3 x10 8 m/s) Jupiter Jorden Solen ( v + v ) t c Jorden Mot Δφ = f(thickness) ( v v ) t c S Jorden Med UPALA Light speed Römer Römer visar 1676, 2.3 x10 8 m/s UPALA 4
5 Polariserande filter Polarisation Interferens i tunn spalt InterferensSpalt α λ Sinα = d Intensity λ 2 d Position Malus, slutet av 1700 SJUKHUS UPALA Thomas Young, 1801 SJUKHUS UPALA Thomas Young, 1801 Interferens i tunn spalt Ljuset kan betraktas som en transversell vågrörelse Ljusets våglängd kan bestämas ur diffraktionsmönstret och spaltens storlek. Våglängderna vid dispersion kunde bestämmas Interferens i tunna skikt kan förklaras Fresnel 1814: En ljusvåg är interferens av ett oändligt antal primära sfäriska vågor UPALA Optical coherence tomography (OCT) l m Electrical field strength Intensity (W/m2) Mirror position (μm) l e l l c t = m m c Intensity scattered (W/m2) l l c e t s = + c ve Mirror position (μm) Retinal surface UPALA CSS_1_1Rainbow CSS_1_1Rainbow Br. J. Ophthalmol. 2008;92; UPALA UPALA 5
6 fft() fft() Endoteldiffraktion Corneal endothelial cell density, Fully automated analysis versus semiautmatical analysis Fully automated determined density (rel.) Semiautmatically determined density (cells/mm 2 ) CB SJUKHUS UPALA UPALA FresnelDiffractiveZonePlate FaradaysExperiment UPALA Faraday (mitten av 1800-talet SJUKHUS UPALA Brp_1_1_1_ElectromagneticField Ljus är en elektromagnetisk vågrörelse Brp_1_1_3_Polarisation Maxwell (mitten 1800-talet) UPALA UPALA 6
7 Ljus är kvantiserad energi fotoner Kvantoptik Max Planck s studier av ljusutstrålning från varma kroppar Planck s lag, 1900 Einstein, fotoelektriska effekten, 1905 Radiance (W/cm 2 /nm) Visible radiation K 10-2 PlancksRadiationLaw K K K K K UPALA Wavelength (nm) UPALA SJUKHUS Fotoner BRP_1_2_1_PhotonWave Planck's konst. x ljusets hastighet Fotonenergin= Ljusets våglängd Vågrörelse SJUKHUS UPALA Photon energy ( x10-19 J) PhotonEnergy Wavelength (nm) UPALA Sensitivity (rel.) Photoreceptor sensitivity Wavelength (nm) Light Profound insights are slow in coming. What few we have, took over three thousand years to glean, even though the pace is ever quickening. It is marvelous indeed to watch the answer subtle change, while the question immutably remains what is light? Hecht, Optics, 2 nd ed, 1990 UPALA UPALA 7
Ljus? Hjärtligt välkomna! Praktisk optik för ST-läkare. Ljus är strålar Geometrisk optik. ReflectionLawIncident
Praktisk optik för ST-läkare Lecture notes on: http://www.neuro.uu.se/ophthalmology/teaching/externalteaching/index.html Hjärtligt välkomna! Gullstrand lab UPALA Förändringar på basis av utvärdering av
Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260
Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion
Gauss Linsformel (härledning)
α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a
Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion
Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner
The nature and propagation of light
Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
Optik. Innehåll: I - Elektromagnetiska vågor radio och ljus. II - Reflexion och brytning. III - Ljusvågor. MNXA11 / Lund University
Optik Innehåll: I - Elektromagnetiska vågor radio och ljus II - Reflexion och brytning III - Ljusvågor Kom ihåg Definition Amplitud, Våglängd, Frekvens, Våghastighet Mekaniska eller Elektromagnetiska vågor
Vågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
OPTIK läran om ljuset
OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte
Stoft. Flisor. Spån. Per Söderberg. Ögonskydd, några tumregler. PCR_10_4, Smärgelspån. PCR_9_1, Perforation
Ögonskydd, några tumregler Per Söderberg, Ophthalmology, Dept. of Neuroscience, UPALA Uppsala university, Sweden UPALA UPALA Pcn_3 ConjunctivitisVirusAde nofollicular Stoft UPALA UPALA PCR 4, Smärgelspån
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Optik. Läran om ljuset
Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker
Fysik (TFYA14) Fö 5 1. Fö 5
Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Fysik TFYA86. Föreläsning 9/11
Fysik TFYA86 Föreläsning 9/11 1 Elektromagnetiska vågor (ljus) University Physics: Kapitel 32, 33, 35, 36 (delar, översiktligt!) Översikt och breddning! FÖ: 9 (ljus) examineras främst genom ljuslabben
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var
Chalmers tekniska högskola och April 2001. Fysik och teknisk fysik Christian Karlsson
Tom sida. Lab-PM börjar på nästa sida. 1 Chalmers tekniska högskola och April 2001 Göteborgs universitet 11 sidor Fysik och teknisk fysik Christian Karlsson O9 Optik för Basåret En CD-spelare innehåller
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
1. Elektromagnetisk strålning
1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst
Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor
FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande
λ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
Föreläsning 2 (kap , 2.6 i Optics)
5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen
3. Ljus. 3.1 Det elektromagnetiska spektret
3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion
Våglära och optik FAFF30 JOHAN MAURITSSON
Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion
Fysik. Laboration 3. Ljusets vågnatur
Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall
Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:
Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska
Övning 6 Antireflexbehandling. Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra.
Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R 1 R Vi ser att vågorna är ur fas, vi
Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?
1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat
Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser.
Föreläsning 7 Kromatisk aberration Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser. Dispersion: n ändras med våglängden
Kikaren. Synvinkel. Kepler och Galileikikare. Vinkelförstoring. Keplerkikaren. Keplerkikaren FAF260. Lars Rippe, Atomfysik/LTH 1
Kikaren Synvinkel Ökar synvinkeln os avlägsna objekt 1 2 Vinkelörstoring Deinition: med optiskt instrument G utan optiskt instrument Kepler oc Galileikikare Avlägsna objekt (t. ex. med kikare): synvinkeln
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
Övning 9 Tenta
Övning 9 Tenta 014-11-8 1. När ljus faller in från luft mot ett genomskinligt material, med olika infallsvinkel, blir reflektansen den som visas i grafen nedan. Ungefär vilket brytningsindex har materialet?
Kapitel 35, interferens
Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson
Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt
Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,
Övning 6 Antireflexbehandling
Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R Vi ser att vågorna är ur fas, vi har
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
1 Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus kan ses so elektroagnetiska vågor so rör sig fraåt. När vi ritar strålar
Övning 1 Dispersion och prismaeffekt
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
Frågor till filmen Vi lär oss om: Ljus
Frågor till filmen Vi lär oss om: Ljus 1. Hur är vår planet beroende av ljus? 2. Vad är ljus? 3. Vad är elektromagnetisk energi? 4. Vad kallas de partiklar som energin består av? 5. Hur snabbt är ljusets
Tentamen i Våglära och optik för F
Tentamen i Våglära och optik för F FAFF30, 2013 06 03 Skrivtid 8.00 13.00 Hjälpmedel: Läroboken och miniräknare Uppgifterna är inte sorterade i svårighetsgrad Börja varje ny uppgift på ett nytt blad och
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)
Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad
ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se. Elektromagnetisk strålning
ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se Elektromagnetisk strålning Innehållsförteckning ELEKTROMAGNETISK STRÅLNING... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 SPEKTRET... 3 Gammastrålning...
TFEI02: Vågfysik. Tentamen : Lösningsförslag
160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan
Ögontrauma. Per Söderberg UPPSALA UNIVERSITET.
Ögontrauma http://extw.ophthalmology.uu.local/teaching/diseaserepairneuroophthalmology/index.html UPALA Per Söderberg UPALA Mekanisk skada Trubbigt våld Penetrerande våld UPALA Trubbigt slag mot ögat Trubbig
Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!
Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel
Ljusets interferens. Sammanfattning
HERMODS DISTANSGYMNASIUM Naturvetenskapsprogrammet Emilia Dunfelt Fysik 2 2017-05-06 Ljusets interferens Sammanfattning I försöket undersöks ljusets vågegenskaper med hjälp av gitterekvationen. Två olika
Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1
Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition
v F - v c kallas dispersion
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
Tentamen i Fotonik , kl
FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
4. Allmänt Elektromagnetiska vågor
Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och
FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016
Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med
för gymnasiet Polarisation
Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget
Vad skall vi gå igenom under denna period?
Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen
Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus.
Källa: Fysik - Kunskapsträdet Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus. Ljusets natur Ljusets inverkan
Denna våg är. A. Longitudinell. B. Transversell. C. Något annat
Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare
I detta arbetsområde ska eleven utveckla sin förmåga att:
PP för arbetsområde: Ljud & Ljus Ur kursplanen för ämnet fysik I detta arbetsområde ska eleven utveckla sin förmåga att: diskutera, granska och ta ställning i frågor som handlar om ljud och buller planera
Fysik Världen kring oss. Kvällens punkter. Vad är strålning? Polarisation. Elektromagnetisk strålning
Fysik Världen kring oss Repetition och uppföljning Kvällens punkter Repetition Kvantfysik Allting är relativt Einsteins teorier Fysik och naturvetenskap i ett större perspektiv Vad är strålning? Det elektromagnetiska
Exponering för grön laser. Light? Per Söderberg
Exponering för grön laser Per Söderberg, Ögonkliniken Inst. för Neurovetenskap Uppsala universitet http://www2.neuro.uu.se/ophthalmology/teaching/index.html Budskap Skademekanism beror av relationen mellan
Polarisation Laboration 2 för 2010v
Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus
1 AKUSTIK Håkan Wennlöf, I = P A m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt).
AKUSTIK Håkan Wennlöf, hwennlof@kth.se Övning : Akustik. Intensitet är effekt per area I = P A [ ] W m 2 P effekt, A arean effekten är spridd över (ofta en sfär, ljud utbreds sfärsiskt). För ljudvåg gäller
Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt
1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.
10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15
Kapitel 36, diffraktion
Kapitel 36, diffraktion Diffraktionsbegreppet, en variant av interferens Hitta min värden för enkelspalt med vidden a Intensitet för enkelspalt med vidden a Två spalter med vidd a och separation d Många
I once saw Einstein on a train which whistled past our station. - Your clock ticks much too slow, I yelled. - Ach, nein. That's time dilation
I once saw Einstein on a train which whistled past our station. - Your clock ticks much too slow, I yelled. - Ach, nein. That's time dilation - Gordon Judge Om man åker fortare än ljuset, svartnar det
If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.
If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed
Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00
Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för
Instuderingsfrågor extra allt
Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken
Mer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation?
Mer om EM vågors polarisation Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation? Svänger x Svänger y 2π Superposition av x och y polariserade EM vågor (Ritar bara positivt
Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00
FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Elektromagnetiska vågor (Ljus)
Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer
Övning 9 Tenta från Del A. Vägg på avståndet r = 2.0 m och med reflektansen R = 0.9. Lambertspridare.
Övning 9 Tenta från 2016-08-24 Del A 1.) Du lyser med en ficklampa rakt mot en vit vägg. Vilken luminans får väggen i mitten av det belysta området? Ficklampan har en ljusstyrka på 70 cd och du står 2.0
Hur fungerar AR skikt? Föreläsning 7 fysikalisk optik
Tunna skikt Storleksorning Storleksorning Hur fungerar AR skikt? Föreläsning 7 fysikalisk optik AR behanlingar är tunna skikt. Själva glasögat är ca 10 000 gånger tjockare. Skiktet läggs på båa sior glaset.
Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla
Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva
Figur 6.1 ur Freeman & Hull, Optics
1 Föreläsning 12 Kameran Figur 6.1 ur Freeman & Hull, Optics Kameran är ett instrument som till vissa delar fungerar mycket likt ett öga. Kamerans optik, det så kallade kameraobjektivet, motsvarar ögats
Strömning och varmetransport/ varmeoverføring
Lektion 10: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värmestrålning är en av de kritiska komponent vid värmeöverföring i en rad olika förbränningsprocesser. Ragnhild
Lösningar till repetitionsuppgifter
Lösningar till repetitionsuppgifter 1. Vågen antas röra sig i positiva x-axelns riktning dvs s = a sin(ω t k x +δ). Elongationen = +0,5 a för x = 0 vid t = 0 0,5 a = a sin(δ) sin(δ) = 0,5 δ 1 = π/6 och
Fysik. Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik:
Fysik Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik: - Använda kunskaper i fysik för att granska information, kommunicera
Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens
Hur funkar 3D bio? Lunds Universitet 2016 Laborationsrapporter Lunds Universitet 2016 Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen
Institutionen för Fysik 2013-10-17. Polarisation
Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra
Välkomna till Kvantfysikens principer!
Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum
FRÅN KVARKAR TILL KOSMOS. F 2010 p. 1/19
FRÅN KVARKAR TILL KOSMOS F 2010 p. 1/19 F 2010 p. 2/19 F 2010 p. 3/19 II FRÅN GALILEO TILL MAXWELL F 2010 p. 4/19 Förhistoria: Grekerna Thales av Miletos ( 580 ) förutsägelse av en solförmörkelse magneter,
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
Tentamen i Fotonik , kl
FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I =
Kap. 33 Elektromagnetiska vågor Den klassiska beskrivningen av EM-vågorna, går tillbaka till mitten av 1800-talet, då Maxwell formulerade samband mellan elektriska och magnetiska fält (Maxwells ekvationer).
530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]
530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E
Milstolpar i tidig kvantmekanik
Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik
Så, hur var det nu? Tillämpad vågrörelselära FAF260. Cirkulär polarisation (höger) Cirkulär polarisation FAF260. Lars Rippe, Atomfysik/LTH 1
FF60 Tillämpad vågrörelselära FF60 Så, hur var det nu? 3 Plan, elliptisk och cirkulär polarisation Fig 0.4, sid 405 Cirkulär polarisation (höger) När det elektro-magnetiska fältet består av två vinkelräta
About the optics of the eye
About the optics of the eye Peter Unsbo Kungliga Tekniska Högskolan Biomedical and x-ray physics Visual Optics Innehåll Optiska begränsningar i ögat Hur mäter man ögats aberrationer? Hur skriver man vågfrontsrecept?