Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
|
|
- Jonas Hellström
- för 7 år sedan
- Visningar:
Transkript
1 1 Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus kan ses so elektroagnetiska vågor so rör sig fraåt. När vi ritar strålar så visar de åt vilket håll vågorna rör sig: 2 2 y a sin x - t T = ljusets våglängd (färg), äts ofta i nanoeter = 10-9 (synligt ca n) = 1/T = ljustets frekvens, äts i Hertz = 1/sekund c = = ljusets hastighet, i vaccu och luft är hastigheten k/s E e ~ a 2, aplituden i kvadrat är proportionell ot ljusets irradians [W/ 2 ] ofta kallad ljusets intensitet, I Vågfronter är tänkta linjer so binder saan ljus ed saa fas, t.ex. topp ed otsvarande topp. Från en punktkälla ser detta ut so vågorna när an kastar en sten i vattnet. Ljusets vågnatur kan ge upphov till två fenoen, interferens och diffraktion, so utnyttjas vid t.ex. antireflex-behandling och ultifokala intraokulära linser. Interferens Superposition = att lägga saan ljus. Konstruktiv interferens: Topp + Topp & Dal + Dal = kt ljus Destruktiv interferens: Topp + Dal & Dal+ Topp = inget ljus
2 2 För att interferens ska kunna ske åste ljuset ska vara koherent, d.v.s. ed saa våglängd och konstant fasskillnad Ljuset åste koa från saa ljuskälla Trick: Skapa två punktkällor geno att belysa en skär ed två spalter i = Youngs dubbelspalt (en annan tilläpling är antireflex-skikt): I tot I bildplanet är I I I cos I2 ed fasskillnad 2 n x ev. extra fasskillna d På olika höjder i bildplanet är skillnaden i optisk väg n x=n (x 1-x 2) för ljuset från öppning 1 och 2 olika, vilket ger en varierande fasskillnad; på vissa ställen konstruktiv ( = 2, =heltal: 0, ±2, ±4, ±6) och på andra destruktiv interferens ( =, =udda heltal: ±, ±3, ±5). För att interferens ska ske åste dessuto ljusets koherenslängd vara längre än vägskillnaden. Diffraktion När vågor passerar kanter. Naturen kan inte ha en våg so slutar abrupt, istället sker en långsaare utslätning av vågfronten vid kanten av en öppning, vilket gör att ljuset böjs av vid skarpa kanter. Fenoentet kallas för diffraktion och kan även ses för vågor på vatten (google-earth bilden bredvid är från iopscience.iop.org).
3 3 Efterso ljuset böjs av vid kanterna blir diffraktionen större ju indre hålet är (bild från cnx.org) Utan diffraktion hade vi fått en perfekt skuggbild. Enligt Huygens princip betrakta varje del på vågfronten so en egen punktkälla och suera ihop bidragen från alla punkter (interferens). n Bilden ovan visar Fraunhofer diffraktion vilket stäer under antagandet att d 1 och d 2 är ycket större än öppningens diaeter b och ljusets våglängd (egentligen d 1 och d 2 >> b 2 / annars sker istället Fresnel diffraktion). Fraunhofer diffraktion är även det so fås efter att ljuset fokuserats till en bild.h.a. linser. I syste ed flera linser ges bildens suddighet av diffraktionen beräknad i den öppning/lins so är aperturstopp.
4 4 Diffraktion ger en suddighet so ökar när hålet blir indre och när blir större! Cirkulärt hål ger en Airy disk: sin in 1,22 nb där vinkeln in är vinkeln bort till första örka ringen 84% av ljuset finns i Airy diskens centrala fläck. En spalt ger ett randönster: sin in, nb där är ordningen på iniuen (heltal) Gitter Figuren ed Youngs dubbelspalt var inte riktigt sann... Med två sala spalter får vi både interferens och diffraktion! Bilden blir ett interferensönster vars intensitet bestäs av diffraktionsönstret från spalterna (spalterna är lika och ger därför saa önster), alltså blir inte alla interferensax lika starka p.g.a. diffraktion i varje spalt.
5 5 Skillnaden i optisk väg för punkten P blir: OPD n x n 2 n b c sin b csin Ger ljus rand (konstruktiv interferens) när: 2 sin ax ed =heltal (0, ±1, ±2, ±3) d.v.s. n b c Ger örk rand (destruktiv interferens) när: sin in ed =udda heltal (±1, ±3, ±5) d.v.s. 2n b c Dessuto örkt vid diffraktionsin: sin in ed =heltal (±1, ±2) nb Gitter = ånga spalter regelbundet fördelade Saa diffraktionsönster Salare interferenstoppar ed snabbare variationer Olika våglängder får sina interferenstoppar i olika vinklar Rött bryts er än blått! =1 =1 =1
6 6 Avbildande syste diffraktion i vanliga linser Diffraktionen i en cirkulär lins blir på saa sätt so i ett hål, d.v.s. en Airy disk BEVIS: Vi kan tänka oss att linsen nedan, so gör en avbildning, delas upp i två linser: en so kollierar ljuset, och en so sedan fokuserar det (såso visas i den nedre bilden). Vi tänker oss att aperturstoppet ligger ellan dessa båda linser, och då kan vi räkna ut hur stor vinkeln in blir pga diffraktion: sin in 1,22 nb Då kan vi också räkna ut hur stor bilden av en punkt blir, pga diffraktion: y l sin Ɵ in = 1,22λl n b där y är radien på den suddiga fläcken. Geoetrin b 2lsin u 2l sin u ger även att: y l sin Ɵ in = 1,22λl n b 0,61λ 0,61λ 0,61λ l n 0,61λ n sin u NA n sin u ln NA
7 7 Diffraktionen ger en suddighet i bilden och är den yttersta gränsen för hur skarp en bild kan bli vid en viss storlek på aperturen. Diffraktionsbegränsad betyder att suddigheten från aberrationerna är indre än suddigheten från diffraktion svårare att åstadkoa ju större linsens öppning görs. Stor apertur (AS) ger stora aberrationer (öjliga att inska) och liten diffraktion Liten apertur (AS) ger så aberrationer och stor diffraktion (kan inte inskas) Ett ått på hur bra bildkvalitet ett optiskt syste ger är dess upplösning, d.v.s. förågan att särskilja två punkter so befinner sig nära varandra. Gränsen för upplösning beror på hur stor den suddiga fläcken blir p.g.a. aberrationer och diffraktion. Suddigheten p.g.a. aberrationer kan beräknas från ekvationer, geno att titta på punktspridningsfunktionen (PSF), eller tas utifrån gränsfrekvensen i odulationsöverföringsfunktionen (MTF-kurvan). Suddigheten från diffraktion i en cirkulär lins ges av Airydiskens storlek. Upplösningskriteriu = hur nära kan två suddiga fläckarna vara varandra och ändå ses so två olika? Det beror på... Ett vanligt kriteriu är Rayleighkriteriet (gäller för diffraktionsbegränsade bilder): Vid diffraktion ges insta upplösta w, w,h eller h av: w = 1,22λ n b n (vinkel i radianer) w = n w = 1,22λ nb (brytningslagen ) h in = 1,22λl n b = 0,61λ NA = 0,61λ NA h in = h in = 1,22λl nb = 0,61λ n sin u = 0,61λ NA
8 8 Diffraktion i avbildande syste diffraktiv optik Gitter kan användas istället för prisa för att bryta ljuset och dela upp det i våglängder. O an sätter saan flera prisor ed olika avböjelsevinkel får an en funktion so liknar en vanlig lins. På saa sätt kan an sätta saan flera gitter ed olika täthet (linjer/): Diffraktiv optik = gitter ed varierande täthet so fungerar so linser. y f 1 De olika ordningarna () har olika långa fokallängder och däred olika styrkor (=0, bryts ej): tan F ax, n f y f ax, y b sin c ax, n b c Diffraktiv optik har ovänd kroatisk aberration (rött bryts er än blått): Avböjelsevinkel i prisa: (n prisa 1) toppvinkel ger Abbetal runt 60 sin ger Abbetal runt -3,5 1 Avböjelsevinkel i gitter: ax, n b c Kobinera vanlig lins ed diffraktiv optik (i t.ex. en kontaktlins eller en intraokulär lins) ger fördelar: Bifokalitet Reducerad kroatisk aberration
9 Holografi Att återskapa vågfronten från ett objekt (punktkällan i figuren nedan) ger trediensionella bilder vid korrekt belysning! 9
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så
LABORATION 5 Aberrationer
LABORATION 5 Aberrationer Personnuer Nan Laborationen godkänd Datu Assistent Kungliga Tekniska högskolan BIOX 1 (5) LABORATION 5: ABERRATIONER Att läsa i kursboken: sid. 233-248, 257-261, 470-472, 480-485,
LABORATION 5 Aberrationer
LABORATION 5 Aberrationer Personnuer Nan Laborationen godkänd Datu Assistent Kungliga Tekniska högskolan BIOX 1 (5) LABORATION 5: ABERRATIONER Att läsa i kursboken: sid. 233-248, 257-261, 470-472, 480-485,
Föreläsning 9 10: Bildkvalitet (PSF och MTF)
1 Föreläsning 9 10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Enklast är att avbilda ett objekt beskriva hur
Föreläsning 9-10: Bildkvalitet (PSF och MTF)
1 Föreläsning 9-10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Två vanliga mått är PSF (punktspridningsfunktionen)
Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur.
Diffraktion (Kap. 36) Diffraktion... Fjärilens (Blå Morpho) vingar har en ytstruktur som gör att endast vissa färger (blå) blir synligt under vissa vinklar genom diffraktionseffekter: idag försöker forskare
Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1
Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Fysik (TFYA14) Fö 5 1. Fö 5
Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser.
Föreläsning 7 Kromatisk aberration Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser. Dispersion: n ändras med våglängden
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Övning 9 Tenta
Övning 9 Tenta 014-11-8 1. När ljus faller in från luft mot ett genomskinligt material, med olika infallsvinkel, blir reflektansen den som visas i grafen nedan. Ungefär vilket brytningsindex har materialet?
Övning 9 Tenta från Del A. Vägg på avståndet r = 2.0 m och med reflektansen R = 0.9. Lambertspridare.
Övning 9 Tenta från 2016-08-24 Del A 1.) Du lyser med en ficklampa rakt mot en vit vägg. Vilken luminans får väggen i mitten av det belysta området? Ficklampan har en ljusstyrka på 70 cd och du står 2.0
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Föreläsning 11 (kap i Optics)
45 Föreläsning 11 (kap 5.7-5.8 i Optics) Hittills har vi behandlat avbildningen i sig, dvs. var bilden av ett objekt hamnar och vilken förstoring det blir. Det finns också andra krav man kan ställa på
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Kapitel 35, interferens
Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Gauss Linsformel (härledning)
α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a
FAFF Johan Mauritsson 1. Föreläsningar. Våglära och optik. Världens minsta film. Projekten
Våglära och optik FAFF30 JOHAN MAURITSSON Föreläsningar F10 Fraunhoferdiffraktion F11 Diffraktionsgitter F12 Fresneldiffraktion F13 Matrisrepresentation av polariserat ljus F14 Polariserat ljus F15 Repetition
Diffraktion och interferens
Institutionen för Fysik 005-10-17 Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det
v F - v c kallas dispersion
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
Övning 1 Dispersion och prismaeffekt
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Denna vattenmängd passerar också de 18 hålen med hastigheten v
FYSIKTÄVLINGEN KVLIFICERINGS- OCH LGTÄVLING 3 februari 000 LÖSNINGSFÖRSLG SVENSK FYSIKERSMFUNDET 1. a) Den vattenängd so passerar slangen per sekund åste också passera något av de 18 hålen. Den vattenängd
Ljus. Vågfysik. Diffraktion av ljus? Vattenvågor. Youngs dubbelspaltexperiment Interferens av ljus Jämför med: Vågoptik (del 1) Knight, Kap 22 (del 1)
Ljus Vågfysik Vågoptik (del 1) Knight, Kp (del 1) Historiskt Newton (~1660): ljus är prtiklr ( corpuscles ) ljus (skugg) vs. vttenvågor (diffrktion) Hooke, Huyghens (~1660): ljus är ett slgs vågor Young
Kapitel 36, diffraktion
Kapitel 36, diffraktion Diffraktionsbegreppet, en variant av interferens Hitta min värden för enkelspalt med vidden a Intensitet för enkelspalt med vidden a Två spalter med vidd a och separation d Många
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion
Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt
Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv
1 Avbildningskvalitet Föreläsning 1-2 Brytning i sfärisk yta Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv Brytningslagen (Snells lag): n sin i = n sin i Paraxial approximation (vid
3. Mekaniska vågor i 2 (eller 3) dimensioner
3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s
140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger
Vågrörelselära & Kvantfysik, FK2002 1 december 2011
Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f
Interferens (Kap. 35) Interferens (Kap. 35) Interferens mellan vågor från två punktformiga källor. Skillnad mellan interferens och diffraktion
Interferens (Kap. 35) Interferens (Kap. 35) Varför syns regnbågs färger särskilt bra ifall lite olja är spilld i en vattenpöl på asfalt? Hur tunn måste en oljefim vara för att visa upp sådana regnbågs
OPTIK läran om ljuset
OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte
Diffraktion och interferens
Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att
Luft. film n. I 2 Luft
Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen
Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek
Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,
λ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
Föreläsning 3: Radiometri och fotometri
Föreläsning 3: Radiometri och fotometri Radiometri att mäta strålning Fotometri att mäta synintrycket av strålning (att mäta ljus) Radiometri används t.ex. för: Effekt på lasrar Gränsvärden för UV Gränsvärden
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Fysik TFYA86. Föreläsning 9/11
Fysik TFYA86 Föreläsning 9/11 1 Elektromagnetiska vågor (ljus) University Physics: Kapitel 32, 33, 35, 36 (delar, översiktligt!) Översikt och breddning! FÖ: 9 (ljus) examineras främst genom ljuslabben
Datorlaboration Avbildningskvalitet
Datorlaboration Avbildningskvalitet Datorlaborationenen äger rum i datorsal RB33, Roslagstullsbacken 33 (gula huset närmast busshållplatsen utanför Albanova). Den börjar kl 13.00 (utan kvart). Om möjligt
Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt
Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören
Föreläsning 6: Polarisation
1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför
Hur fungerar AR-skikt? Föreläsning 7 fysikalisk optik
Hur fungerar AR-skikt? Föreläsning 7 fysikalisk optik Tunna skikt AR-behanlingar är tunna skikt. Själva glasögat är ca 10 000 gånger tjockare. Skiktet läggs på båa sior glaset. Storleksorning Storleksorning
Diffraktion och interferens
Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att
Föreläsning 6: Polarisation
1 Föreläsning 6: Polarisation Tre saker behövs för att förstå polaroidglasögon och deras begränsningar. Först måste vi veta vad polarisations är, sedan hur polarisationsfilter fungerar, och till sist varför
5. Elektromagnetiska vågor - interferens
Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor
Ljusets interferens. Sammanfattning
HERMODS DISTANSGYMNASIUM Naturvetenskapsprogrammet Emilia Dunfelt Fysik 2 2017-05-06 Ljusets interferens Sammanfattning I försöket undersöks ljusets vågegenskaper med hjälp av gitterekvationen. Två olika
Alla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
Övning 6 Antireflexbehandling
Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R Vi ser att vågorna är ur fas, vi har
Elektromagnetiska vågor (Ljus)
Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer
Diffraktion och interferens Kapitel 35-36
Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
Laboration 1 Fysik
Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på
Övning 6 Antireflexbehandling. Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra.
Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R 1 R Vi ser att vågorna är ur fas, vi
Kursiverade ord är viktiga begrepp som skall förstås, kunna förklaras och dess relevans i detta sammanhang skall motiveras.
Holografilab I denna lab kommer ett dubbelexponerat, transmissions hologram göras genom att bygga en holografiuppställning, dubbelexponera och framkalla en holografisk film. Dubbelexponerade hologram används
Repetition Ljus - Fy2!!
Repetition Ljus - Fy2 Egenskaper ör : Ljus är inte en mekanisk vågrörelse. Den tar sig ram utan problem även i vakuum och behöver alltså inget medium. Exakt vilken typ av vågrörelse är återkommer vi till
1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00
FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I =
Kap. 33 Elektromagnetiska vågor Den klassiska beskrivningen av EM-vågorna, går tillbaka till mitten av 1800-talet, då Maxwell formulerade samband mellan elektriska och magnetiska fält (Maxwells ekvationer).
Föreläsning 2 (kap , 2.6 i Optics)
5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen
3) Sag formeln ger r=y 2 /(2s). y=a/2=15 mm, s=b c=4,5 mm ger r=25 mm. Då blir F=(n 1)/r=(1,5 1)/0,025=20 D
Facit: en avbildning Sfärisk gränsyta 1) l= 2,0 mm, n=4/3 och n =1. m=l/l =nl /(n l)=1,25 ger l = 1,875 mm. Avbildningsformeln för sfärisk gränsyta L =L+(n n)/r ger r= 2,5 mm. 2) Bilden måste hamna på
About the optics of the eye
About the optics of the eye Peter Unsbo Kungliga Tekniska Högskolan Biomedical and x-ray physics Visual Optics Innehåll Optiska begränsningar i ögat Hur mäter man ögats aberrationer? Hur skriver man vågfrontsrecept?
Ljusets böjning & interferens
Ljusets böjning & interferens Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter 3 Appendix Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen
Harmonisk oscillator Ulf Torkelsson
1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
Diffraktion och interferens
Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel
Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 15. mars 2010
Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 14-19 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)
Instrumentoptik, anteckningar för föreläsning 4 och 5 (CVO kap. 17 sid , ) Retinoskopet
Instrumentoptik, anteckningar för föreläsning 4 och 5 (CVO kap. 17 sid 345-353, 358-362) Retinoskopet Utvecklat från oftalmoskopi under slutet av 1800-talet. Objektiv metod för att bestämma patientens
Föreläsning 8: Linsdesign
1 Föreläsning 8: Linsdesign Linsdesign Att välja linser med rätt krökningsradier på ytorna och av rätt material. Förutom paraxiala egenskaper såsom objekt- och bildavstånd och förstoring, så ställs andra
Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor
FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande
Datorlaboration Avbildningskvalitet
Datorlaboration Avbildningskvalitet Datorlaborationenen äger rum i datorsal RB33, Roslagstullsbacken 33 (gula huset närmast busshållplatsen utanför Albanova). Den börjar kl 13.00 (utan kvart). Om möjligt
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]
TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden
1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)
Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger
Går det att göra vitt ljus koherent?
Går det att göra vitt ljus koherent? Marcin Swillo och Gunnar Björk Institutionen för Tillämpad Fysik AlbaNova Universitetscentrum, KTH 106 91 Stockholm I Fysikaktuellt nummer 4, 2011 skrev en av oss en
Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!
Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien
Våglära och optik FAFF30 JOHAN MAURITSSON
Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion
1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft.
Problem. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. (p) Det finns många förklaringar, till exempel Hewitt med insekten
Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
Handledning laboration 1
: Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen
Hittills har vi bara använt sfäriska ytor, dvs delar av en sfär. Plana ytor är specialfall av sfär (oändlig krökningsradie, r= ).
Föreläsning 5 Astigmatism Hittills har vi bara använt sfäriska ytor, dvs delar av en sfär. Plana ytor är specialfall av sfär (oändlig krökningsradie, r= ). Men det finns andra ytor än sfäriska, t.ex. Toriska
Holografi. Förberedelser. Referensvåg. Konstruktiv interferens. Läs i vågläraboken om holografi (sid ) och hela laborationsinstruktionen.
Holografi Förberedelser Läs i vågläraboken om holografi (sid 370 372) och hela laborationsinstruktionen. Referensvåg 50 Objektvåg Gör följande uppgifter: Lösningarna inlämnas renskrivan vid laborationens
The nature and propagation of light
Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)
Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad
Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010
Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)
Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260
Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion
Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill kunna avbilda genom alla ytor direkt.
Föreläsning 9 0 Huvudplan Önskan: Tänk om alla optiska system vore tunna linser så att alltid gällde! Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill
Hur fungerar AR skikt? Föreläsning 7 fysikalisk optik
Tunna skikt Storleksorning Storleksorning Hur fungerar AR skikt? Föreläsning 7 fysikalisk optik AR behanlingar är tunna skikt. Själva glasögat är ca 10 000 gånger tjockare. Skiktet läggs på båa sior glaset.
Övning 7 Diffraktion och upplösning
Övning 7 Diffraktion och uppösning Diffraktionsbegränsade system Om man tittar på ett objekt genom ett perfekt (aberrationsfritt) optiskt system avgörs hur små saker man kan se av diffraktionen i insen.
Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!
Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var
Assistent: Markku Jääskeläinen Laborationen utfördes: 23 februari 2000
Labrapport: Holografi Assistent: Markku Jääskeläinen Laborationen utfördes: 23 februari 2000 28 februari 2000 Sida 1 Inledning Labrapport: Holografi Teorin för holografi utvecklades redan 1948. Först när
Läs i vågläraboken om holografi (sid ) och sid 5 17 i detta kompendium.
1 Förberedelser Läs i vågläraboken om holografi (sid 370-372) och sid 5 17 i detta kompendium. Gör följande uppgifter: Lösningarna inlämnas renskrivna vid laborationens början till handledaren för kontroll.
Lösningar till repetitionsuppgifter
Lösningar till repetitionsuppgifter 1. Vågen antas röra sig i positiva x-axelns riktning dvs s = a sin(ω t k x +δ). Elongationen = +0,5 a för x = 0 vid t = 0 0,5 a = a sin(δ) sin(δ) = 0,5 δ 1 = π/6 och