Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp)
|
|
- Ingemar Berglund
- för 9 år sedan
- Visningar:
Transkript
1 Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT009 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om -3 personer och godkänt betyg kan endast ges för uppgiften som helhet. En delvis avklarad inlämningsuppgift kan alltså inte tillgodoräknas kommande terminer. Lösningar på uppgiften redovisas i en statistisk rapport. Uppgiften skall lämnas in senast klockan 1.00 fredagen den 5/6 009, via till övningsläraren. Resultatet av vilka grupper som godkänts publiceras i en lista på hemsidan senast fredagen den 1/6, och kan sedan hämtas ut. Eventuell komplettering skall vara inkommen senast klockan 1.00 fredagen den 19/6. Tips! Stressa inte igenom uppgifterna, utan ta dem steg för så minskar risken att ni gör något slarvfel. Var bl.a. observanta på när ni använder varianser respektive standardavvikelser. Datamaterial och programvara Programvara för att att lösa inlämningsuppgifterna är valfritt, men då hjälpkoder (http : ==www:stat:su:se=nstat=inlkod:r) samt datamaterial (http : ==www:stat:su:se=nstat=inluppgift:rdata) åter nns i programspråket R rekommenderas detta program. Studenternas gruppnummer avgör vilka variabler som skall användas. Utförligare instruktioner ges nedan under respektive del. Ett generellt tips är att spara den kod man skriver för att lätt kunna gå tillbaka till den (om man använder R eller något annat program där koden kan sparas vill säga). 1
2 3 DEL 1 TVÅ INDEXFONDER I första delen av inlämningsuppgiften studeras två stycken fonder, låt oss kalla dem fonda och fondb. Fonderna har olika placeringsstrategier men använder båda samma jämförelseindex. FondA är en aktivt förvaltad fond, där förvaltaren har stor möjlighet att välja branscher och bolag tämligen fritt. Målet för fonden är att gå minst lika bra som, eller åtminstone följa sitt jämförelseindex så nära som möjligt. En årlig avgift om % nns inbakad i kursen. FondB är en passivt förvaltad fond som till stor del styrs av en datorprogrammerad algoritm (vilken delvis är baserad på teknisk analys). Denna syftar inte bara till att replikera sitt jämförelseindex, utan även att klara sig bättre. En årlig avgift om 0,5% tas ut, vilken är inbakad i kursen. Vilka variabler som används baseras på det gruppnummer som erhölls första datorövningen. Grupp 1 använder de variabler som hämtas genom kommandot variable[ 1], grupp variable[ ], grupp 3 variable[ 3], osv. 3.1 Beskrivning och jämförelse av index och fonder När data analyseras är det viktigt att först plotta dessa. Tre typer av diagram för att analysera en enskild variabel är histogram, boxplot och tidsserieplot. För två eller era serier är det vanligt att använda tidsserier och spridningsdiagram. Ett ertal mått kan beräknas för att beskriva sina variabler, t ex centralmått såsom medelvärde och median samt spridningsmått såsom varians, kvartilavstånd och variationskoe cient. Korrelationskoe cienten är också ett viktigt sambandsmått. Exercise 1 Diskutera för och nackdelar med histogram, boxplot och tidsserieplot för att undersöka en variabel. Tar något av diagrammen hänsyn till ordningen i data, och vilken betydelse har det när en tidsserie studeras? Vilken/vilka plottar är bäst för att upptäcka extrema observationer (s.k. outliers)? Exercise Jämför serierna fonda t ; fondb t ; och Index t ; t = 1; :::; n, i en tidsserieplott. Behöver någon justering göras för att underlätta jämförelsen? Gör i sådana fall denna.
3 Exercise 3 Visa på lämpligt sätt hur samvariation ser ut, samt styrkan på samvariation mellan Index t och fonda t (respektive Index t och fondb t ). 3. Mått på avkastning Två olika sätt att beräkna avkastning är enkel avkastning (motsvarande e ektiv ränta) SR t = (P t P t 1 )=P t 1 och ränteintensitet R t = (ln P t ln P t 1 ), där P t betecknar pris dag t. Sambandet mellan då två måtten kan skrivas som R t = ln (1 + SR t ). Exercise 4 Visa att det givna sambandet mellan R t och SR t stämmer. Exercise 5 Jämför båda måtten för fondb t, dvs R t (fondb t ) och SR t (fondb t ), med hjälp av boxplottar och histogram. Exercise 6 Diskutera för- och nackdelar med de två måtten i följande situationer: Vid jämförelse av data som hämtats in med olika frekvens (t ex dagsvisa och veckovisa kursnoteringar). Om avkastningen från de ingående delarna av en portfölj (där de ingående delarnas vikter är kända) skall summeras för hela portföljen vid en given tidpunkt. Om avkastningen från olika tidsperioder skall summeras för en och samma tillgång, t ex avkastning år 1 och år för en aktie. 3.3 Fördelning och kon densintervall för R t (Index) Utgå från ränteintensiteten som avkastningsmått för jämförelseindex. Ett icke-parametriskt sätt att bilda kon densintervall är att använda sig av kvantiler. Ett sådant 95%igt intervall motsvaras då av,5% och 97,5% kvantilerna. Exercise 7 Ser R t (Index) ut att följa någon fördelning om ingen hänsyn tas till tidsordningen? Visa gra skt, samt med hjälp av läges- och spridningsmått. Diskutera för- och nackdelarna med de olika central- och spridningsmåtten i detta fall. 3
4 Exercise 8 Jämför ett 95%igt kon densintervall med ett naivt 95%igt kon- densintervall för R t (Index). Baserat på uppgiften innan, är något av de två intervallen att föredra i detta fall? Exercise 9 Antag att vi har en riskfri placeringsmöjlighet (t ex statsskuldväxlar eller statsobligationer) med fast dagsränta motsvarande X% per år. Hur hög är då samvariationen mellan R t (Index) och denna placering? 3.4 Följer fonderna index olika bra? Ett sätt att bedöma hur väl de båda fonderna replikerar index är att se på den kvadrerade avvikelsen i avkastningen mellan index och respektive fond, så kallat tracking error; T E t (F ondx) = [R t (F ondx) Antag här att T E t (F ondx) R t (Index)] ; (t = 1; :::; n). (1); (t = 1; :::; n) kan betraktas som ett slumpmässigt urval från en stor population oberoende av värdet på t. (Dessa antaganden kan självklart ifrågasättas, men vi bortser från detta här). Den genomsnittliga variatonen kan skattas med ^ = 1 n P n P T Et (F onda) + n T Et (F ondb) t=1 t=1 Exercise 10 Ni misstänker att TE (som mått på aktivitetsrisk) är högre för fonda än för fondb. Testa på lämpligt sätt om så är fallet. Tips! Eftersom (1), (t = 1; :::; n) antas vara oberoende så kommer P n T Et (F ondx) (n). 3.5 Exponentiell utjämning och prognoser : t=1 T Et (F ondx) Fokus ligger nu endast på den ursprungliga serien för jämförelseindex, Index t ; (t = 1; :::; n). Tanken är nu att undersöka om denna serie kan modelleras för att senare skapa prognoser av den. Två mått för att avgöra vilken prognosmodell som är bäst är mean absolute deviation MAD = np jy t t=i n 4 ^y t j = np j t j t=i n
5 och mean squared error MSE = np (y t ^y t ) t=i n = np t t=i n : Exercise 11 Skatta de tre nedanstående modellerna och beräkna MAD och MSE. Vilket av måtten påverkas mest av stora (extrema) prediktionsfel? Varför är MAD och MSE så högt i fallet med linjär regression? linjär regression med index som beroende och tiden som förklarande variabel. Tips! En tidsvariabel tid skapas enklast med kommandot tid <- 1:n. exponentiellt utjämnad serie. Sätt alfa=0.3. exponentiellt utjämnad serie med trend (Holt- och Winter s metod). Sätt alfa=0.3 och beta=0. Exercise 1 Gör prognoser (inklusive 95%iga prognosintervall) för de exponentiellt utjämnade metoderna för en och två tidpunkter framåt. Vilka antaganden påverkar tillförlitligheten hos prognoserna? Är tillförlitligheten beroende av prognoslängden? 5
6 4 DEL EVENT STUDIE I denna del studeras huruvida en typ av händelse kan antas påverka värdet på en tillgång, dvs att händelsen ger upphov till en över- eller underavkastning i relation till den förväntade marknadsavkastningen, så kallad abnormal return (AR). Händelsen kan vara unik för den underliggande tillgången, såsom en aktiesplit eller ett uppköp, eller generella såsom en lagändring eller en räntesäkning. Denna typ av studie brukar kallas för Event study, och kan utföras på olika sätt. Vi kommer här att använda oss av en något förenklad variant. Vi kan anta att händelsen i detta fall består utav att ett byte av VD annonserats. Frågan är då huruvida det skickar en signal till marknaden, vilken påverkar den förväntade avkastningen på kort sikt. I den studerade branschen genomfördes 9 stycken byten av VD inom loppet av tio år, men varje grupp erhåller endast ett slumpmässigt urval om N = 36 stycken. Handeln i samtliga aktier antas ha hög likviditet. För att avgöra huruvida avvikande avkastning förekommit på kort sikt används en vecka efter att VD bytet annonseras, vilket sker vid tidpunkten T = 0. Misstanke nns dock om läckage av nyheten varför även avkastningen veckan innan läggs till det fönster som studeras. Fönstret består således av avkastningen perioden T = 5 till och med T = 5, dvs totalt 11 dagar se gur 1. Figur 1. Tidslinje för en Event study Förväntad avkastning för företag I för tidpunkterna inom fönstret beräknas utifrån den så kallade marknadsmodellen, baserat på tidsperioden T = 65 till och med T = 6, dvs n = 60 dagar innan händelsefönstret. Först skattas regressionsekvationen R IT = I + I R MT + IT ; IT N(0; I ); (T = 65; :::; 6) 6
7 för vart och ett av företagen I, där R IT och R MT är aktieavkastningen respektive marknadsavkastningen (mätt som ränteintensitet). Parameterskattningarna ^ I och ^ I används sedan för att skatta den avvikande avkastningen under perioden T = 5 till och med T = 5 som: h AR IT = R IT ^ I + ^ i I R MT ; (T = 5; :::; 5): Varianserna för AR IT vid respektive tidpunkt T = V,V = 5; :::; 5, skattas som 3 ^ AR IV = ^ I n + (R MV M ) 7 P 6 (R MT M ) 5 ; där M = 1 60 T = 65 P 6 T = 65 R MT. För enkelhets skull studeras här endast den summerade avvikande avkastningen (cumulative abnormal return): CAR I = 11 AR IT, vars varians P skattas som ^ CAR I = 5 P V = 5 ^ AR IV. Den genomsnittliga kumulerade avvikande avkastningen för de N företagen beräknas sedan som CAR = 1 CAR NP N I och den skattade variansen som ^ CAR = 1 N i=1 T =1 i=1 NP ^ CAR I. Under nollhypotesen om ingen genomsnittlig kumulativ avvikande avkastning kan antas att CAR t (N 1), dvs t-fördelad med CAR N 1 frihetsgrader. I variablerna cari[,gruppnummer] samt carivar[,gruppnummer] åter nns CAR I och ^ CAR I för N 1 företag. Det saknade företaget motsvarar ert gruppnummer. Aktiekurs och indexkurs för det saknade företaget åter nns i variablerna comp[,gruppnummer] och market[,gruppnummer]. Båda dessa omfattar tidsperioden T = 66; :::; Marknadsmodellen Marknadsmodellen används normalt för att beräkna risken i en aktie (eller portfölj), där anger det genomsnittliga sambandet mellan marknadsavkastningen och aktiens avkastning. Aktie I:s totala risk ( R I ) kan då delas upp i 7
8 systematisk ( R M ) och speci k risk ( I ). Det primära syftet här är dock att använda modellen för prediktion. Exercise 13 Skatta marknadsmodellen för det företag(=ert gruppnummer) som parameterskatttningarna saknas för. Hur stor är den systematiska respektive den speci ka risken i en portfölj endast bestående av denna aktie? Tips! Variablerna market[,gruppnummer] och comp[,gruppnummer] innehåller kurserna för jämförelseindex och aktien och inget annat. Exercise 14 Verkar antagandet om normalfördelade residualer, IT N, att vara uppfyllt? Undersök genom att plotta (ni behöver alltså inte göra något formellt test). 4. CAR och ^ CAR för företag I Nästa steg är att beräkna abnormal return för företag I, samt att skatta tillhörande varianser. Exercise 15 Använd ^ I och ^ I från tidigare uppgift för att beräkna AR IT för perioden T = 5; :::; 5. Exercise 16 Beräkna också ^ AR IV, för T = V,V = 5; :::; 5. På sidan 613 i kursboken ses att detta är prognosticerade varianser. Varför använder vi (de elva framräknade) ^ AR IV istället för ^ I som variansskattning för perioden T = V = 5; :::; 5? Exercise 17 Beräkna slutligen CAR I och ^ CAR I för det företag som dessa saknas för. Tips! Sätt sedan in de framräknade värden i de serier där de saknas. 4.3 Test av CAR Beteckna den förväntade genomsnittligt avvikande överavkastningen med E[CAR] med. Exercise 18 Testa hypotesen H 0 : = 0 mot lämplig mothypotes. Det är ok att skatta CAR med ^ CAR. Lycka till! Se till att hålla inlämningstiden, fredagen den 5/6 klockan 1.00, annars kommer er uppgift inte att rättas alls. 8
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp)
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om 2-3 personer och godkänt
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,
Stockholms universitet, statistiska institutionen Finansiell statistik, GN, 7.5 hp, vt2012 Inlämningsuppgift (1.5hp)
Stockholms universitet, statistiska institutionen Finansiell statistik, GN, 7.5 hp, vt2012 Inlämningsuppgift (1.5hp) Nicklas Pettersson Anvisningar och hålltider Uppgiften löses i grupp om tre personer
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.
Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.
Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)
Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant
Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Finansiell statistik
Finansiell statistik Föreläsning 5 Tidsserier 4 maj 2011 14:26 Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Några frågor och svar rörande inlämningsuppgiften
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Några frågor och svar rörande inlämningsuppgiften Nicklas Pettersson 1 Del 1 Två indexfonder 1.1 3.1 Beskrivning och jämförelse
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008 Skrivtid: 5 timmar (14-19) Hjälpmedel: Miniräknare,
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
EXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Statistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
Datorövning 5 Exponentiella modeller och elasticitetssamband
Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
OBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016
Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra
1 Grundläggande begrepp vid hypotestestning
Matematikcentrum Matematisk statistik MASB11: Biostatistisk grundkurs Datorlaboration 3, 6 maj 2015 Statistiska test och Miniprojekt II Syfte Syftet med dagens laboration är att du ska träna på de grundläggande
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Vad Betyder måtten MAPE, MAD och MSD?
Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann
STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV TVÅ MOMENT: Teori, skriftlig tentamen, 6 högskolepoäng
Statistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information
Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
2 Dataanalys och beskrivande statistik
2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
13.1 Matematisk statistik
13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför
Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2015-08-25 Tentamen Tillämpad statistik A5 (15hp) 2015-08-25 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Ekonomisk styrning Delkurs Finansiering
Ekonomisk styrning Delkurs Finansiering Föreläsning 6 Introduktion till portföljteorin BMA: Kap. 7-8 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningens innehåll Historisk avkastning för finansiella
F11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare.
STOCKHOLMS UNIVERSITET Statistiska institutionen VT 2009 Tatjana Pavlenko och Bertil Wegmann OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, VT 2009 Den obligatoriska inlämningsuppgiften,
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor
Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Kvantitativ forskning C2. Viktiga begrepp och univariat analys
+ Kvantitativ forskning C2 Viktiga begrepp och univariat analys + Delkursen mål n Ni har grundläggande kunskaper över statistiska analyser (univariat, bivariat) n Ni kan använda olika programvaror för
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-12-22 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Jour: Robert Lundqvist,
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet
Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två
732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression
Kvantitativ strategi Univariat analys 2. Wieland Wermke
+ Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde
1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
FACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Sänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Innehåll. Standardavvikelse... 3 Betarisk... 3 Value at Risk... 4 Risknivån i strukturerade produkter... 4
Del 22 Riskbedömning Innehåll Standardavvikelse... 3 Betarisk... 3 Value at Risk... 4 Risknivån i strukturerade produkter... 4 Vid investeringar i finansiella instrument följer vanligen en mängd olika
Linjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Finansiell statistik, vt-05. Allmän information. Johan Koskinen. F1(a) Allmän information
Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F1a) Allmän information Allmän information Vem är jag och de övriga lärarna? Statistiska institutionen: när,
Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys I (SDA l, beskrivande statistik) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Stockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-03-16 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Examinationsuppgift 2014
Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid