Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp)
|
|
- Lars-Göran Månsson
- för 9 år sedan
- Visningar:
Transkript
1 Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om 2-3 personer och godkänt betyg kan endast ges för uppgiften som helhet. En delvis avklarad inlämningsuppgift kan alltså inte tillgodoräknas kommande terminer. Lösningar på uppgiften redovisas i den rapport som nns att ladda ned från hemsidan: nstat/inlmall.doc Uppgiften skall lämnas in senast klockan måndagen den 19/1 2009, till övningsläraren (via ), eller i postfack i B319 eller på plan 7 (mitt emot hissen). Resultatet av vilka grupper som godkänts publiceras i en lista på hemsidan senast onsdagen den 28/1, och den rättade uppgiften nns sedan att hämta hos Nicklas (rum B790). Eventuell komplettering skall vara inkommen senast klockan onsdagen den 11/2. 2 Programvara och datamaterial Det är valfritt vilket program som studenterna vill använda för att lösa inlämningsuppgifterna. Under datortillfällena kommer i första hand datorprogrammet R att användas. Datamaterialet åter nns i den image l för programspråket R som kan hämtas från hemsidan: nstat/inluppgift.rdata Studenternas tilldelade gruppnummer avgör vilka variabler som skall användas. Utförligare instruktioner ges nedan under respektive del. Ett generellt 1
2 tips är att spara den kod man skriver samt bifoga denna i slutet av inlmall.doc (om man använder R eller något annat program där koden kan sparas vill säga). 3 Del 1 Två indexfonder I första delen av inlämningsuppgiften studeras två stycken fonder, låt oss kalla dem fonda och fondb. Fonderna har olika placeringsstrategier men använder båda samma jämförelseindex. FondA är en aktivt förvaltad fond, där förvaltaren har stor möjlighet att välja branscher och bolag tämligen fritt. Målet för fonden är att gå minst lika bra som, eller åtminstone följa sitt jämförelseindex så nära som möjligt. En årlig avgift om 2% nns inbakad i kursen. FondB är en passivt förvaltad fond som till stor del styrs av en datorprogrammerad algoritm (vilken delvis är baserad på teknisk analys). Denna syftar inte bara till att replikera sitt jämförelseindex, utan även att klara sig bättre. En årlig avgift om 0,5% tas ut, vilken är inbakad i kursen. Vilka variabler som används baseras på det gruppnummer som erhölls första datorövningen. Grupp 1 använder de variabler som hämtas genom kommandot variable[ 1], grupp 2 variable[ 2], grupp 3 variable[ 3], osv. 3.1 Beskrivning och jämförelse av fonderna Undersök hur data ser ut genom att plotta de båda fonderna och index, fonda t ; fondb t ; och Index t ; t = 1; :::; n, i samma diagram över tiden. Behöver någon justering göras för att underlätta jämförelsen? Gör i sådana fall denna och plotta om Använd både beskrivande mått och diagram för att beskriv fördelningen utan hänsyn till tidsordningen för fondb. Verkar det nnas några outliers? Avkastningen för fonderna kan beräknas som di erenser diff t = (P t P t 1 )=P t 1 respektive ränteintensitet r t = (ln P t ln P t 1 ). Beräkna på båda sätten och jämför med hjälp av boxplottar Diskutera för- och nackdelar med de två måtten i följande situationer: 2
3 Vid jämförelse av data som hämtats in med olika frekvens (t ex dagsvisa och veckovisa kursnoteringar). Om avkastningen från de ingående delarna av en portfölj (där de ingående delarnas vikter är kända) skall summeras för hela portföljen vid en given tidpunkt. Om avkastningen från olika tidsperioder skall summeras för en och samma tillgång, t ex avkastning år 1 och år 2 för en aktie. Välj sedan att använda ränteintensiteten för den fortsatta analysen. 3.2 Jämförelseindex Beräkna även ränteintensiteten för jämförelseindex r t (Index) och utgå från denna i uppgifterna nedan Ser r t (Index) ut att följa någon fördelning om ingen hänsyn tas till tidsordningen? Visa gra skt, samt med hjälp av läges- och spridningsmått Bilda ett 95%igt kon densintervall för r t (Index). Bilda också ett naivt intervall (motsvarande 2,5% och 97,5% kvantilerna). Presentera intervallen. Baserat på slutsatserna om fördelningen i uppgift 3.2.1, är något av de två sätten att föredra framför det andra? Plotta hur r t (F onda) respektive r t (F ondb) samvarierar med r t (Index) samt beräkna ett mått på samvariationen Ett sätt att bedöma hur väl de båda fonderna replikerar index är att se på sqdr t (F ondx) = [r t (F ondx) r t (Index)] 2 ; (t = 1; :::; n). sqdrt(f ondx) Antag här att ~ 2 2 (1); (t = 1; :::; n) där dessa är oberoende av värdet på t. (Antagandet om oberoende kan ifrågasättas men vi bortser från detta här). Den genomsnittliga variatonen 2 kan skattas med ^ 2 = n P P 1 sqdr 2n t (F onda) + n sqdr t (F ondb). Ni misstänker att detta mått på t=1 t=1 aktivitetsrisk är högre för fonda än för fondb. Testa på lämpligt sätt om så är fallet. Tips! Eftersom P så kommer n t=1 sqdrt(f ondx) 2 sqdr t(f ondx) 2 ~ 2 (n). ~ 2 (1), (t = 1; :::; n) antas vara oberoende 3
4 3.3 Regression och exponentiell utjämning Fokus ligger nu endast på den ursprungliga serien för jämförelseindex, Index t ; (t = 1; :::; n) Skatta följande modeller och presentera tidsplottar av serierna, samt parameterskattningar i en tabell: linjär regression med index som beroende och tiden som förklarande variabel. Tips! En tidsvariabel tid skapas enklast med kommandot tid <- 1:n. exponentiellt utjämnad serie. Sätt alfa=0.3. exponentiellt utjämnad serie med trend (Holt- och Winter s metod). Sätt alfa=0.3 och beta=0.2 Antag att den första modellen sparats i variabel model1. Pröva vad som händer med kommandot plot(model1), respektive summary(model1), för de tre modellerna. Detta behöver dock inte redovisas i uppgiften Är någon av modellerna olämplig att använda? Varför? np np Beräkna mean absoulte deviation M AD = np np (y t ^y t) 2 jy t ^y tj t=i = n j tj t=i n t=i t=i mean squared error MSE = = för att avgöra vilken modell n n som synes vara bäst. Tips! Med kommandona model1$ tted.values eller tted.values(model1)[,1] kan skattade värden erhållas för modellerna. Vilket kommando som fungerar beror av typen av modell. 3.4 Prognoser Gör prognoser (inklusive 95%iga prognosintervall) för de exponentiellt utjämnade metoderna från uppgift för en och två tidpunkter framåt. När ni återfår uppgiften får ni också de faktiska utfallen för indexkursen. 3.5 (ARIMA modeller) Denna del är ej obligatorisk, men har ni gjort den är det ej till nackdel vid totalbedömningen av uppgiften Pröva att plotta autokorrelationsfunktionen acf( Index t ) och partiella autokorrelationsfunktionen pacf( Index t ). Stämmer mönstret in på något av 4 2 t och
5 de som beskrivs på sidan 6-7, del 3 i kompendiumet som tillhör kurslitteraturen? Om autokorrelationsfunktionen i uppgift dör ut långsamt och den första spiken be nner sig nära 1 indikerar detta att serien inte är stationär. Varför? (Detta skulle kunna prövas med t ex ett Dickey-Fuller test, men för att fördjupa sig i det får man läsa en kurs i tidsserier istället!) Pröva istället att di erentierade modellen en gång och plotta sedan acf(di t (Index)) och pacf(di t (Index)). Liknar mönstret något av dem i kompendiumet? 4 Del 2 Event studie I denna del studeras huruvida en typ av händelse kan antas påverka värdet på en tillgång, dvs att händelsen ger upphov till en över- eller underavkastning i relation till den förväntade marknadsavkastningen, så kallad abnormal return (AR). Händelsen kan vara unik för den underliggande tillgången, såsom en aktiesplit eller ett uppköp, eller generella såsom en lagändring eller en räntesäkning. Denna typ av studie brukar kallas för Event study, och kan utföras på olika sätt. Vi kommer här att använda oss av en något förenklad variant. Vi kan anta att händelsen i detta fall består utav att ett byte av VD annonserats. Frågan är då huruvida det skickar en signal till marknaden, vilken påverkar den förväntade avkastningen på kort sikt. I den studerade branschen genomfördes 42 stycken byten av VD inom loppet av fem år, men varje grupp erhåller endast ett slumpmässigt urval om N = 30 stycken. Handeln i samtliga aktier antas ha hög likviditet. För att avgöra huruvida avvikande avkastning förekommit på kort sikt används en vecka efter att VD bytet annonseras, vilket sker vid tidpunkten T = 0. Misstanke nns dock om läckage av nyheten varför även avkastningen veckan innan läggs till det fönster som studeras. Fönstret består således av avkastningen perioden T = 5 till och med T = 5, dvs totalt 11 dagar se gur 1. 5
6 Figur 1. Tidslinje för en Event study Förväntad avkastning för företag I för tidpunkterna inom fönstret beräknas utifrån en marknadsmodell, baserat på tidsperioden T = 65 till och med T = 6, dvs n = 60 dagar innan händelsefönstret. Först skattas regressionsekvationen R IT = I + I R MT + IT ; IT ~N(0; 2 I ); T = 65; :::; 6,för vart och ett av företagen I, där R IT och R MT är aktieavkastningen respektive marknadsavkastningen (mätt som ränteintensitet). Parameterskattningarna ^ I och ^ I används sedan för att skatta den avvikande avkastningen h under perioden T = 5 till och med T = 5 som: AR IT = R IT ^ I + ^ i I R MT ; (T = ; :::; 5). Varianserna för AR IT vid 2 respektive tidpunkt T 3 = V,V = 5; :::; 5, skattas som ^ 2 AR IV = ^ 2 I P 6 T = 65 R MT n + (R MV M ) 2 P 6 (R MT M ) 2 T = , där M = (Detta är alltså en typ av prognos för varianserna, jämför sidan 613 i Lee, Lee och Lee). För enkelhets skull studeras här endast den summerade avvikande avkastningen (cumulative abnormal return): CAR I = 11 AR IT, vars varians P skattas som ^ 2 CAR I = 5 P V = 5 ^ 2 AR IV. Den genomsnittliga kumulerade avvikande avkastningen för de N företagen beräknas sedan som CAR = 1 CAR NP N I och den skattade variansen som ^ 2 CAR = 1 N 2 i=1 T =1 i=1 NP ^ 2 CAR I. Under nollhypotesen om ingen genomsnittlig kumulativ avvikande avkastning kan antas att CAR ~t (N CAR N 1 frihetsgrader. 1), dvs t-fördelad med 6
7 I variablerna cari[,gruppnummer] samt carivar[,gruppnummer] åter nns CAR I och ^ 2 CAR I för N 1 företag undantaget det som motsvarar ert gruppnummer. Aktiekurs och indexkurs för det saknade företaget åter nns i variablerna comp[,gruppnummer] och index[,gruppnummer]. Båda dessa omfattar tidsperioden T 66 till och med T + 5. Tips! Stressa inte igenom uppgifterna, utan ta dem steg för så minskar risken att ni gör något slarvfel. Var bl.a. observanta på när ni använder varianser respektive standardavvikelser. 4.1 Marknadsmodellen Beräkna parameterskattningarna utifrån marknadsmodellen för det företag(=gruppnummer) som dessa saknas för. Tips! Betänk att index[,gruppnummer] och comp[,gruppnummer] endast innehåller kurserna för jämförelseindex och aktien och inget annat. (4.1.2) Denna del är ej obligatorisk, men har ni gjort den är det ej till nackdel vid totalbedömningen av uppgiften. Undersök residualerna för marknadsmodellen. Verkar regressionsantagandena vara uppfyllda? Vad blir ^ 2 AR IV för V = 0? Beräkna CAR I och ^ 2 CAR I för det företag som dessa saknas för. 4.2 Hypotestest Testa på lämpligt sett hypotesen att E[CAR] = 0, dvs att det inte förekommer någon genomsnittlig kumulerad avvikande avkastning. Ni kan skatta 2 med ^2. CAR CAR Antag att en analytiker (som ej haft tillgång till det det kvantitativa materialet) klassi cerat VD-bytena utifrån om de skett under en krissituation eller under mer normala förhållanden. I variabeln analytic[,gruppnummer] åter nns denna information, där ANALY T IC = 1 betecknar en krissituation och ANALY T IC = 0 ett icke krisartat byte. Testa på lämpligt sätt hypotesen att E[CARjAN ALY T IC = 1] E[CARjAN ALY T IC = 0], dvs att den genomsnittliga kumulerade avvikande avkastningen skulle vara större då VD bytet skett vid en krissituation. Antag att grupperna har samma varians, dvs ni behöver inte testa hypotesen [ 2 janaly T IC = CAR 1] = [ 2 janaly T IC = 0]. CAR 7
8 Lycka till! Se till att hålla inlämningstiden, måndagen den 19/1 klockan 12.00, annars kommer er uppgift inte att rättas alls. 8
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp)
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT009 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om -3 personer och godkänt
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,
Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Stockholms universitet, statistiska institutionen Finansiell statistik, GN, 7.5 hp, vt2012 Inlämningsuppgift (1.5hp)
Stockholms universitet, statistiska institutionen Finansiell statistik, GN, 7.5 hp, vt2012 Inlämningsuppgift (1.5hp) Nicklas Pettersson Anvisningar och hålltider Uppgiften löses i grupp om tre personer
Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)
Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Några frågor och svar rörande inlämningsuppgiften
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Några frågor och svar rörande inlämningsuppgiften Nicklas Pettersson 1 Del 1 Två indexfonder 1.1 3.1 Beskrivning och jämförelse
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Datorövning 5 Exponentiella modeller och elasticitetssamband
Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell
Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.
Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann
STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV TVÅ MOMENT: Teori, skriftlig tentamen, 6 högskolepoäng
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
ARIMA del 2. Patrik Zetterberg. 19 december 2012
Föreläsning 8 ARIMA del 2 Patrik Zetterberg 19 december 2012 1 / 28 Undersöker funktionerna ρ k och ρ kk Hittills har vi bara sett hur autokorrelationen och partiella autokorrelationen ser ut matematiskt
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann
Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.
Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008 Skrivtid: 5 timmar (14-19) Hjälpmedel: Miniräknare,
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett
Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016
Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
OBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare
Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information
Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman
STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Vad Betyder måtten MAPE, MAD och MSD?
Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Finansiell statistik
Finansiell statistik Föreläsning 5 Tidsserier 4 maj 2011 14:26 Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
Att välja statistisk metod
Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...
1.1.1 Innehåll Momentet består av 24 föreläsningar som behandlar: Beskrivande statistik, Grundläggande sannolikhetslära. Stokastiska variabler.
Statistiska Institutionen Kursbeskrivning till FINANSIELL STATISTIK, grundnivå, 15 högskolepoäng, VT 2008 Gebrenegus Ghilagaber Nicklas Pettersson (2008 03 31) 1 Allmänt Kursen ger kunskaper om de sannolikhetsteoretiska
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
OBS! Vi har nya rutiner.
KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Provmoment: Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-02-17 Tillåtna hjälpmedel: Miniräknare Tentan består av
OBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/ Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:
1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet
Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Kursbeskrivning för Ekonometri, 15 högskolepoäng
Kursbeskrivning för Ekonometri, 15 högskolepoäng Allmänt Kursen består av fyra moment: I) Ekonometri I, tentamen 6 högskolepoäng II) Ekonometri I, inlämningsuppgift 1.5 högskolepoäng III) Ekonometri II,
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Statistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
TENTAMEN I STATISTIKENS GRUNDER
STOCKHOLMS UNIVERSITET Statistiska institutionen Ellinor Fackle-Fornius TENTAMEN I STATISTIKENS GRUNDER 2 2009-10-29 Skrivtid: 15.00-20.00 Godkända hjälpmedel: Miniräknare, språklexikon Tentamen består
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
OBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 2 november 2011 Tillåtna hjälpmedel: miniräknare
(a) Lära sig beräkna sannolikheter för binomial- och normalfördelade variabler (b) Lära sig presentera binomial- och normalfördelningen gra skt
Datorövning 2 Statistikens Grunder 1 Syfte 1. Lära sig presentera data i tabeller 2. Lära sig beskriva data numeriskt 3. Lära sig presentera data i grafer Exempel (a) Lära sig beräkna sannolikheter för
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
ÖVNINGSUPPGIFTER KAPITEL 7
ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Numeriska svar till övningar
Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, HT2008 Numeriska svar till övningar Nicklas Pettersson 1 Övningslektion6 Tidsserier, Beslutsteori 1.1 Kapitel 18 51) a) slumpmässig
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
1 Grundläggande begrepp vid hypotestestning
Matematikcentrum Matematisk statistik MASB11: Biostatistisk grundkurs Datorlaboration 3, 6 maj 2015 Statistiska test och Miniprojekt II Syfte Syftet med dagens laboration är att du ska träna på de grundläggande
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Något om val mellan olika metoder
Något om val mellan olika metoder Givet är en observerad tidsserie: y 1 y 2 y n Säsonger? Ja Nej Trend? Tidsserieregression Nej ARMA-modeller Enkel exponentiell utjämning Tidsserieregression ARIMA-modeller
DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2014 Avd. Matematisk statistik GB 2014-03-17 DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV. Till den här datorlaborationen
LABORATION 3 - Regressionsanalys
Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 3 - Regressionsanalys I denna laboration ska du lösa ett antal uppgifter i regressionsanalys med hjälp av statistik-programmet
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Lösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
Stockholms Universitet Statistiska institutionen Patrik Zetterberg
Stockholms Universitet Statistiska institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, VT2012 2012-05-31 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
InStat Exempel 4 Korrelation och Regression
InStat Exempel 4 Korrelation och Regression Vi ska analysera ett datamaterial som innehåller information om kön, längd och vikt för 2000 personer. Materialet är jämnt fördelat mellan könen (1000 män och
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-
Laboration 3: Enkel linjär regression och korrelationsanalys
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15
Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?
ÖVNINGSUPPGIFTER KAPITEL 2
ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?
Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland
Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
TENTAMEN PC1307 PC1546. Statistik (5 hp) Onsdag den 20 oktober, Ansvarig lärare: Bengt Jansson ( , mobil: )
GÖTEBORGS UNIVERSITET Psykologiska institutionen TENTAMEN PC1307 PC1546 Statistik (5 hp) Onsdag den 20 oktober, 2010 Tid: 9 00 13 00 Lokal: Viktoriagatan 30 Hjälpmedel: räknedosa Ansvarig lärare: Bengt
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt