Om Monte-Carlo-simulering

Storlek: px
Starta visningen från sidan:

Download "Om Monte-Carlo-simulering"

Transkript

1 1 Om Monte-Carlo-simulering Utdrag ur kompendiet MARKOVPROCESSER Tobias Rydén och Georg Lindgren LUNDS UNIVERSITET och LUNDS TEKNISKA HÖGSKOLA Institutionen för matematisk statistik Lund University and Lund Institute of Technology Department of Mathematical Statistics

2 Appendix A Simulering Ordet simulering kommer av latinets simulo som betyder att låtsas. Med simulering menas att man ersätter verkligheten med en matematisk eller fysisk modell och gör beräkningar eller experiment i modellen istället för i verkligheten. En flygsimulator kan t ex vara ett datorprogram som, med hjälp av fysikaliska lagar och matematiska differentialekvationer, efterliknar vad som händer med ett flygplan. Resultatet kan visas antingen på en datorskärm eller i en fullskalemodell av flygplanet. Monte Carlo-simulering har länge varit ett standardhjälpmedel när man vill undersöka egenskaper hos ett komplicerat system, t ex ett kösystem eller en produktionsprocess. Det har helt enkelt varit nödvändigt att tillgripa simulering eftersom det är alltför komplicerat att exakt beräkna t ex risken för en produktionsstörning i en tillverkningsprocess med slumpmässig efterfrågan, oregelbunden tillförsel av råvaror, planerat maskinunderhåll, felfunktion i maskinparken o dyl. Genom att i ett datorprogram efterlikna systemet och med hjälp av slumptal åstadkomma mängder av händelser av olika typ, kan man få en uppfattning om hur systemet beter sig i det långa loppet. I [4] och [7] finns enkla exempel på denna typ av simulering. Men det är inte bara vid undersökning av komplexa system som Monte Carlo-simulering är användbart. I själva verket har man börjat tillgripa simulering även för att beräkna statistiskt intressanta fördelningar, t ex styrkefunktioner för statistiska test. Den statistiska tekniken vid Monte Carlo-simulering har utvecklats mycket i takt med datortekniken, se t ex [17]. När vi i fortsättningen talar om simulering menar vi alltid Monte Carlosimulering med olika former av slump inblandad. A.1 Slumptal och pseudoslumptal Det första man behöver vid (Monte Carlo-) simulering är slumptal, dvs tal som beter sig som om de vore dragna från en bestämd statistisk fördelning. Det finns fysikaliska fenomen som skulle kunna användas för att ge nästan helt slumpmässiga observationer, t ex elektroniskt brus; se [13]. Vid datorsimulering används nästan uteslutande deterministiska algoritmer som ger helt förutsägbara följder 1

3 APPENDIX A. SIMULERING 2 av tal. Fördelen med detta är att man kan göra om simuleringen med exakt samma slumptal och därigenom studera effekten av att man t ex gör en ändring i det studerade systemet. Nackdelen är att man i regel inte får exakt de fördelningar man önskar sig. Pseudoslumptal En deterministisk följd av tal x 0, x 1, x 2,... som har tillräckligt slumpmässiga egenskaper kallas en följd av pseudoslumptal. Algoritmen som genererar talen kallas en slumptalsalgoritm. Vad som menas med tillräckligt slumpmässiga egenskaper får bero på vilka krav man ställer i den aktuella tillämpningen. I det enklaste fallet kan det t ex räcka med att värdena sprider ut sig på ett önskat sätt i ett intervall. I mera komplicerade fall vill man kanske också ställa krav på förekomsten av vissa kombinationer av tal, t ex förekomst av långa sekvenser av växande tal. Det finns en mängd olika test på slumpmässighet, men det är inte lätt att hitta riktigt bra algoritmer för generering av pseudoslumptal, se [16]. Kongruensalgoritmer Den enklaste formen av slumptalsgenerator är den linjära kongruensalgoritmen, x n+1 = (ax n + b) mod c, (A.1) dvs x n+1 är lika med den rest man får när man dividerar ax n + b med c. Här är a, b och c lämpligt valda heltal. Matlab använder t ex en kongruensmetod baserad på algoritmen x n+1 = (7 7 x n ) mod (2 31 1), som ger ett heltal mellan 0 och Efter division med får man ett pseudoslumptal i intervallet [0, 1). Exempel 1.1. (Mönster i pseudoslumptal) Följande exempel är hämtat ur [15] och visar en av svårigheterna med kongruensmetoden. Eftersom man bildar resten vid division med c, blir slumptalsföljden helt periodisk med perioden (högst) c, och följden upprepas alltså så småningom exakt. Det uppstår emellertid mönster redan i intilliggande par av slumptal. Genererar man slumptal med algoritmen x n+1 = (781 x n + 387) mod 1000 (A.2) kan man få resultat som i Figur A.1a som visar de 500 första paren (x n, x n+1 ). Som synes ligger intilliggande x-värden inte så slumpmässigt utspridda som man skulle önska sig. Med ett enkelt trick kan man erhålla betydligt bättre slumpegenskaper även för en så här enkel algoritm. Man lägger helt enkelt in de av (A.2) genererade slumptalen i en ändlig buffert, och väljer något av talen i bufferten med en annan, liknande algoritm. Figur A.1b visar de 500 första paren när man lagrar

4 APPENDIX A. SIMULERING 3 1 (a) 1 (b) Figur A.1: (a) De 500 första paren (x n, x n+1 ) med algoritmen (A.2). (b) De 500 första paren (x n, x n+1 ) enligt (A.2) modifierad med slumpalgoritmen (A.3). x n+1 i en buffert med 20 tal och man väljer ett av de 20 talen med hjälp av ett pseudoslumptal från en annan slumptalsgenerator, u n+1 = (π + u n ) 5 mod 1. (A.3) När man valt ett tal ur bufferten fyller man i hålet med nästa tal från algoritmen (A.2). A.2 Allmänna fördelningar Inversmetoden Standardmetoden när man skall generera (pseudo)slumptal från en speciell statistisk fördelning är inversmetoden. Sats 1.1. Låt F (x) vara en fördelningsfunktion och definiera inversen F 1 (y) = inf {x : F (x) y}. Om U Rekt(0, 1) så har X = F 1 (U) fördelningsfunktionen F X (x) = F (x). Bevis: Av definitionen av F 1 (y) följer att F 1 (y) > x om och endast om F (F 1 (y)) > F (x). Dessutom gäller F (F 1 (y)) = y för alla y. Vi beräknar sannolikheten P (X > x), dvs 1 F X (x) = P (X > x) = P (F 1 (U) > x) = P (F (F 1 (U)) > F (x)) = P (U > F (x)) = 1 F (x), dvs F X (x) = F (x).

5 APPENDIX A. SIMULERING 4 Exempel 1.2. Exponentialfördelningen med täthetsfunktion f X (x) = λe λx för x 0 och fördelningsfunktionen F X (x) = 1 e λx förekommer flitigt i samband med Markovprocesser. Om U Rekt(0, 1) så är X = λ 1 ln(1 U) exponentialfördelad med väntevärdet λ. Eftersom i detta fall y = F X (x) har inversen x = λ 1 ln(1 y) följer detta av Sats 1.1. Man ser det också genom direkt beräkning av P (X x); observera att 1 U också är rektangelfördelad i (0, 1) om U är det. En diskret variabel kan man simulera genom tabellslagning eller genom att använda något speciellt trick. Exempel 1.3. En ffg-fördelning (för första gången) med parameter p kan simuleras genom att man helt enkelt genererar slumptal U Rekt(0, 1) och räknar det antal slumptal, X, man behöver dra för att för första gången få ett värde större än p. Sannolikhetsfunktionen blir p X (k) = (1 p)p k 1 för k = 1, 2,.... Förkastningsmetoden När det är svårt att beräkna inversen F 1 (y) kan förkastningsmetoden (eng. rejection method) vara ett alternativ. Antag att vi skall generera slumptal X från en fördelning med täthetsfunktionen f(x). Vi vet att arean under kurvan y = f(x) till vänster om linjen x = x 0 betyder sannolikheten att X x 0. Om vi kunde välja en punkt slumpmässigt inom det område som begränsas av x-axeln och kurvan y = f(x) skulle vi få en observation av X. Nu är det inte så lätt att välja en punkt slumpmässigt under en kurva. Hur man gör framgår av följande sats. Sats 1.2. Antag att man kan generera slumptal från en fördelning med täthetsfunktion g(t) (detta kan få ske med vilken tillgänglig metod som helst) och att vi vill generera slumptal från en fördelning med täthetsfunktionen f(t). Antag också att det finns en konstant M > 0 sådan att f(t) M g(t) för alla t. Följande procedur ger då slumptal med tätheten f(x). (i) Generera x med tätheten g(t) och u Rekt(0, 1). (ii) Om f(x) < Mu g(x) så upprepa (i) och välj nya slumptal. (iii) Om f(x) Mu g(x) så acceptera x som slumptal. Bevis: Den beskrivna proceduren för att generera x och u ger en slumppunkt med koordinaterna (x, M ug(x)), som är vald slumpmässigt under kurvan y = M g(x). Om man bara accepterar de punkter som dessutom hamnar under kurvan y = f(x) har man fått något som är slumpmässigt fördelat under y = f(x).

6 APPENDIX A. SIMULERING 5 Simulering av normalfördelningen Det finns en mängd snabba specialmetoder att ta till när man skall generera slumptal från en standardiserad normalfördelning. En allmän normalvariabel Y N(m, σ) kan fås som Y = m + σx där X N(0, 1). Box-Müllers metod: Denna eleganta metod bygger på framställningen av två oberoende normalvariabler i polär form. Om X 1 och X 2 är två oberoende N(0, 1)-variabler, så gäller att R = X X 2 2 och θ = arg(x 1, X 2 ) är oberoende. Här är tydligen R avståndet från punkten (X 1, X 2 ) till origo medan θ är dess argument. Det är lätt att generera två variabler som har de rätta fördelningarna för att fungera som R respektive θ. Om U 1 och U 2 är oberoende och Rekt(0, 1)-fördelade så gäller nämligen att är oberoende och N(0, 1)-fördelade. X 1 = cos(2πu 1 ) 2 ln U 2, X 2 = sin(2πu 1 ) 2 ln U 2, Marsaglias metod: Tag Z 1 och Z 2 oberoende och Rekt( 1, 1). (i) Om Z Z2 2 > 1 så välj nya slumptal. (ii) Om Z Z så sätt X 1 = Z 1 2 ln(z2 1 + Z2) 2, Z1 2 + Z2 2 X 2 = Z 2 2 ln(z2 1 + Z2) 2. Z1 2 + Z2 2 Då blir de godkända värdena oberoende och N(0, 1)-fördelade. Blandad simulering: Om det är viktigt att man får korrekt fördelade slumptal även i de yttre delarna av variationsområdet, t ex när man skall simulera maximat av flera normalvariabler, kan man använda en blandad simulering. Detta innebär att man använder en metod för att generera slumptal i t ex intervallet [ 3, 3] och en annan metod för att få värden utaför detta intervall. Eftersom P (X > 3) = skall man blanda in 0.135% värden större än 3 och likaså 0.135% värden mindre än -3. Dessa extrema värden kan simuleras med någon specialmetod, t ex förkastningsmetoden; se vidare [15]. Inversmetoden: Det finns enkla rationella approximationer till normalfördelningsfunktions invers. Följande lättprogrammerade formel ger ett fel i inversen

7 APPENDIX A. SIMULERING 6 på högst en halv enhet i andra decimalen, se [1, ]. Definiera t(u) = R(t) = ln 1 u 2, t t t 2. Välj sedan u rektangelfördelat i (0, 1) och sätt X = { t(u) R(t(u)) för 0 u < 0.5 t(1 u) + R(t(u)) för 0.5 u < 1 (A.4) A.3 Vägd simulering Vägd simulering, eller LR-simulering, är en användbar och mycket kraftfull variant av Monte Carlo-simulering som kan användas när man vill undersöka hur egenskaperna hos ett stokastiskt system beror av någon av de ingående variablernas fördelning, t ex hur medelkölängden i ett kösystem beror av betjäningstidens fördelning. Metoden innebär att man simulerar systemets egenskaper, t ex kölängd, för betjäningstider genererade som utfall från en viss fix fördelning, och därefter väger samman de olika resultaten efter deras relativa trolighet under de olika alternativa fördelningarna. Mera precist innebär metoden följande. Definition 1.1. Låt f 0 (x) vara en täthetsfunktion och låt f θ (x), θ Θ, vara en familj av täthetsfunktioner med samma stöd som f 0 (x), dvs de är noll på samma mängd. Låt, för varje θ, X θ beteckna en stokastisk variabel med täthetsfunktion f Xθ (x) = f θ (x), och låt g(x) vara en given funktion av utfallet x. Antag att vi vill bestämma väntevärdet l(θ) = E[g(X θ )] = g(x) f θ (x) dx av g(x θ ). Låt X vara en stokastisk variabel med täthetsfunktionen f X (x) = f 0 (x) och låt x 1, x 2,..., x N vara genererade från fördelningen f 0 (x), dvs observationer av X. Med en LR-simulering av l(θ) menas l(θ) = 1 N N k=1 g(x k ) f θ(x k ) f 0 (x k ). Eftersom observationerna x 1,..., x N är gerererade från tätheten f 0 (x) finner man direkt att E[l(θ)] = g(x) f θ(x) f 0 (x) f 0(x) dx = g(x) f 0 (x) dx = l(θ). Vikterna w(x k, θ) = f θ (x k )/f 0 (x k )

8 APPENDIX A. SIMULERING E (λ) λ Figur A.2: Simulerade skattningar E (λ) av E[X] = 1/λ när X är exponentialfördelad. Den heldragna kurvan visar resultatet av en vägd simulering enligt (A.5), den streckade kurvan visar resultatet där varje värde på λ simulerats för sig. Antalet replikat är i båda fallen 100. används alltså till att väga samman de olika utfallen g(x k ), genererade från grundfördelningen f 0 (x), så att resultatet l(θ) i medeltal blir vad man skulle fått om man istället hade simulerat från fördelningen f θ (x). Om det är komplicerat att beräkna funktionen g(x k ) men lätt att beräkna vikterna w(x k ) kan LR-simulering innebära en avsevärd besparing av räknetid. För varje upprepning behöver man ju bara beräkna funktionsvärdet g(x k ) en enda gång, och genom att använda samma värde många gånger (för olika värden på parametern θ) får man ändå en uppskattning av hela funktionen l(θ). Exempel 1.4. Antag att vi skulle vilja bestämma l(λ) = E[X λ ] om X λ är exponentialfördelad med täthetsfunktionen f Xλ (x) = λe λx. Nu vet vi ju redan att E[X λ ] = 1/λ, så i detta fall kan vi lätt kontrollera resultatet. Vi använder LR-metoden och väljer att simulera x 1, x 2,..., x N med grundtätheten f 0 (x) = e x. Som skattning av l(λ) skall vi ta l(λ) = 1 N N k=1 x k λe λx k e x k (A.5) Figur A.2 visar resultatet av två simuleringar med N = 100 replikat vardera, dels med vägd simulering, dels med oberoende upprepningar för varje λ-värde.

9 Litteratur [1] M. Abramowitz & I. A. Stegun: Handbook of Mathematical Functions. National Bureau of Standards, [2] W. J. Anderson: Continuous-Time Markov Chains. Springer-Verlag, [3] P. J. Bickel & K. A. Doksum: Mathematical Statistics. Holden-Day, [4] G. Blom: Sannolikhetsteori med tillämpningar, Bok A. Studentlitteratur, [5] G. Blom: Statistikteori med tillämpningar, Bok B. Studentlitteratur, [6] D. J. Daley & D. Vere-Jones: An Introduction to the Theory of Point Processes. Springer-Verlag, [7] J. E. Englund, J. Lanke, G. Lindgren & T. Persson: Sannolikhetsteori med tillämpningar; Övningsbok. Studentlitteratur, [8] G. E. Forsythe, M. A. Malcolm & C. B. Moler: Computer Methods for Mathematical Computations. Prentice Hall, [9] G. R. Grimmet & D. R. Stirzaker: Probability and Random Processes, 2nd ed. Oxford University Press, [10] A. Gut: An Intermediate Course in Probability Theory. Springer-Verlag, [11] R. Kindermann & J. Laurie Snell: Markov Random Fields and their Applications. American Mathematical Society, [12] P. A.W. Lewis: A branching Poisson process model for the analysis of computer failure patters. Journal of the Royal Statistical Society B 26, , [13] G. Lindgren & H. Rootzén: Stationära stokastiska processer. Lund, [14] N. Metropolis, et al.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, , [15] B. J. T. Morgan: Elements of Simulation. Chapman and Hall,

10 LITTERATUR 9 [16] S. K. Park & K. W. Miller: Random Number Generators: Good ones are hard to find. Communications of the ACM 32, , [17] R. Y. Rubinstein & A. Shapiro: Discret Event Systems: sensitivity analysis. Wiley, [18] D. L. Snyder & M. I. Miller: Random Point Processes in Time and Space, 2nd ed. Springer-Verlag, 1991.

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Föreläsning 3, Matematisk statistik Π + E

Föreläsning 3, Matematisk statistik Π + E Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Föreläsning 8 för TNIU23 Integraler och statistik

Föreläsning 8 för TNIU23 Integraler och statistik Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad

Läs mer

Simulering. Introduktion. Exempel: Antag att någon kastar tärning

Simulering. Introduktion. Exempel: Antag att någon kastar tärning Simulering Introduktion Eempel: Antag att någon kastar tärning a) Vad är sannolikheten att på fyra kast få två seor? b) Vad är sannolikheten att på kast få mellan och 5 seor och där summan av de 5 första

Läs mer

Monte Carlo-metoder. Bild från Monte Carlo

Monte Carlo-metoder. Bild från Monte Carlo Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall

Läs mer

Exempel för diskreta och kontinuerliga stokastiska variabler

Exempel för diskreta och kontinuerliga stokastiska variabler Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

17.1 Kontinuerliga fördelningar

17.1 Kontinuerliga fördelningar 7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Statistiska begrepp och metoder som används i Successivprincipen

Statistiska begrepp och metoder som används i Successivprincipen Statistiska begrepp och metoder som används i Successivprincipen Generellt har statistiska procedurer antingen varit överförenklade eller opraktiska för projektteamen. Resultatet blir inte trovärdigt i

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

1 Föreläsning V; Kontinuerlig förd.

1 Föreläsning V; Kontinuerlig förd. Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

FÖRELÄSNING 4:

FÖRELÄSNING 4: FÖRELÄSNING 4: 26-4-9 LÄRANDEMÅL Poissonfördelning Kontinuerliga slumpvariabler Kontinuerlig uniform fördelning Exponentialfördelning Samla in data Sammanställ data Gissa modell för datan Testa modellen

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

Föreläsning 2, FMSF45 Slumpvariabel

Föreläsning 2, FMSF45 Slumpvariabel Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet

Läs mer

Matematisk statistik 9 hp Föreläsning 4: Flerdim

Matematisk statistik 9 hp Föreläsning 4: Flerdim Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

Transformer i sannolikhetsteori

Transformer i sannolikhetsteori Transformer i sannolikhetsteori Joakim Lübeck 28-11-13 För dig som läst eller läser sannolikhetsteori (fram till och med normalfördelningen) och läst eller läser system och transformer (till och med fouriertransform)

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER

SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda

Läs mer

Föreläsning 3. Sannolikhetsfördelningar

Föreläsning 3. Sannolikhetsfördelningar Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs

Läs mer

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO- Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk

Läs mer

Stokastiska processer och simulering I 24 maj

Stokastiska processer och simulering I 24 maj STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd. Matematisk statistik 24 maj 2016 Lösningar Stokastiska processer och simulering I 24 maj 2016 9 14

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

Lärmål Sannolikhet, statistik och risk 2015

Lärmål Sannolikhet, statistik och risk 2015 Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5 LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan

Läs mer

Stokastiska processer och simulering I 24 augusti

Stokastiska processer och simulering I 24 augusti STOCKHOLMS UNIVERSITET LÖSNINGAR MATEMATISKA INSTITUTIONEN Stokastiska processer och simulering I Avd Matematisk statistik 24 augusti 2016 Lösningar Stokastiska processer och simulering I 24 augusti 2016

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

Historiskt moment i Numerisk analys 1 Monte Carlo-metoden

Historiskt moment i Numerisk analys 1 Monte Carlo-metoden Historiskt moment i Numerisk analys 1 Monte Carlo-metoden Grupp 2 Jonas Haulin Kathrin Mattiasson Mateo Tarazona Elin Vinger Bakgrund och teori Monte Carlo-metoden är en metod för statistisk simulering.

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer