REPETITION 1 A. a) naturligt tal b) rationellt tal c) reellt tal. 0, p. a) b) 0,09 c) 0, x + 11 b) 16 3z = 1 c) 7y 6 = 14 3y

Storlek: px
Starta visningen från sidan:

Download "REPETITION 1 A. a) naturligt tal b) rationellt tal c) reellt tal. 0, p. a) b) 0,09 c) 0, x + 11 b) 16 3z = 1 c) 7y 6 = 14 3y"

Transkript

1 REPETITION A Vilket eller vilka av talen nedan är ett a) naturligt tal b) rationellt tal c) reellt tal 7 0,67 9 p Skriv talen i grundpotensform. a) b) 0,09 c) 0,000 Lös ekvationerna. a) 5 = 5 x + b) z = c) 7y 6 = 4 y 4 Skriv proportionerna i enklaste form. a) 5 : b) 4 : 0 c) : 0 5 a) Beräkna värdet av uttrycket 5a b för a = och b =. b) Ge exempel på några värden på a och b som gör att uttryckets värde är lika med 0. 6 a) b) c) 7 Vilket tal ligger mitt emellan a) och b) 5 och c) 4 och En flaska läsk kostar x kr. Om du pantar tomflaskan får du tillbaka y kr. Teckna ett uttryck för vad läsken kostar sammanlagt om du köper flaskor och pantar alla. 9 a) ( ) + ( 5) b) ( 5) c) ( ) ( 5) Förenkla uttrycken. a) 6x (x + 7) b) (a b) 5a c) (x + )(x ) a) b) / 4 c) 4 7 I en talföljd kan talen beräknas med uttrycket 5 + 4n. a) Vilket är tal nummer 45? b) Vilket nummer har talet 9 i talföljden? Tre tal förhåller sig som : : 7. Det största talet är 4 större än summan av de andra talen. Vilka är de tre talen? MATEMATIKBOKEN KOPIERING TILLÅTEN Z LÄRARHANDLEDNING MATEMATIKBOKEN Z LÄRARHANDLEDNING LIBER AB LIBER AB 44

2 REPETITION A 4 Hur mycket har priset på TV:n sänkts om det nya priset är 960 kr? Prissänkt med 0 % 5 Världens största landdjur är den afrikanska elefanten som kan väga 6 kg. Det minsta däggdjuret är flimmernäbbmusen, som kan väga,5 kg. Hur många flimmernäbbmöss behövs för att de sammanlagt ska väga lika mycket som en elefant? Titta på talpyramiden. Beräkna summan i varje rad. Försök att komma på ett samband mellan radens nummer och summan. a) Fyll i tabellen. b) Teckna ett uttryck för summan i rad n. c) Använd uttrycket och räkna ut summan av talen i rad Rad 4 5 Summa 7 MATEMATIKBOKEN KOPIERING TILLÅTEN Z LÄRARHANDLEDNING MATEMATIKBOKEN Z LÄRARHANDLEDNING LIBER AB LIBER AB 45

3 FACIT REPETITION A a) b) Alla tal utom π. c) Alla tal a), 5 b) 9 c), 4 a) x = 0 b) z = 5 c) y = 4 a) : b) : 5 c) : 5 a) b) T ex a = och b = 5 6 a) 7 b) 5 c) a) 4 b) c) 5 (0,65) (x y) kr 9 a) 7 b) c) a) 4x 7 b) a b c) 6x x a) 5 b) c) 4 a) 75 b) Nummer 6 4, och kr 5,4 miljoner st (,4 6 ) a) Rad Summa 4 5 b) n c) Lösningar till några uppgifter Antag att talen är x, x och 7x. 7x 4 = x + x 7x 4 = 5x x = 4 x = 7 x = 7 = 4 x = 7 = 7x = 7 7 = 49 Svar: Talen är 4, och Antag att TV:n från början kostade x kr. Sänkningen är då 0,x kr. x 0,x = 960 0,7x = 960 x = 00 Sänkning: ( ) kr = 40 kr Svar: Priset har sänkts med 40 kr. 6 5 Antal:,5 =,4 6 - = 6,5 ( ) = Svar: Det behövs,4 miljoner flimmernäbbmöss. MATEMATIKBOKEN KOPIERING TILLÅTEN Z LÄRARHANDLEDNING MATEMATIKBOKEN Z LÄRARHANDLEDNING LIBER AB LIBER AB 46

4 REPETITION B Skriv talen utan tiopotens. a) 7 b) - c). 5 d),7 - Vilket tal saknas i talföljden? 9? 9 Lydia är år och Lucas är 5 år. Vilken är proportionen mellan deras åldrar? Svara i enklaste form. 4 Förenkla uttrycken. a) 6y y b) 6y y c) 6y y 5 Vilket av uttrycken i rutan är ett tal som är a) 5 mindre än y b) en femtedel av y 5 y y 5 + y 5y 5 y 5 6 Teckna ett uttryck för a) 0 % av x kr b) 7 % av z hästar 7 Vilket av talen i rutan är lika med a) 4 b) 5 c) 5 0,4 0,5 0,4,4 5,,5 Lös ekvationerna a) 4x 9 = 6x 7 b) 6(y ) + y = 4 9 Beräkna och svara i grundpotensform. 7 a) 7 4 b) 5 c) Förenkla uttrycken. a) 6x x(x ) b) ab (a + b)(4b a) Ersätt frågetecknen med negativa tal så att likheterna stämmer. a) (?) + (?) = b) (?) (?) = MATEMATIKBOKEN KOPIERING TILLÅTEN Z LÄRARHANDLEDNING MATEMATIKBOKEN Z LÄRARHANDLEDNING LIBER AB LIBER AB 47

5 REPETITION B Antalet kulor bildar ett mönster. a) Teckna ett uttryck för antalet kulor i figur n. b) Vilket nummer har den figur som innehåller kulor?? Figur Figur Figur Figur n Jochen bor på en ö i skärgården och har en besvärlig resa till skolan. Först går han en sträcka som är / av hela vägen. Han åker sen båt / och cyklar /4 av vägen. Resten av vägen,, km, åker han skolbuss. Hur långt har Jochen till skolan? 4 André sparar på enkronor och femkronor. Sammanlagt har han 60 mynt och de är värda 90 kr sammanlagt. Hur många mynt har André av varje sort? 5 Vår galax, Vintergatan, beräknas innehålla stjärnor. Vi antar att en stjärna på 0 miljoner stjärnor har en planet med samma förutsättningar för liv som jorden. Hur många planeter med liv skulle det i så fall kunna finnas i Vintergatan? I en dunk finns det liter oljeblandad bensin. Oljehalten är 5 %. Blandningen ska spädas med ren bensin så att oljehalten sjunker till 4 %. Hur mycket ren bensin ska hällas i dunken? MATEMATIKBOKEN KOPIERING TILLÅTEN Z LÄRARHANDLEDNING MATEMATIKBOKEN Z LÄRARHANDLEDNING LIBER AB LIBER AB 4

6 FACIT REPETITION B a) b) 0,0 c) d) 0,07 5 : 4 a) 5y b) 6y c) 6 5 a) y 5 b) 5 y 6 a) 0,x kr b) 0,07z hästar 7 a) 0,5 b) 0,4 c),5 a) x = 4 b) y = 5 9 a),4 7 b) 4 4 c), a) x + 6x b) a 4b a) T ex ( ) + ( ) = b) T ex ( ) ( ) = a) + n b) Nummer 60, km 4 45 enkronor och 55 femkronor st,5 liter Lösningar till några uppgifter Mgn: Går: = Båt: Cyklar: 4 = 4 Skolbuss: 4 = 9 9 av vägen till skolan är, km. av vägen till skolan är, / 9 km = = 0, km Hela vägen är 0, km =, km. Svar: Jochen har, km till skolan. 4 Antag att André har x st enkronor. Då är antalet femkronor (60 x). Enkronorna är värda x kr. Femkronorna är värda 5(60 x) kr. x + 5(60 x) = 90 x x = 90 0 = 4x x = = 55 Svar: André har 45 enkronor och 55 femkronor. 5 0 miljoner = Antal planeter: = 000 = = Svar: Det kan finnas 000 jordliknande planeter i Vintergatan. Antag att man ska hälla x liter ren bensin i dunken. I dunken finns det 0,05 liter = = 0,5 liter olja. Efter det att x liter bensin hällts i dunken så innehåller den (x + ) liter oljeblandad bensin. Volymen olja är 0,04(x + ) liter. 0,04(x + ) = 0,5 0,04x + 0,4 = 0,5 0,04x = 0, x =,5 Svar: Man ska hälla,5 liter ren bensin i dunken. MATEMATIKBOKEN KOPIERING TILLÅTEN Z LÄRARHANDLEDNING MATEMATIKBOKEN Z LÄRARHANDLEDNING LIBER AB LIBER AB 49

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

x kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)

x kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4) REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna

Läs mer

c) a) b) c) tre och en halv miljon

c) a) b) c) tre och en halv miljon REPETITION 1 A 1 Hur många procent av figurerna är gula a) b) c) 2 Hur mycket är a) 10 % av 7 kr b) 30 % av 600 kr c) 7 % av 20 000 kr 3 Skriv bråken i enklaste form. a) 4 28 b) 1 2 c) 16 40 4 Skriv i

Läs mer

REPETITION 3 A. en femma eller en sexa?

REPETITION 3 A. en femma eller en sexa? REPETITION 3 A 1 Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sexa? 2 Eleverna i klass 8C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden. Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18 Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna

Läs mer

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen

Läs mer

en femma eller en sexa?

en femma eller en sexa? REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.

Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter. LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när

Läs mer

REPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9.

REPETITION 3 A. a) b) a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3. av 60 kg. a) b) c) b) a) 6 8. a) b) b) 0,075 c) d) 0,9. DEL I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. Beräkna sedan omkrets och area av

Läs mer

Läxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger.

Läxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger. ledtrådar LäxOr Läxa Rita en bild med de lyktstolparna. Hur många mellanrum är det? Läxa 8 På nedre halvan ska talen adderas tv å och två och på den övre halvan ska talen subtraheras. Läxa 6 7 Rita en

Läs mer

Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås

Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås Taluppfattning 1. Vilket av följande tal är minst? Ringa in ditt svar. 2,9 2,98 2,998 2,889 2,89 (1/0) 2. Hur många miljoner visar miniräknaren? Svar: (1/0) 3. Vilket tal pekar pilen på? 31 32 33 Svar:

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010. 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7

1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010. 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7 1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7 b) 7500 g c) 0,7 ton b) 33-6,5. (10,8-7) 4 En bil drog

Läs mer

Övningsblad 5.1. Skriva och beräkna värdet av uttryck. 1 Matilda är m år. Vad betyder det om hennes bror är

Övningsblad 5.1. Skriva och beräkna värdet av uttryck. 1 Matilda är m år. Vad betyder det om hennes bror är Övningsblad 5.1 Skriva och beräkna värdet av uttryck 1 Matilda är m år. Vad betyder det om hennes bror är a) m + 3 år b) x 5 år c) 2x år 2 Janne är x år. Skriv ett uttryck för åldern på en person som är

Läs mer

+ 1 R 2.. Lös ut a och beräkna sidlängden hos en liksidig triangel med arean 35 cm 2

+ 1 R 2.. Lös ut a och beräkna sidlängden hos en liksidig triangel med arean 35 cm 2 . Lös ut m ur F = mv r. Lös ut r ur F = π mr T. Lös ut v o ur s = v o t + at. Lös ut v o ur v = vo v 5. Lös ut R ur R = R + R. Arean hos ett klot ges av formeln A = πr. Lös ut r och beräkna radien hos

Läs mer

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar 2 Beräkna a) 0,7 50 d) 45110 b) 1000 0,04 e) 78,2/100 c) 0,08 0,5 f) 555511000 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 4

Läs mer

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.

Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

myran 35 mm lång. a) Hur lång är myran i verldigheten? b) Hur lång skulle myran vara om den avbildades i skala 4 : l?

myran 35 mm lång. a) Hur lång är myran i verldigheten? b) Hur lång skulle myran vara om den avbildades i skala 4 : l? LÄXA 5 1 Lös ekvationerna a) 2x+ll=14 b) 12+2y=13-y 2 Skriv utan tiopotens a) 3,4.10 3 b) 7,1. 10-4 3z c) 8=1 c) 5,6 10-1 3 I en biologibok är en myra avbildad i skala 5 : l. På bilden är myran 35 mm lång.

Läs mer

Högskoleverket NOG 2007-10-27

Högskoleverket NOG 2007-10-27 Högskoleverket NOG 2007-10-27 Uppgifter 1. En kock försöker att skala en potatis i så långa remsor som möjligt. Hur lång är den längsta remsa som kocken lyckas åstadkomma? (1) Medianlängden av de tre längsta

Läs mer

Formula 9 facit. 1 Beräkningar med positiva tal 1

Formula 9 facit. 1 Beräkningar med positiva tal 1 Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25

Läs mer

Sammanfattningar Matematikboken Z

Sammanfattningar Matematikboken Z Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Innehåll. 1 Allmän information 5. 4 Formativ bedömning Diagnoser och tester Prov och repetition Kommentarer till kapitlen 18

Innehåll. 1 Allmän information 5. 4 Formativ bedömning Diagnoser och tester Prov och repetition Kommentarer till kapitlen 18 Innehåll Allmän inormation Seriens uppbyggnad Lärobokens struktur Kapitelinledning Avsnitten Pratbubbleuppgiter Aktivitet Resonera och utveckla Räkna och häpna 0 Sammanattning 0 Blandade uppgiter 0 Kan

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall Koll på 2A matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 1Volym Vad rymmer mest? Ringa in. Vad rymmer minst? Ringa in. Ta fram tre olika föremål som rymmer olika mycket. Rita

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Bok: Z (fjärde upplagan) Kapitel : 1 Taluppfattning och tals användning Kapitel : 2 Algebra

Bok: Z (fjärde upplagan) Kapitel : 1 Taluppfattning och tals användning Kapitel : 2 Algebra PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 1 Taluppfattning och tals användning Kapitel : 2 Algebra Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ

Läs mer

Planering för kurs A i Matematik

Planering för kurs A i Matematik Planering för kurs A i Matematik Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs A Antal timmar: 90 (80 + 10) I nedanstående planeringsförslag tänker vi oss att A-kursen studeras på 90 klocktimmar.

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035

1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 % = 00 0 % = 0 20 % = 5 25 % = 4 50 % = 2 % = 0,0 0 % = 0,0 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 -----------------------------------------------------------------------------------------------------------------

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Övningsuppgifter i matematik. Del 1 Grunderna i matematik Del 2 Uppgifter i läkemedelsberäkning

Övningsuppgifter i matematik. Del 1 Grunderna i matematik Del 2 Uppgifter i läkemedelsberäkning Övningsuppgifter i matematik. Del Grunderna i matematik Del Uppgifter i läkemedelsberäkning Del Grunderna i matematik. Hur många centimeter är en meter?. Vilken enhet saknas? a) Bilen är bred. b) Kastrullen

Läs mer

Övningsprov 3 inför lilla nationella Ma1 NA18 ht18

Övningsprov 3 inför lilla nationella Ma1 NA18 ht18 Övningsprov 3 inför lilla nationella Ma1 NA18 ht18 Del A Utan räknare Endast svar krävs 1. Beräkna: a) 3 4 2 3 b) 12 10 13 6 10 2 4 10 c) f ( 4) om f ( x) = 3x 4 d) 15% av 60 kr 2. Bestäm vinklarna u och

Läs mer

4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?

4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket

Läs mer

FACIT. Version 2015-02-25

FACIT. Version 2015-02-25 FACIT Version -- Version -- Tankenöt Vilka bilder är likadana som bilden i rutan? Siv. Tankenöt Hur många djur gömmer sig bakom draperiet? Ringa in. Sally Charlie Isa Kurre KOPIERING FÖRBJUDEN STUDENTLITTERATUR

Läs mer

!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6

!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6 LÄXA. 1 1 En fönsterruta har måtten 0,8 m x 1,5 m. Vilken är rutans a) omkrets b) area 2 Räkna utan miniräknare 62000 7,5 a) 0,6 700 b) 200 c) 0,05 3 Beräkna a) 7 + (-3) d) (-7) (-3) b) 7 (-3) e) (-7)

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster

Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén

Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén Matematikboken UTMANINGEN Lennart Undvall Kristina Johnson Conny Welén ISBN 978-91-47-08519-4 2011 Lennart Undvall, Kristina Johnson, Conny Welén och Liber AB Projektledare och redaktör: Sara Ramsfeldt

Läs mer

Efter varje uppgift är det utskrivet hur många E-poäng uppgiften ger och vilka förmågor du kan visa.

Efter varje uppgift är det utskrivet hur många E-poäng uppgiften ger och vilka förmågor du kan visa. Diagnos mönster & samband, År 8, E-nivå Efter varje uppgift är det utskrivet hur många E-poäng uppgiften ger och vilka förmågor du kan visa. Hjälpmedel: papper och penna. 1. a) Vilken punkt har koordinaterna

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna. Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av

Läs mer

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.

7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt. Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex

Läs mer

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)

Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p) 1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)

Läs mer

'. '.,.':p ~~~?t:~~;s:!l

'. '.,.':p ~~~?t:~~;s:!l LÄXA 7 1 Avrunda till två decimaler a) 0,098 b) 13,574999 c) 0,0051 d) 1,7051 2 Skriv i grundpotensform a) 8000 b) 0,0005 c) 0,012 d) 675000 3 Hur mycket får man betala för 4 hg rökt korv, om priset per

Läs mer

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4 LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200

Läs mer

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall Koll på 1B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Hälften och dubbelt av antal, strategier Rita dubbelt så många. Skriv. 2 4 6 4 8 5 Minska med 1. Öka med 1. 1 + 1

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Läxa nummer 1 klass 3

Läxa nummer 1 klass 3 Läxa nummer 1 klass 3 Skriv ditt namn i triangeln som ett konstverk! Det här är din läxbok för klass 3. Du kommer att få en läxa i veckan. Där det står X skriver du vilket tal X är under eller över X:et.

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA

DIGITALA VERKTYG ÄR INTE TILLÅTNA DIGITALA VERKTYG ÄR INTE TILLÅTNA 1. Vilket av följande tal är det bästa närmevärdet till 6,35 3,2? Ringa in ditt svar. 0,203 2,03 20,3 203 2030 (1/0/0) 2. En formel för momsberäkning är inlagd i ett kalkylblad.

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB.

8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB. Tal Sida av 9 a) 000 9 000 c) 000 000 d) 9 000 000 e) 000 000 000 f) 9 000 000 000 a) 00 000 c) 00 000 d) 00 000 000 99 78 79 9 000 000 000 00 000 000 000 00 000 00 000 7 a) 8 kb 80 tusen B 80 kb 8 miljoner

Läs mer

Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever SVENSKA. Algebra Matematik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Algebra Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Algebra åk 3 MA 1. Fortsätt att rita mönstret a) b) 2. Figurerna blir större och

Läs mer

Lärandemål E-nivå årskurs 9

Lärandemål E-nivå årskurs 9 Lärandemål E-nivå årskurs 9 Detta är vad ni behöver kunna för att nå E för kunskapskraven om begrepp och rutinuppgifter i matematik när ni slutar nian. Ni behöver klara av alla dessa moment. För att nå

Läs mer

Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar =

Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar = Repetition A Del I a) 976 + 2 = b) 07 233 = c) 6 = 2 Vilket av talen är störst? a) 0,3 eller 0,3 b),9 eller,2 c) 7 0 3 Hur stor andel av figuren är vit? a) b) c) eller 7 00 Skriv talen i decimalform. a)

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med ettor och hoppas att du kommer att trivas mycket bra hos oss. Din första termin på gymnasiet kommer att

Läs mer

Facit till Tema Matematik 5

Facit till Tema Matematik 5 Facit till Tema Matematik 5 Till dig som använder detta facit: Sidnumren hänvisar till sidan i arbetsboken. På en del frågor står det Elevens eget svar i facit. Det beror på att man kan svara på olika

Läs mer

UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans.

UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans. UTTRYC ÅLDER Linda är 5 år äldre än Amanda. Amanda är x år. 5. ALGEBRA P M a) Skriv ett uttryck för hur gamla de är tillsammans. b)om de tillsammans är 29 år, hur gammal är var och en? E orrekt svar (a)

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

TAL OCH RÄKNING HELTAL

TAL OCH RÄKNING HELTAL 1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot

Läs mer

a) b) 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg

a) b) 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg REPETITION 3 Del I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. eräkna sedan omkrets

Läs mer

Planering för Matematik kurs E

Planering för Matematik kurs E Planering för Matematik kurs E Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs E Antal timmar: 60 (0 + 0) I nedanstående planeringsförslag tänker vi oss att E-kursen studeras på 60 klocktimmar.

Läs mer

3-10 Potenser i problemlösning Namn:..

3-10 Potenser i problemlösning Namn:.. 3- Potenser i problemlösning Namn:.. Inledning Du har nu lärt dig en hel del om potenser i kapitel 3-9. Du vet vad som menas med ett potensuttryck och hur man räknar med dem. Nu skall du lära dig mer om

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

PISA och problemlösning

PISA och problemlösning PISA och problemlösning I PISA-undersökningen om problemlösning visade det sig att våra svenska elever presterade under genomsnittet av elever inom OECD. Det är alltså samma negativa bild som den undersökning

Läs mer

Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6

Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6 Repetitionsuppgifter på Höstens Matematik NV12, 2012, Origo Ma1c, kap. 1-3, 5-6 Kap.1 Tal E1. På tallinjen nedan är två tal A och B markerade med ett kryss. Ange talen. Endast svar fordras. a) b) (Nationellt

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

1. 4 + 6 3 = Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0)

1. 4 + 6 3 = Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0) 1. 4 + 6 3 = Svar: (1/0) 2. Vad är hälften av 1 1 2? Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0) 8 4. Andreas har 4 km till skolan. Hur många minuter

Läs mer

Centralt innehåll i matematik Namn:

Centralt innehåll i matematik Namn: Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.

Läs mer

8 Facit till Bashäfte X

8 Facit till Bashäfte X Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din

Läs mer

LÅc)CA. .~,'.,~c... _...

LÅc)CA. .~,'.,~c... _... LÅc)CA.~,'.,~c... _... 1 Beräkna med huvudräkning a) Hur mycket får man tillbaka på en femtiokronorssedel, om man handlar för 44,50 kr? b) Hur mycket är 1/4 av 800 kr? c) Ett frimärke kostar 3,85 kr. Vad

Läs mer

Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp

Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp Ämnesprov, läsår 2013/2014 Matematik Delprov B Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in et minsta talet i varje ruta. Ringa in et största talet i varje ruta. Vilken siffra visar halva figuren? Skriv talraen. Prima kapitel, talen,,,, och,

Läs mer

5 Beräkna med huvudräkning

5 Beräkna med huvudräkning 2 Beräkna a) Hur mycket får man tillbaka på en hundralapp, om man handlar för 65 kr? b) Kristina är 13 år. Morfar är 63 år äldre. Hur gammal är morfar? c) Benny köper tio kolor. De kostar 50 öre styck.

Läs mer

Synnöve Carlsson Gunilla Liljegren Margareta Picetti. Matte. Borgen. Direkt. Facit BONNIERS

Synnöve Carlsson Gunilla Liljegren Margareta Picetti. Matte. Borgen. Direkt. Facit BONNIERS Synnöve Carlsson Gunilla Liljegren Margareta Picetti Matte Direkt Borgen Facit 6B BONNIERS Innehåll Kapitel 6 3 Kapitel 7 6 Kapitel 8 9 Kapitel 10 14 Läxor 15 Repetition 18 Kapitel 9 11 BONNIER UTBILDNING

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs A som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Arbetsblad 5:1 Ekvationer

Arbetsblad 5:1 Ekvationer :1 Ekvationer 1 a) x + 1,4 6,8 b) x + 186 300 c) x +,2 9,4 d) x + 87, 93, x, 4 x 1 1 4 x 4, 2 x 6 2 a) x + 341 37 b) x + 0,71 2,0 c) x + 166 819 d) x +,29 13,8 x 1 9 6 x 1, 3 4 x 6 3 x 8, 1 3 a) x 23 141

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit

Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8

Läs mer

Ordlista 1A:1. siffra. tal. antal. räkneord. Dessa tio ord ska du träna. Öva orden

Ordlista 1A:1. siffra. tal. antal. räkneord. Dessa tio ord ska du träna. Öva orden Ordlista 1A:1 Öva orden Dessa tio ord ska du träna siffra En siffra är ett tecken. Dessa är siffrorna: 0, 1, 2, 3, 4, 5, 6, 7, 8 och 9 tal antal räkneord Ett tal skrivs med en eller flera siffror. Talet

Läs mer

Facit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm.

Facit Läxor. hur många areaenheter som får plats cm 2 cm och 12 4 cm samt 3 cm 16 cm och 6 cm 8 cm. Läa a) b) c) a) 6,8 b) 8, c) 66 a),99,09,,8,8 b) 0,0 Hon får 9 kr tillbaka. a) 00 b) 00 c) 00 6 a) 0 längder b) 7 m c) kr 7 Decimaltecknet skiljer heltalen från decimaltalen. Placeringen avgör om siffran

Läs mer

Matematikboken. Facit. Lennart Undvall Svante Forsberg Christina Melin. Matematikboken 4a Facit 2008 Författarna och Liber AB

Matematikboken. Facit. Lennart Undvall Svante Forsberg Christina Melin. Matematikboken 4a Facit 2008 Författarna och Liber AB Matematikboken Facit 4a Lennart Undvall Svante Forsberg Christina Melin 2008 författarna och Liber AB Redaktion: Ove Aspeling Liber AB, 113 98 Stockholm Tfn 08-690 92 00 Hemsida: www.liber.se Kundservice

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal.

Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans. Formelblad och linjal. Del B Del C Provtid Hjälpmedel Uppgift 1-11. Endast svar krävs. Uppgift 1-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

Några problemlösnings och modelleringsuppgifter med räta linjer

Några problemlösnings och modelleringsuppgifter med räta linjer Några problemlösnings och modelleringsuppgifter med räta linjer Dessa uppgifter är indelade i två delar utan miniräknare och med miniräknare. Försök gärna lösa någon av varje del istället för alla på en

Läs mer

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG

matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan

Läs mer

KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer!

KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! vardag KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! Vi reser idag mer och mer och ofta längre och längre. Redan för 40 år sedan var vägtrafiken det dominerande

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

DOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera

DOP-matematik Copyright Tord Persson Potenser. Matematik 1A. Uppgift nr 10 Multiplicera Potenser Uppgift nr Skriv 7 7 7 i potensform Uppgift nr 2 Vilket tal är exponent och vilket är bas i potensen 9 6? Uppgift nr 3 Beräkna värdet av potensen (-3) 2 Uppgift nr 4 Skriv talet 4 i potensform

Läs mer

Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3)

Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3) Känguru 2013 Student sida 1 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer