Datorövningar i funktionalanalys och harmonisk analys
|
|
- Elias Lundgren
- för 8 år sedan
- Visningar:
Transkript
1 Datorövningar i funktionalanalys och harmonisk analys Sven Spanne 28 september 21 1 Normer och approximation Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden av begrepp, satser och metoder krävs en hel del arbete med konkreta exempel. Huvudsakligen får man arbeta med papper och penna, men i en hel del fall kan matematikprogram som Maple och Matlab öka förståelsen. Vid användning av funktionalanalytiska metoder på praktiska problem är man också förr eller senare tvungen att gripa till numeriska beräkningar. Använd Matlab för att lösa nedanstående uppgifter. Om du ser ett Matlabkommando som du inte känner igen så använd den inbyggda hjälpen (. Jag har genomgående försökt använda formelkursiv, t ex f, i analytiska formler och skrivmaskinsstil, alltså, för motsvarande Matlabuttryck. De färdiga Matlabskript som används nedan finns att hämta på kursens vävsida:!" # $&% #! ( *,! $*,-. ( & Känn dig inte bunden till förslagen nedan utan använd din fantasi för fler experiment. Normer Avsikten med detta avsnitt är att ge ett intuitivt begrepp om normerna p, främst p = 1, 2 och, med hjälp av Matlab. För enkelhetens skull arbetar vi främst på intervallet I = [,1]. Normerna definieras då av f 1 = f (x dx, ( 1 f 2 = f (x dx 2 2, ( 1 f p = f (x dx p p, (1 p < f = max f (x. x 1 1
2 # I Matlab representerar vi funktionerna f med vektorer, erhållna genom sampling. Kommandot *, *!, ger värdet av en vektor med ekvidistanta element om! är definierat innan (den sista 1-an är i regel en approximation. Funktionen f (x = sin(x, x 1 representeras då av vektorn (#. Hur väl funktionen f av en kontinuerlig variabel kan representeras av den diskreta vektorn behandlar vi på ett annat ställe, men ibland måste man tänka för att tolka Matlabfigurerna på rätt sätt. L p -normerna av funktioner är definierade med hjälp av integraler. Diskret motsvaras dessa av summor,varvid man måste ta hänsyn till steglängden vid samplingen. Om antalet element i vektorn är så sätter vi $, $, $, $ # Det bifogade Matlabskriptet utför dessa beräkningar (i något allmännare form. Det finns ett inbyggt Matlabkommando $, men det skiljer sig på en skalfaktor (ej delat med från $. Uppgift1: I skriptet # # som ser ut så här # # "! # $$#$ #" #!#& # " & %& # " # #&! $ & ( % "% & ( * *! * *, *,,-! $ (#./ #,*1 2,,3" (# 4 #&! & finns några lämpliga variabler och funktioner definierade. Kör det (med Matlabkommandot # # och se efter vilka variabler du har (med (. Rita upp funktionen med. Uppgift2: Läs skriptet 5& #& $ & $ 6 % %& #& ( ($# & ( 2 &% #&! $& ( & & %&!% & # $# 87#"9,:;<= =.(( # # #" ( (,!,A 1?, -!! % CB, -D
3 # # # $?,! $# &5! $ # # $ (& $! (& #$./, $,, $&$#! (&,, $& - # $ $! # #& $ $,! ( #& # (! "# ( %& % -D (i Matlab med & $ och tag reda på vad det gör, så bra att du kan förklara det för någon annan. Vi skall nu först se på maximumnormen. Uppgift3: Olikheten f g ε kan också skrivas eller ekvivalent ε f (x g(x ε för alla x f (x ε g(x f (x ε för alla x. Tolka denna olikhet geometriskt och rita upp motsvarande figur med kommandot & (#! 2! #& för något lämpligt valt #&(. (Obs! Matlabs är fixerat och kan ej ändras:. Vi skall nu se hur funktioner som bara skiljer sig lite i olika normer kan se ut. Uppgift4: Bilda (i Matlab en»liten» regelbunden och analytiskt definierad funktion h, t ex h(x =.1cos(5x. Sätt g = f h. Rita upp f och g i samma figur med &. Rita sedan även upp gränser i maximumnormen, med 6 $ 6 2 # / 2 2 #"!$& Tag sedan en mera oregelbunden funktion med Matlabkommandot ( bildar normalfördelade slumptal *,!$& (#.. Gör om figurerna med detta. Vi skall nu se lite på L p -normer. Uppgift5: Definiera funktioner genom #. / B&*, 2 B*,, 5 5($3(*1 $ & #$./,
4 Rita upp dem. Jämför deras 1-, 2- och -normer genom att beräkna kvoterna h 1 h 2, h 1 h och h 2 h På vilka funktioner märks det mest att normerna inte är ekvivalenta? Uppgift6: Normering av en funktion f innebär att den ersätts med f / f. Normera funktionerna i föregående uppgift med avseende på -normen och rita upp dem i samma figur: $ $ # 6 $ $ #", Gör sedan om samma sak med L 2 och L 1 -normerna. Lägg märke till hur olika det ser ut. Olika normer tar fasta på olika egenskaper hos funktionerna. Uppgift7: Beteckningen kanske förbryllar någon. Vi skall nu motivera den experimentellt. Beräkna för funktionerna 15 $ ovan $ med större och större och jämför med #". (Tar man alltför stora p så blir det dock problem med flyttalen. Gissa vad gränsvärdet kan vara! (För kontinuerliga f finns det en allmän formel. Om intervallängden inte är 1 så måste man dock kompensera för denna på ett lämpligt ställe. Uppgift8: Det Matlab arbetar med är ju följder (element i R n, och där vet vi att alla normer är ekvivalenta, speciellt även 1-, 2- och -normerna. Hur går detta ihop med att funktionsnormerna inte är ekvivalenta? Ledning: En sak att tänka på är vad som händer med konstanterna i olikheterna t ex a f 1 f b då n blir stort. Vilka vektorer f maximerar respektive minimerar kvoten i olikheten? Grovt talat kan man säga att den praktiska gränsen mellan ändligt och oändligt är ganska flytande och beror bland annat på den precision man räknar med. Kontraherande avbildningar Kontraktion och Lipschitzkonstanter Om f är en funktion på M så definieras Lipschitzkonstanten för f genom f (x f (y Lip( f = sup x y M x y Om detta supremum är ändligt så sägs f vara Lipschitzkontinuerlig. Om Lip( f < 1 så sägs f vara kontraherande. Detta är samma sak som att f (x f (y r x y, r < 1 för alla x M (och Lipschitzkonstanten är det minsta r som duger i olikheten. Vi skall nu undersöka differenskvoter med hjälp av Matlab. Sätt q f (x,y = f (x f (y. x y
5 För att få fram en sådan differenskvotsfunktion i Matlab (och allmännare funktioner av två variabler (x,y krävs ett knep. Detta återfinns i skriptet &,& som ser ut så här: *,,-! $ (#./ ( - &&, - # 2 &,& # 2, >2 & &, && 2,,. Variablerna och & representeras med matriser, resp && som varierar längs rader respektive kolonner. Uppgift9: Sätt! * * och kör &&. Titta på de bildade variablerna och &,&, dels direkt och dels genom plottning,, resp *&&. Det senare ritar upp ytorna z = x resp z = y. Sätt nu! * *, och kör åter &&. Uppgift1: Plotta ytorna z = x 2 y 2 och z = sin(xy. Bilda först., &,& och visa sedan upp den med.. Gör sedan samma med. #, $&&. Uppgift11: Skriv ett skript # %& som givet en funktionsvektor beräknar den diskreta motsvarigheten till differenskvoten q f. Gör beräkningen genom $ ( - && - & # % && 2 2 && Använd det på funktionerna sin(2 x och e x. Beräkna också Lipschitzkonstanten för dessa funktioner (i intervallet x 1, genom att bestämma maximum och minimum av differenskvoterna. (Gör du på rätt sätt så stör inte de odefinierade diagonalelementen. Jämför med de Lipschitzkonstanter som du beräknar analytiskt. Fixpunkter för skalära funktioner Om funktionen f är kontraherande på ett intervall I, så konvergerar iterationen x n1 = f (x n mot den entydigt bestämda fixpunkten. Uppgift12: Funktionen f (x =.5 cos(x är säkert kontraherande på hela R. Använd Matlab för att lösa ekvationen x =.5 cos(x. En treraders lösning, med illustration av konvergensen, är *6 */,-, * * $, 5($, / $
6 Uppgift13: Funktionen f (x = cos x är inte kontraherande på R (varför ej? men iterationen konvergerar i alla fall för alla begynnelsevärden. Rita upp f (x och förklara varför. Beräkna lösningen till f (x = cosx. Uppgift14: Försök samma sak med f (x = λcos(x, med λ = 1.2 och λ = 1.4. Genom att rita upp funktionerna cos(x och x/λ i samma diagram övertygar man sig lätt om att i bägge fallen finns bara en fixpunkt. Vilken är skillnaden? Lineära avbildningar Vi skall nu se på lineära avbildningar i R n. Här finns tre olika normer värda att nämna, 1, 2 och. Som bekant definieras 1-operatornormen av en matris genom Ax 1 A 1 = max x x 1 och är alltså det minsta talet med egenskapen Ax 1 x 1 för alla x i R n och motsvarande för de andra normerna.om f (x = Ax b där b är en fix vektor, så är ju f (x f (y = A(x y och operatornormen är precis Lipschitzkonstanten för f. I Matlab finns en funktion $ som beräknar 1-, 2- och inf-normerna för matriser. Se matristeorin för exakta formler i dessa fall. Uppgift15: Låt [.1.7 A =.1.8 Beräkna de tre operatornormerna för A. Kan du hitta någon vektor med Ax = A x i de tre fallen? Uppgift16: Låt A vara matrisen i föregående uppgift och sätt f (x = Ax b med b = [1 2] T. Är f kontraherande i någon av dess normer? Vilken slutsats kan dras om konvergens av iterationen x n1 = f (x n? Testa iterationen numeriskt i Matlab. Uppgift17: Ersätt A i föregående uppgifter med [ ].1.1 A =.7.8 och gör samma räkningar. Fixpunkter för operatorer Fixpunktsiteration i en variabel är förhållandevis enkel att analysera. I R n blir det svårare, om man har olineära ekvationer. För exempel på detta hänvisas till Olineära dynamiska system. Här går vi direkt på ett ännu svårare fall, nämligen fixpunktsiteration i funktionsrum (fast Matlab tvingar oss att approximera med R n, med n 1 till 2. ]
7 Vi skall syssla med olineära differentialekvationsproblem. Randvärdesproblemet d2 u dx 2 = F(u, u( = = u(1 uppträder i olika praktiska sammanhang. Ett besläktat lineärt problem d2 u dx 2 = f (x, löses som bekant av integraloperatorn u( = = u(1 u(x = k(x,y f (ydy där k är Greens funktion för problemet, { x(1 y, x y k(x,y = = min(x(1 y,y(1 x y(1 x, y x 1 där det senare uttrycket kan vara praktiskt vid programmering. Den olineära ekvationen u = F(u kan alltså överföras i den olineära integralekvationen u(x = k(x, yf(u(y dy. Detta är en form som kan lämpa sig för numerisk iteration. Vi ser nu först på det lineära problemet. Uppgift18: Skriv ett Matlabskript som beräknar en approximation till integraloperatorn T f (x = k(x,y f (ydy. Representera funktioner med (kolonnvektorer som tidigare och k(x, y med en matris, som med tidigare beteckningar erhålls i Matlab med #, 2 &&, && 2D,, där är antalet element i vektorerna (och 1/n svarar mot dy i integralen. Beräkna, där svarar mot den konstanta funktionen 1, och jämför med den exakta lösningen till u = 1, u( = = u(1. Uppgift19: Beräkna de tre operatornormerna för (vilka är numeriska approximationer till operatornormerna för operatorn T. För vilka värden på λ är operatorn F(u = λtu kontraherande, enligt dessa beräkningar? (Svar: λ < k. Jag avbryter nu Matlab med lite teori. Vi kan nu försöka lösa randvärdesproblemet u = λu f (x, u( = u(1 =
8 på följande sätt. Skriv om den som u = T (λu T f = λtu T f och iterera. Detta fungerar garanterat om operatorn är kontraherande. Då har ekvationen en entydig lösning, som kan erhållas med iteration. Ett specialfall är intressant. Att randvärdesproblemet u = λu, u( = u(1 = har lösning u är ju detsamma som att motsvarande differentialoperator har ett egenvärde λ. Vi ser alltså att det minsta egenvärdet är 1/ T. Men just för detta problem är ju minsta egenvärdet = π 2. Vilken numerisk olikhet för π 2 ger våra räkningar? Uppgift2: Lös ekvationen u = λu 1, u( = = u(1 med t ex λ = ±.2 numeriskt genom att iterera utgående från en godtycklig startfunktion. Jämför gärna med motsvarande exakta lösning. Vi skall nu se på ett riktigt olineärt problem. Låt F(u = λsin(u och se på ekvationen u = λsin(u, u( = = u(1. Den kan överföras till integralekvationen u(x = λ k(x, y sin(u(y dy. Eftersom sin(u sin(v u v för alla u och v så är integraloperatorn på höger sida kontraherande om λ k < 1. Vi vet t ex att k 1 = 1/8. Uppgift21: Försök att lösa integralekvationen u(x = λ k(x, y sin(u(y dy. genom iteration med något begynnelsevärde. Försök med olika värden på λ från till 1. Rita upp iterationerna. Vad händer? Jämför med det lineära fallet. Att öka värdet av λ är betyder i den mekaniska tolkningen att öka trycket, och lösningarna u betyder möjliga jämviktslägen. I det lineära fallet har integralekvationen u(x = λ k(x, yu(y dy bara lösningen u = för λ < π 2, medan det för λ = π 2 finns oändligt många lösningar, storleken på utböjningen är obestämd. För λ > π 2 (och < 4π 2 finns återigen bara en lösning. Detta är ju mekaniskt ganska orimligt. Den olineära modellen
9 ger här vettigare resultat. För λ > π 2 (men inte alltför stort finns det tre jämviktslösningar. En av dessa är naturligtvis u =. Den är instabil. De två andra är utböjda och spegelbilder till varandra. Uppgift22: Sätt λ = 1 och iterera med begynnelsevärde u = 1 (till exempel. Rita upp varje iteration. Vad sker? Uppgift23: Automatisera iterationerna. Använd till exempel följande skript: 6,-, * * " $ # $ 6 &( $ Det går också bra att skriva in detta på en kommandorad. Testa vad som händer för olika λ-värden över och under π 2. Nära gränsen λ = π 2 blir konvergensen mycket långsam (ty kontraktionsfaktorn är nära 1. Öka då antalet iterationer från 1. Vill man få en överblick över vad som händer för olika λ kan det vara tydligare att bara spara t ex maximum av jämviktsutböjningen (eller någon annan norm, och rita upp den som funktion av λ. Uppgift24: Följande skript ritar upp maximumvärdet av den stabila jämviktslösningen som funktion av λ: "$ $# %,,, "$ $$# %(,-, * * * " $ #,"* *6 $ $, $ "$ $# $ # % Kör det och titta på resultatet. Var verkar instabiliteten av nollösningen uppträda? Uppgift25: Ändra λ-intervallet i skriptet till ett kortare med tätare delningspunkter för att få bättre uppfattning om stabilitetsgränsen. Öka sedan antalet iterationer, om du har en tillräckligt snabb dator. Hur skiljer sig utseendet? Vad kan det bero på? Som överkurs kan man sedan följa de stabila utböjda lösningarna för allt större λ-värden. Här inträder ett nytt fenomen.
10 Uppgift26: Tag λ ungefär = 25. Kör ett antal iterationer för hand och titta på funktionerna. Vad sker? Det som händer är följande. Det finns för detta λ-värde inte längre någon stabil jämviktslösning. I stället konvergerar iterationerna mot en stabil 2-cykel, vilket innebär att vi har två funktioner u 1 och u 2 sådana att u 2 = T (u 1 och u 1 = T (u 2, och iterationerna växlar mellan dessa två. Hitta på ett lämpligt sätt att illustrera detta fenomen i ett diagram liknande det du gjort i de två föregående uppgifterna.
Normer och approximation
1 Normer och approximation 1.1 Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden av begrepp, satser och metoder krävs en hel del arbete med konkreta exempel. Huvudsakligen
Datorövning(ar) i funktionalanalys och harmonisk analys
Datorövning(ar) i funktionalanalys och harmonisk analys Sven Spanne & Anders Holst 5 september 26 1 Normer och approximation Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).
Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.
Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Egenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
8. Euklidiska rum 94 8 EUKLIDISKA RUM
94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Anteckningar för kursen "Analys i en Variabel"
Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
DERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
Lösningar av uppgifter hörande till övning nr 5.
Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m
Existens och entydighet för ordinära differentialekvationer
Existens och entydighet för ordinära differentialekvationer Michael Björklund, f-mib@f.kth.se Grundläggande begrepp Definition 1 Ett begynnelsevärdesproblem för ordinära differentialekvationer har följande
LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M
TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma
Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T
Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
M0038M Differentialkalkyl, Lekt 15, H15
M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Existens och entydighet
Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
Newtons metod och arsenik på lekplatser
Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare
R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002
RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions
ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål
ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Komplexa vektorrum U och underrum V U. Linjära höljet: V = span(v 1, v 2,..., v N
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
1 Analysens grunder. Ordlista för Funktionalanalys 1. avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion.
Ordlista för Funktionalanalys 1 (28 augusti 2002) 1 Analysens grunder avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
TMV225 Inledande Matematik M
MATEMATIK Hjälpmedel: Inga, inte ens räknedosa Chalmers tekniska högskola Datum: 201-08-28 kl. 8.0 12.0 Tentamen Telefonvakt: Anders Martinsson Telefon: 070 088 04 TMV225 Inledande Matematik M Tentan rättas
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
12. SINGULÄRA VÄRDEN. (u Av) u v
. SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer
Lineära system av differentialekvationer
Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems
Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.
Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden
Isometrier och ortogonala matriser
Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället
Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 13 jan 2014 Examinator: Karl Lundengård Skrivtid:
NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Egenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
Projekt Finit Element-lösare
Projekt Finit Element-lösare Emil Johansson, Simon Pedersen, Janni Sundén 29 september 2 Chalmers Tekniska Högskola Institutionen för Matematik TMA682 Tillämpad Matematik Inledning Många naturliga fenomen
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Oändligtdimensionella vektorrum
Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Exempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Numerisk Analys, MMG410. Lecture 10. 1/17
Numerisk Analys, MMG410. Lecture 10. 1/17 Ickelinjära ekvationer (Konvergensordning) Hur skall vi karakterisera de olika konvergenshastigheterna för halvering, sekant och Newton? Om f(x x k+1 x ) = 0 och
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Euler-Mac Laurins summationsformel och Bernoulliska polynom
46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Numerisk lösning till den tidsberoende Schrödingerekvationen.
Numerisk lösning till den tidsberoende Schrödingerekvationen. Det är enbart i de enklaste fallen t ex när potentialen är sträckvis konstant som vi kan lösa Schrödingerekvationen analytiskt. I andra fall
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Exempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
Sätt t = (x 1) 2 + y 2 + 2(x 1). Då är f(x, y) = log(t + 1) = t 1 2 t t3 + O(t 4 ) 1 2 (x 1) 2 + y 2 + 2(x 1) ) 2 (x 1) 2 + y 2 + 2(x 1) ) 3
Lektion 7, Flervariabelanalys den februari 000 9 Bestäm Taylorserien till funktionen log( + x + y + xy) i punkten (0, 0) Vi kan faktorisera argumentet till logaritmen och förenkla funktionen log( + x +
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.
Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra TATA/TEN) 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
7 Extremvärden med bivillkor, obegränsade områden
Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,
Föreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid: