Existens och entydighet

Storlek: px
Starta visningen från sidan:

Download "Existens och entydighet"

Transkript

1 Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47

2 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland lösa en differentialekvation y = f (,y) och erhålla y som ett uttryck i kända funktioner. Genom att välja lämpligt värde på en integrationskonstant får man ofta också en unik lösning y() som uppfyller givna begynnelsedata y( ) = b. Denna procedur fungerar dock endast i undantagsfall. Man är i regel hänvisad till numeriska metoder för att lösa differentialekvationer. Detta är egentligen inget nytt; även en eplicit lösning, som eempelvis y = e till ekvationen y = y, måste man beräkna numeriskt när man vill se en graf eller ha en tabell. Innan man använder eller konstruerar en numerisk lösningsmetod måste man emellertid veta att det finns en lösning och helst också att den är unik. Det är den typen av resultat som denna föreläsning handlar om. 7. En integralekvation I föreläsning 6 visades att om f : I R n R n är en kontinuerlig funktion så är y : I R n är en kontinuerligt deriverbar lösning till begynnelsevärdesproblemet y = f (,y), y( ) = b (7.1) om och endast om y är en kontinuerlig lösning till integralekvationen y() = b + f (t,y(t))dt (7.) I stället för att lösa begynnelsevärdesproblemet (7.1), kan vi alltså lösa integralekvationen (7.) och det är faktiskt enklare. 7.3 Iteration Den metod vi skall använda är att börja med en enkel gissning som vi sedan successivt förbättrar. Ett första och naturligtvis mycket naivt försök att lösa (7.) är att prova med funktionen y 0 () = konstant = b som i alla fall satisfierar begynnelsedata. Insatt i (7.) ger detta y 1 () = b + f (t,b) dt vilket förstås sällan är lika med y 0 om. Vi ger emellertid inte upp, utan sätter in den nya funktionen y 1 (), och får i nästa varv y () = b + f (t,y 1 (t))dt

3 7.3. ITERATION 49 Upprepas detta blir resultatet en funktionsföljd {y n ()}! n=0 som, förhoppningsvis, allt bättre och bättre approimerar en lösning. Denna erhålles i så fall som gränsvärdet y() = lim n! y n (). Låt oss se hur detta fungerar i ett välkänt fall där vi redan vet hur lösningen ser ut. Eempel 36 Lös ekvationen y = ay med y(0) = 1. Lösning: Om vi startar med y 0 () = 1 får vi succesivt och vi ser att y 1 () = 1 + adt = 1 + a y () = y 3 () = 1 + a 0. y n () = 1 + a + (a) a(1 + at)dt = 1 + a + (a) ( ) 1 + at + (at) + (a)3 lim y n () = n! dt = 1 + a + (a) + + (a)n n!! " n=0 (a) n = e a n! vilket stämmer med vad vi hade anledning att vänta oss. + (a)3 För att komma vidare med den allmänna integralekvationen (7.) måste vi precisera förutsättningarna om f. Det räcker därvid inte att förutsätta att f är kontinuerlig om vi vill ha en unik lösning. Sats 37 Om f : I R n R n är kontinuerlig och dessutom lipschitzkontinuerlig i den andra variabeln, så att det för någon konstant L gäller att f (,y 1 ) f (,y ) L y 1 y för alla I och y 1,y R n, så har integralekvationen (7.) en kontinuerlig lösning y() för varje b R n sådan att f (,b) är begränsad på I och I. Bevis. Vi måste visa att den rekursivt definierade funktionsföljden {y n ()}! n=0 där y 0 () = b och y n+1 () = b + f (t,y n (t))dt, n = 0,1,,...

4 50 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET konvergerar mot en kontinuerlig gränsfunktion y() och dessutom att följande kalkyl är tillåten Vi konstaterar att y() = lim y n+1 () = b + lim n! n! = b + = b + 0 y n () = b + lim f (t,y n (t))dt n! f (t,y(t))dt n " k=1 [y k () y k 1 ()] f (t,y n (t))dt och dessutom att för k =,3,... gäller y k () y k 1 () = [ f (t,y k 1 (t)) f (t,y k (t))]dt vilket ger uppskattningen y k () y k 1 () f (t,y k 1 (t)) f (t,y k (t)) dt L y k 1 (t) y k (t) dt För k = 1 och > gäller dessutom y 1 () b f (t,b) dt f (t,b) dt M ( ) där M = sup I f (,b). Vi får nu succesivt y () y 1 () L y 3 () y () L y 1 (t) b dt ML (t )dt = ML ( ) y (t) y 1 (t) dt ML (t ) dt = ML ( ) 3 (t ) 3 dt = ML 3 ( ) 4 4! y 4 () y 3 () L y 3 (t) y (t) dt ML 3. y k () y k 1 () ML k 1 ( ) k i fallet då < ger motsvarande kalkyl i stället att k! y k () y k 1 () ML k 1 ( ) k k!

5 7.4. ENTYDIGHET OCH STABILITET 51 och vi får därmed om I betecknar längden av intervallet I att Eftersom k 1 I k sup y k () y k 1 () ML I k!! k 1 I k " ML k=1 k! = M ( ) e L I 1 L följer det av Weierstrass majorantsats att funktionsserien y() = b +! " k=1 [y k () y k 1 ()] = lim n! y n () konvergerar absolut och likformigt på I och att summan y() är kontinuerlig eftersom alla funktionerna y n i följden är det. Dessutom konvergerar f (t,y n (t)) likformigt mot f (t,y(t)) då n! eftersom sup I och då följer det att f (t,y n (t)) f (t,y(t)) Lsup y n (t) y(t) 0 I lim f (t,y n (t))dt = lim f (t,y n (t))dt = n! n! Därmed är satsen bevisad. f (t,y(t))dt 7.4 Entydighet och stabilitet När vi nu har visat att ekvation (7.1) och (7.) alltid har lösning om f är lipschitzkontinuerlig, återstår frågan om det finns flera lösningar. Besläktad med entydigheten är också problemet med stabiliteten: Vad som händer med lösningen vid små ändringar i f och b. Svaret finns i nästa sats. Sats 38 Om y 1 () respektive y () är lösningar till begynnelsevärdesproblemen y = f 1 (,y), y( ) = b 1 y = f (,y), y( ) = b där f 1 och f uppfyller förutsättningarna i sats 37 med lipschitzkonstanter L 1 respektive L så gäller för att y 1 () y () b 1 b e k( 0) + µ ( ) e k( 0) 1 k där k = min(l 1,L ) och µ = ma,y f 1 (,y) f (,y).

6 5 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Följdsats 39 Speciellt följer av sats 38 att lösningen till ekvation (7.1) är unik, eftersom det för två lösningar y 1 () och y () med samma högerled, f = f 1 = f så att µ = 0, och samma begynnelsedata, b = b 1 = b så att b 1 b = 0, måste gälla att y 1 () y () 0. Så till beviset. Bevis. Sambanden y 1 () = b 1 + y () = b + 0 f 1 (t,y 1 (t))dt f (t,y (t))dt ger med triangelolikheten och någon av omskrivningarna uppskattningen och därmed är f 1 (t,y 1 ) f (t,y ) = [ f 1 (t,y 1 ) f 1 (t,y )] + [ f 1 (t,y ) f (t,y )] = [ f 1 (t,y 1 ) f (t,y 1 )] + [ f (t,y 1 ) f (t,y )] f 1 (t,y 1 ) f (t,y ) k y 1 y + µ y 1 () y () b 1 b + b 1 b + b 1 b + k f 1 (t,y 1 (t)) f (t,y (t)) dt (k y 1 (t) y (t) + µ)dt y 1 (t) y (t) dt + µ ( ) Sätt u() = y 1 (t) y (t) dt. Då är u( ) = 0 och u () = y 1 () y () vilket ger olikheten Grönwalls lemma (33) ger då för > att u () ku() + b 1 b + µ ( ) (7.3) u() e k( 0) u( ) + e k( t) ( b 1 b + µ (t ))dt = 1 ( ) k b 1 b e k( 0) 1 + µ ( ) k e k( 0) 1 µ k ( ) (7.4) kombinerar vi (7.3) och (7.4) får vi slutligen y 1 () y () = u () ku() + b 1 b + µ ( ) b 1 b e k( 0) + µ ( ) e k( 0) 1 k Det kan mycket väl finnas lösningar till ekvation (7.1) även om f inte är lipschitzkontinuerlig. Däremot kan vi i sådana fall inte garantera att lösningen är entydig. Jämför med eempel 40.

7 7.5. LOKALA RESULTAT 53 Eempel 40 Begynnelsevärdesproblemet y = 3 y med y(0) = 0 har tre lösningar: 1. y() = 0 { (/3) 3 för 0,. y() = 0 för < 0. { (/3) 3. y() = 3 för 0, 0 för < 0. Ett resultat av det faktum att funktionen 3 y inte är lipschitzkontinuerlig i en omgivning av y = 0 eftersom det gäller att 3 y1 3 y 1 /3 = y 1 y 3 y y1 y y y y 7.5 Lokala resultat Vi har hittills förutsatt att funktionen f (, y) uppfyller lipschitzvillkoret f (,y 1 ) f (,y ) L y 1 y (7.5) med en konstant L som gäller för I och godtyckliga vektorer y 1,y R n. Det är inte alltid möjligt att uppnå detta utan vi får acceptera inskränkningar även i y-led så att (7.5) bara gäller om y 1,y! R n. Det kan då hända att graferna till funktionerna y n () i iterationen inte ligger kvar i rektangeln {(,y) : I, y!} och vi kan då inte garantera att lösningen är definierad för alla i intervallet I. I sådana fall får vi nöja oss med att konstatera att det i något delintervall " +", med " > 0, finns en unik lösning till y = f (,y).

Om existens och entydighet av lösningar till ordinära differentialekvationer

Om existens och entydighet av lösningar till ordinära differentialekvationer Om existens och entydighet av lösningar till ordinära differentialekvationer Anders Källén 11 maj 2016 1 Introduktion I det här kapitlet ska vi diskutera vad vi allmänt kan säga om lösningar till ett system

Läs mer

ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14...

ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14... ALA-a 2005 Innehåll 1 Lite teori 3 RÄKNEÖVNING VECKA 7 1.1 Kapitel 7....................................... 3 1.2 Kapitel 12....................................... 3 1.3 Kapitel 13.......................................

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

Lineära system av differentialekvationer

Lineära system av differentialekvationer Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x). Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot

Läs mer

Existens och entydighet för ordinära differentialekvationer

Existens och entydighet för ordinära differentialekvationer Existens och entydighet för ordinära differentialekvationer Michael Björklund, f-mib@f.kth.se Grundläggande begrepp Definition 1 Ett begynnelsevärdesproblem för ordinära differentialekvationer har följande

Läs mer

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x.

R LÖSNINGG. Låt. (ekv1) av ordning. x),... satisfierar (ekv1) C2,..., Det kan. Ekvationen y (x) har vi. för C =4 I grafen. 3x. Armin Halilovic: EXTRA ÖVNINGAR, SF676 Begynnelsevärdesproblem Enkla DE ALLMÄN LÖSNING PARTIKULÄR LÖSNING SINGULÄR R LÖSNINGG BEGYNNELSEVÄRDESPROBLEM (BVP) Låt ( n) F(,,,, y ( )) vara en ordinär DE av

Läs mer

TATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger.

TATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger. TATA 57/TATA8 8 augusti 26. Lösningar ) Lösning : Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger [ z + z ] Y (z) = z + z z 3 z 2 som i sin tur ger (efter ommöblering) Av

Läs mer

Repetitionsfrågor i Flervariabelanalys, Ht 2009

Repetitionsfrågor i Flervariabelanalys, Ht 2009 Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.

Läs mer

z = z 2. z = z 2 z /z 2 = 1 1 z = x + c z(x) = x + c = ln x + c + c 2 y(x) = ln y = 0 y(x) = c 2

z = z 2. z = z 2 z /z 2 = 1 1 z = x + c z(x) = x + c = ln x + c + c 2 y(x) = ln y = 0 y(x) = c 2 Differentialekvationer II Modellsvar: Räkneövning 1 1. Lös differentialekvationen y = (y ) 2 med hjälp av substitutionen z(x) = y (x). Kommentar: detta är standard substitutionen för differentialekvationer

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM

EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man

Läs mer

Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) =

Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) = Funktionsserier och potensserier Viktiga exempel på funktionsföljder är funktionsserier. Summan s(x) av f k (x) definieras som gränsvärdet av partialsummorna s n (x) = n f k (x) för varje fixt x I. Serien

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 30 maj 20, kl 8:00 3:00 Svar, uppgift : i sant, ii sant, iii falskt, iv sant, v falskt, vi sant,

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN SF66 Tillämpad envariabelanalys med numeriska metoder för CFATE den januari 0 kl 09.00-.00. Hur många gånger antar funktionen f) = ) värdet när varierar i intervallet 9? LÖSNING:

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Modeller för dynamiska förlopp

Modeller för dynamiska förlopp Föreläsning 3 Modeller för dynamiska förlopp 3.1 Aktuella avsnitt i läroboken (.1) Population Models. (.) Equilibrium Solutions and Stability. (.3) Acceleration-Velocity Models. 19 FÖRELÄSNING 3. MODELLER

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

8 Minsta kvadratmetoden

8 Minsta kvadratmetoden Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

TATA42: Föreläsning 6 Potensserier

TATA42: Föreläsning 6 Potensserier TATA4: Föreläsning 6 Potensserier Johan Thim januari 7 Vi ska nu betrakta serier där termerna inte längre är konstanter. Speciellt ska vi studera så kallade potensserier. Dessa definieras som a k x k a

Läs mer

Differentialekvationer av första ordningen

Differentialekvationer av första ordningen Föreläsning 1 Differentialekvationer av första ordningen 1.1 Aktuella avsnitt i läroboken 1.1) Differential Equations and Mathematical Models. Speciellt exemplen 3, 4 och 5.) 1.2) Integrals as General

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,

Läs mer

Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.

Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket. Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion

Läs mer

Tavelpresentation - Flervariabelanalys. 1E January 2017

Tavelpresentation - Flervariabelanalys. 1E January 2017 Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................

Läs mer

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor

Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Föreläsning 8 för TNIU23 Integraler och statistik

Föreläsning 8 för TNIU23 Integraler och statistik Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

3 differensekvationer med konstanta koefficienter.

3 differensekvationer med konstanta koefficienter. Matematiska institutionen Carl-Henrik Fant 17 november 2000 3 differensekvationer med konstanta koefficienter 31 T Med en menar vi en av rella eller komplexa tal varje heltal ges ett reellt eller komplext

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

Icke-linjära ekvationer

Icke-linjära ekvationer stefan@it.uu.se Eempel f ( ) = e + = 5 3 f ( ) = + + 5= f (, y) = cos( ) sin ( ) + y = Kan endast i undantagsfall lösas eakt Kan sakna lösning, ha en lösning, ett visst antal lösningar eller oändligt många

Läs mer

Laboration 1, M0039M, VT16

Laboration 1, M0039M, VT16 Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

Om ortonormerade baser i oändligtdimensionella rum

Om ortonormerade baser i oändligtdimensionella rum Analys 360 En webbaserad analyskurs Funktionsutvecklingar Om ortonormerade baser i oändligtdimensionella rum Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om ortonormerade baser i oändligtdimensionella

Läs mer

Fourierserier: att bryta ner periodiska förlopp

Fourierserier: att bryta ner periodiska förlopp Analys 36 En webbaserad analyskurs Funktionsutvecklingar Fourierserier: att bryta ner periodiska förlopp Anders Källén MatematikCentrum LTH anderskallen@gmail.com Fourierserier: att bryta ner periodiska

Läs mer

1 Att läsa matematik.

1 Att läsa matematik. 1 Att läsa matematik. Precis som vid all annan läsning som betyder något skall matematik läsas aktivt. Detta innebär olika saker för olika personer. För en del kanske det betyder att visualisera de idéer

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) = LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Veckans teman Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3 Ekvationstyper Första ordningen Separabla Högre ordning System Autonoma Linjära med konstanta koefficienter

Läs mer

Partiella differentialekvationer av första ordningen

Partiella differentialekvationer av första ordningen Partiella differentialekvationer av första ordningen Kjell Holmåker 23 februari 2005 En kvasilinjär partiell differentialekvation av första ordningen är av formen P (x, y, u)u x + Q(x, y, u)u y = R(x,

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

1 Primitiva funktioner

1 Primitiva funktioner Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU22

Studietips inför kommande tentamen TEN1 inom kursen TNIU22 Studietips inför kommande tentamen TEN1 inom kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

Läsanvisningar till kapitel 4

Läsanvisningar till kapitel 4 Kapitel 4 Läsanvisningar till kapitel 4 Taylors sats samt Cauchyuppskattningar och några konsekvenser Taylorserier är något ni är bekannt med sedan era reellanalyskurser. Höjdpunkten i detta avsnitt säger

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

Kursens Kortfrågor med Svar SF1602 Di. Int.

Kursens Kortfrågor med Svar SF1602 Di. Int. Kursens Kortfrågor med Svar SF62 Di. Int. Allmänt om kortfrågor: Kortfrågorna är ett viktigt sätt för er att engagera matematiken. De kommer att dyka upp på kontrollskrivningar. Syftet är att ni ska gå

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd

Läs mer

Euler-Mac Laurins summationsformel och Bernoulliska polynom

Euler-Mac Laurins summationsformel och Bernoulliska polynom 46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE

FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE FULLSTäNDIGHETSAXIOMET, SATSEN OM MELLANLIGGANDE VäRDE OCH SATSEN OM STöRSTA OCH MINSTA VäRDE JAN-FREDRIK OLSEN I detta dokumentet ämnar vi bevisa följande två satser: Sats 1 (Satsen om mellanliggande

Läs mer

TAYLORS FORMEL VECKA 4

TAYLORS FORMEL VECKA 4 TAYLORS FORMEL VECKA 4 David Heintz, 20 november 2002 Innehåll 1 1 2 Uppgift 29.7 3 3 Uppgift 31.9 4 1 Av de elementära funktionerna är det polynomen som har den enklaste strukturen. Om f är ett givet

Läs mer

Icke-linjära ekvationer

Icke-linjära ekvationer stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar

Läs mer

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim

ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)

Läs mer

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014 SF65 Envariabelanalys Tentamen Lördagen den januari, 04 Skrivtid: 9:00-4:00 Tillåtna hjälpmedel: inga Examinator: Bengt Ek, Maria Saprykina Tentamen består av nio uppgifter som vardera ger maximalt fyra

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer