Q, Sin, Xin=0 Q, S, X S, X. Volym V
|
|
- Niklas Lundström
- för 5 år sedan
- Visningar:
Transkript
1 Bengt Carlsson 9711, rev 98, 99 Vattenreningsteknik W4 Kursinfo pνa nätet: N ν AGRA RÄKNEUPPGIFTER, del 1 0) e till att ni kan ta fram en dynamisk modell över substrat- och biomasskoncentrationen i en enkel reaktor samt bestämma stationära värden och villkor för att förhindra "wash-out". e föreläsning och Beräkningslab 1. 1) Betrakta en totalomblandad biologisk reaktor av enslamtyp enligt Figur 1., in, Xin=0,, X, X Volym V Figure 1: Totalomblandad biologisk reaktor. Inflödet = utflödet och betecknas (enhet volym/tidsenhet). Vätskevolymen i reaktorn är V. Inflödet har en substratkoncentrationen in, biomasskoncentrationen X in =0.Yielden (utbyteskonstanten) är Y (biomassökning/substratkonsumption). pecifika tillväxten av biomassa antas ges av följande samband där μ() =μ o k =k h μ o, k 1 ; k h är substratkoncentration är konstanter a) Bestäm för vilken substratkoncentration opt som tillväxten är maximal. b) Lνat μ beteckna det stationära värdet av substratkoncentrationen för fallet ej wash-out. Motsvarande biomasskoncentration betecknas μ X. Visa hur yielden kan bestämmas frνan mätningar av in, μ och μ X. c) Visa att det finns tvνa möjliga stationära lösningar (förutom wash-out) μ 1, μ 2 samt att μ 1 μ 2 = 2 opt 1
2 2) Betrakta en totalomblandad biologisk reaktor av enslamtyp enligt Figur 2., in, Xin, X Volume V Figure 2: Totalomblandad biologisk reaktor. Inflödet = utflödet och betecknas (enhet volym/tidsenhet). Vätskevolymen i reaktorn är V. Inflödet har en substratkoncentrationen in och biomasskoncentrationen X in Utbyteskonstanten är Y (biomassökning/substratkonsumption). pecifika tillväxten av biomassa antas ges av följande Monodsamband där μ() =μ max K + μ max är maximal specifik tillväxthastighet är substratkoncentration är halvmättadskonstant K a) Ta fram en dynamisk modell över substrat- och biomasskoncentrationen i reaktorn. b) Lνat μ beteckna det stationära värdet av substratkoncentrationen. Visa att μ kan fνas som lösning till följande ekvation a μ 2 + b μ + c =0 2
3 3) En aktivslamanläggning enligt Figur 3 har en slamνalder pνa 10 dygn. Medelslamkoncentration i bassängen X m =1714 g/m 3 och bassängvolymen V = m 3. Inflödet =400 m 3 /h, returslamflöde r =400 m 3 /h. Inga biologiska reaktioner sker i sedimenteringsbassängen. lamhalten i utgνaende vatten kan dock inte försummas. Bestäm slamkoncentrationen i returslamflödet. -w Luftningsbassäng r w Figure 3: Aktivslamanläggning. 4) Betrakta ett fördenitrifierande system, utan fullständig nitrifikation eller denitrifikation, enligt figuren nedan. Det kan antas att inga andra biologiska reaktioner än nitrifikation och denitrifikation förekommer i systemet samt att inga biologiska reaktioner sker i sedimenteringsbassängen. Bestäm utgνaende nitrathalt NO givet: Inkommande ammoniumhalt: in. (Inkommande nitrathalt=0) Nitrathalt i slutet av denitrifikationszonen: A NO. Ammoniumhalt i slutet av nitrifikationszonen:. Returslamflöde (ink. ev internrecirkulatuion): r Inkommande flöde : in Anoxic A NO Aerobic NO -w r w 3
4 5) Betrakta en aktivslamanläggning enligt Figur 4 där X in =0. edimenteringen var ideal, inga biologiska reaktioner och inget slam i utgνaende vatten, X e =0. in, Xin=0, in Luftningstank, volym V. in+r, X, ed.bassäng e, Xe=0, e Returslamflöde, r, Xr, r Överskottsslam, w, Xr, r Figure 4: Aktivslamanläggning. a) Härled ett uttryck pνa slamνaldern där inga slamkoncentrationer ingνar! b) Vad blir slamνalder i uppg. a) om det kan antas att r = in och w << in 6) En aktivslamanläggning (stationära förhνallanden) hade följande data: ffl Inflöde: m 3 /dygn, Returslamflöde: m 3 /dygn ffl Luftad bassängvolym: 4000 m 3 ffl edimenteringsbassängvolym: 6000 m 3 ffl Bassänghöjder (lika för bνade luftad och sed.): 4m ffl BOD 7 -halt i inkommande vatten: 150 g/m 3 ffl Medelslamhalt 1 i luftningsbassäng X = 3000 g/m 3 ffl lamhalt i utgνaende vatten: 0 g/m 3 ffl Överskottsslamflöde 340 m 3 /dygn, slamhalt X r = 5900 g/m 3 a) Bestäm slambelastning, slamνalder och ytbelastning i sedimenteringsbassäng. b) Bestäm yielden" (utbyteskonstanten) om det kan antas att utgνaende BOD 7 - halt är försumbar. c) tabil nitrifikation kan förväntas om s 1:13 t 15 > 6 där t är temperaturen i C och s är slamνaldern. Antag att temperaturen är 8 o C. Bestäm den minsta luftningsbassängvolym som behövs för att erhνalla stabil nitrifikation med data enligt a), förutom bassängvolym. 1 Betecknas m i det svenska kompendiet Avloppstekniken 4
5 7) En nitrifierande (totalomblandad, standardutformad) aktivslambassäng med processmatris enligt nedan hade följande processkonstanter: μ max =0:8 d 1 K ;4 = 1 g N/m 3 K ;O2 =0:4 go 2 /m 3 b A =0:2 d 1 k h;a =0:2 d 1 Y =0:67 f x =0.09 Component! 4 NO3 O2 X B;A X ;N Reaction rate r v Process # Aerobic - 1 Y f x growth 1 Y - 4:57 Y Y 1 f x μ max 4 4 +K ;4 Decay 1 f x b A X B;A O2 O2 +K ;O2 X B;A Hydrolysis 1 1 k h;a X ;N of org. N Ammon. Nitrate Oxygen Nitrif. uspen. biomass org. N Processen kan antas ha ideal sedimentering och försumbar biomassa i inkommande flöde). yrehalten O2 var 1 g/m 3 och ammoniumhalten 4 = 1:5. Bestäm nödvändig 2 slamνalder. Anm. Data är givet för en vattentemperatur pνa 20 grader (defaultvärde). För andra temperaturer används ofta följande exponentiella samband: Ett typiskt värde pνa» är μ max (T )=μ max (20)e»(T 20) 8) edimenteringshastigheten i en sedimenteringsbassäng kunde beskrivas av v g (X) =ax n där n>1. Bassängen har arean A och och utflödet (pga returslampumpning) u. Bestäm enligt"solid flux teorin" det begränsade partikelflödet J lim 2 I praktiken används en säkerhetsfaktor F =2 3 som den teoretiskt nödvändiga slamνaldern multipliceras med. 5
6 1 a) b) dμ() dt VAR =0! opt = Y = μx in μ q k 1 k h c) tationärt gäller μ( μ )=D vilket ger sambandet μ 2 + μ (1 μ o D )k h + k 1 k h =0 Den sista termen svarar mot produkten av rötterna dvs μ 1 μ 2 = k 1 k h. Frνan svaret till 1a) ses direkt pνastνaendet. 2) a) b) tationärt är _X = 0 vilket ger tationärt är även _ = 0 vilket ger _X = (μ() D)X + DX in _ = μ() Y X + D( in ) μx = DX in D μ( μ ) 0= μ( μ ) Y μx + D( in μ ) Insättning av μ X ger efter enkla räkningar μ 2 (μ max D)Y + μ [ μ max X in μ max Y in + YD in YDK s ]+YD in K s =0 frνan vilket direkt koefficienterna kan avläsas. 3) lamνaldern definieras som s = Massbalans över sed.bassäng ger VX m wx s +( w)x e (1) ( + s )X m =( w)x e +( s + w)x s (2) Ekvation (1) ger wx s +( w)x e = VX m s 6
7 Insättning i (2) ger Till sist, löser vi ut X s : ( + s )X m = VX m s + s X s X s =( + s s V s s )X m Insättning av siffervärden ger X s = 3000 g/m 3. 4) ätt upp massbalans för ammonium och nitrat. Ammoniumbalans för anoxisk och anaerob zon: in + r = ( + r ) A Nitratbalans för anoxisk och anaerob zon: De tvνa första ekvationerna ger ( + r ) A = ( + r ) + NIT r NO = ( + r ) A NO + DEN ( + r ) A NO = ( + r ) NO NIT in + r =( + r ) + NIT Vi löser ut NIT frνan denna ekvation och sätter in i fjärde ekvationen ovan: ( + r ) A NO =( + r ) NO +( + r ) in r vilket kan skrivas NO = A NO + + r ( in ) Notera att om vi har fullständig dentrifikation ( A NO =0)och fullständig nitrifikation ( =0)erhνalls det (klassiska) sambandet: NO = + r in Genom att öka r (normalt görs detta med internrecirkulation) minskar nitrathalten i utgνaende vatten. Detta fungerar dock bara sνa länge som A NO = 0 och =0. Jämför Blab2! 7
8 5) a) Massbalans och def av slamνalder ger s = V w ( r + w ) ( in + r ) b) s = V 2 w 6) lambelastning = BOD 7 VX = =0:3 kgbod 7 /kg dygn. lamνaldern = s = Ytbelastning = A = V=h VX wx r = :9 = 6 dygn = 32 m/dygn =1:3m/h. b) Yield Y = bildat slam / förbrukat substrat. lamproduktion = ubstratförbrukning = Y ß 0:6 kg /kg BOD 7. c) s 1:13 t 15 =6ger s = 14 dagar. Ny volym V ny = V 14 6 ß ) Tillväxthastigheten ges av 4 O2 μ a = μ max b A 4 + K ;4 O2 + K ;O2 = 0:8 1:5 1 1:5+11+0:4 0:2 = 0:143 dygn 1 Nödvändig slamνalder är s = 1 μ a =7 dygn 8) Minima ges av _ J =0. Lös ut X n : Det begränsade partikelflödet blir J =(ax n + b)x = ax 1 n + bx _ J = a(1 n)x n + b X n = b b a(n 1) J lim =( n 1 + b)( a(n 1) ) 1=n b 8
Räkneuppgifter i Vattenreningsteknik - 2
Bengt Carlsson last rev September 21, 2010 Kommunal och industriell avloppsvattenrening Räkneuppgifter i Vattenreningsteknik - 2 1) Betrakta en totalomblandad biologisk reaktor enligt Figur 1. Q, Sin,
Q, Sin, Xin=0 Q, S, X S, X. Volym V
Bengt Carlsson 9711, last rev 010815 Vattenreningsteknik W4 Kursinfo pνa nätet: www.syscon.uu.se/education/msc/courses/wastwattrm.html Räkneuppgifter i Vattenreningsteknik 0) Se till att ni kan ta fram
Statisk olinjäritet. Linjärt dynamiskt system
TENTAMEN i Vattenreningsteknik W4 Miljö- och Vattenteknik Tid: Tisdag 8 oktober 2002, kl 13.00-18.00 Plats: krivsal Polacksbacken Ansvarig lärare: Bengt Carlsson tel 018-4713118, 070-6274590. Bengt kommer
TENTAMEN i Kommunal och industriell avloppsvattenrening - 1RT361
TENTAMEN i Kommunal och industriell avloppsvattenrening - 1RT361 Tid: 21 oktober 2014 kl 8.00-13.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Bengt Carlsson tel 018-4713119, 070-6274590. Bengt kommer
TENTAMEN i Vattenreningsteknik 1TV361
TENTAMEN i Vattenreningsteknik 1TV361 Tid: 05 okt 2007, kl 9.00-14.00 Plats: Skrivsalen, Polacksbacken Ansvarig lärare: Bengt Carlsson tel 018-4713118, 070-6274590 Bengt kommer till tentasalen omkring
TENTAMEN i Vattenreningsteknik 1TV361
TENTAMEN i Vattenreningsteknik 1TV361 Tid: 6 oktober 2008 kl 9.00-14.00 Plats: Gimogatan 4, Skrivsal 1 Ansvarig lärare: Bengt Carlsson tel 018-4713118, 070-6274590 Bengt kommer till tentasalen omkring
TENTAMEN i Vattenreningsteknik 1TV361
TENTAMEN i Vattenreningsteknik 1TV361 Tid: 5 oktober 2009 kl 8.00-13.00 Plats: Polacksbacken skrivsal Ansvarig lärare: Bengt Carlsson tel 018-4713118, 070-6274590 Bengt kommer till tentasalen omkring kl
TENTAMEN i Kommunal och industriell avloppsvattenrening
TENTAMEN i Kommunal och industriell avloppsvattenrening Tid: 21 oktober 2011 kl 8.00-13.00 Plats: Bergsbrunnagatan 15 Ansvarig lärare: Bengt Carlsson tel 018-4713119, 070-6274590 Bengt kommer till tentasalen
TENTAMEN i Kommunal och industriell avloppsvattenrening
TENTAMEN i Kommunal och industriell avloppsvattenrening Tid: 23 oktober 2012 kl 8.00-13.00 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson tel 018-4713119, 070-6274590 Bengt kommer till tentasalen
Modellering och styrning av ett biologiskt reningsverk
Mål Modellering och styrning av ett biologiskt reningsverk Efter att ha genomfört denna uppgift ska du ha lärt dig att bygga mera komplexa dynamiska modeller och att simulera dessa med hjälp av Matlab
KILENE AVLOPPSRENINGSVERK. Hammarö kommun
Hammarö kommun Processbeskrivning KILENE AVLOPPSRENINGSVERK Hammarö kommun Process Beskrivning Life projektet LOCAL RECYCLING Hammarö kommun Processbeskrivning Sättersvikens ARV 2007-01-15 I Innehållsförteckning
Enkel modellering av ett biologiskt reningsverk
Inlämningsuppgift Enkel modellering av ett biologiskt reningsverk Mål Inlämningsuppgift Efter att ha genomfört denna uppgift ska du ha lärt dig att bygga enkla dynamiska modeller och att simulera dessa
Modellering och styrning av ett biologiskt reningsverk
Styrning av Biologiska Reningsverk 02/03 1 Mål Modellering och styrning av ett biologiskt reningsverk Efter att ha genomfört denna uppgift ska du ha lärt dig att bygga mera komplexa dynamiska modeller
Modellering och avancerad styrning av ett biologiskt reningsverk
Mål Modellering och avancerad styrning av ett biologiskt reningsverk Efter att ha genomfört denna uppgift ska du ha lärt dig att bygga modeller av sedimenteringsprocessen och att simulera dessa med hjälp
Enligt Hunds första regel är spin maximal. Med tvνa elektroner i fem orbitaler tillνater
Problem. Vad är enligt Hunds reglar grundtillstνandet av deföljande fria joner? Använd spektroskopisk notation. Till exempel, i Eu + (4f 7 ) skulle rätt svar vara 8 S 7=.Gekvanttal för banrörelsemängdsmoment,
Går igenom populärversion av aktivt slam. Hur man kontrollerar slam visuellt Vad händer när det blir slamflykt och flytslam Vad bör man tänka på när
Går igenom populärversion av aktivt slam. Hur man kontrollerar slam visuellt Vad händer när det blir slamflykt och flytslam Vad bör man tänka på när man projekterar ett enskilt avlopp speciellt om man
avloppsvattenrening genom reglerteknik Bengt Carlsson Uppsala universitet
Energi- och resurseffektiv avloppsvattenrening genom reglerteknik Bengt Carlsson Uppsala universitet Innehåll Inf forma ationst teknologi Om mig Vad är reglerteknik? (5-min varianten!) Överordnad syrereglering
Originalbild Dilation Erosion Slutning Öppning R esultat av morfolo giska op er ationer til l upp gift 6(b). 2
Numerisk analys och datalogi, KTH Tony Lindeberg Lösningar till tentamen i 2D420 Datorseende gk 200 03 08 Allmänt: För de teorifrνagor där svaren pνa uppgifterna direkt stνar att finna i kurslitteraturen
Studietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
SÄTTERSVIKENS AVLOPPSRENINGSVERK. Hammarö kommun
Hammarö kommun Processbeskrivning Sättersvikens ARV 2006-10-15 I SÄTTERSVIKENS AVLOPPSRENINGSVERK Hammarö kommun Process Beskrivning Life projektet LOCAL RECYCLING Hammarö kommun Processbeskrivning Sättersvikens
Modeller för dynamiska förlopp
Föreläsning 3 Modeller för dynamiska förlopp 3.1 Aktuella avsnitt i läroboken (.1) Population Models. (.) Equilibrium Solutions and Stability. (.3) Acceleration-Velocity Models. 19 FÖRELÄSNING 3. MODELLER
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
1. Lös ut p som funktion av de andra variablerna ur sambandet
Matematiska institutionen Stockholms universitet Avd matematik Eaminator: Torbjörn Tambour Tentamensskrivning i Matematik för kemister K den 0 december 2003 kl 9.00-4.00 LÖSNINGAR. Lös ut p som funktion
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Nordens första anläggningar med aerobt granulärt slam De första resultaten från Strömstad & Tanum
Nordens första anläggningar med aerobt granulärt slam De första resultaten från Strömstad & Tanum Mark de Blois H2OLAND AB Bio-P-nätverksträff 9 oktober 2018 H2OLAND Program Bakgrund till aerobt granulärt
Innehνall 1 Introduktion Processbeskrivning Inloggning och uppstart
UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA, 2002 Dynamiska System (STS) Modellering av en DC-motor Sammanfattning Dynamiken för en dc-motor bestäms utifrνan en s k icke-parametrisk modellering, i detta
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:
HÖGSKOLAN I HALMSTAD Tentamensskrivning Akademin för informationsteknologi MA00 Envariabelanalys 6 p Mikael Hindgren Tisdagen den 9 januari 08 05-670 Skrivtid: 9.00-.00 Inga jälpmedel. Fyll i omslaget
AVDELNINGEN FÖR SYSTEMTEKNIK UPPSALA UNIVERSITET Bengt Carlsson August 21, 2003 KURSPROGRAM VATTENRENINGSTEKNIK Miljö- och Vattenteknik, νak 4, period
AVDELNINGEN FÖR SYSTEMTEKNIK UPPSALA UNIVERSITET Bengt Carlsson August 21, 2003 KURSPROGRAM VATTENRENINGSTEKNIK Miljö- och Vattenteknik, νak 4, period 2 Lärare Namn: Hus Rum: Tel: Kursmoment: Bengt Carlsson
1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y
1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.
Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 6 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Är aeroba granuler något för svensk avloppsrening? Britt-Marie Wilén Institutionen för Bygg- och miljöteknik Avdelningen för Vatten Miljö Teknik
Är aeroba granuler något för svensk avloppsrening? Britt-Marie Wilén Institutionen för Bygg- och miljöteknik Avdelningen för Vatten Miljö Teknik 5/18/2016 Chalmers University of Technology 1 Vad är aeroba
Uppgift Endast svar krävs. Uppgift Fullständiga lösningar krävs. 120 minuter för Del B och Del C tillsammans.
NpMab ht 01 Del B Del C Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-16. Fullständiga lösningar krävs. 10 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.
P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare
Lösningar till MVE017 Matematisk analys i en variabel för I x 3x y = x. 3x2 + 4.
Lösningar till MVE07 Matematisk analys i en variabel för I 8-0-0. (a Division ger y + 5x x 2 + 4 y x x2 + 4. 5x x 2 + 4 dx 5 2 ln(x2 + 4, vilket ger den integrerande faktorn (x 2 + 4 5/2. Ekvationen multipliceras
Matematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy
Matematik 5 svar Kapitel 3... 1 Test 3... 26 Blandade uppgifter... 29 Kapitel 3 3101. a) y (x) = 2x y(x) = x 2 + C b) y (x) = x 2 x + 1 y(x) = x3 x2 + x + C 3 2 c) y x 2 + 2 = 0 y = x 2 2 y(x) = x3 2x
Enklare matematiska uppgifter
Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig
Fler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Innehåll. Vad är reglerteknik? Forskning inom processtyrning - Resurseffektiv avloppsvattenrening genom reglerteknik
Forskning inom processtyrning - Resurseffektiv avloppsvattenrening genom reglerteknik Bengt Carlsson Uppsala universitet Innehåll Vad är reglerteknik? (kortversionen!) Överordnad syrereglering ILC ett
Lösningar och kommentarer till Övningstenta 1
Lösningar och kommentarer till Övningstenta 1 1 a b b a a b + b a + 2 (a + b) + b a 2 b2 a 2 + b2 + 2 (a + b) + b a 2 b 2 a 2 + b 2 (a + b) + b + 2 a 2 b 2 a 2 + b 2 (a + b) + b + 2 (a b)(a + b)(a + b)
1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn
MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 12 januari 2016 Skrivtid:
Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA Envariabelanalys 6 p Mikael Hindgren Tisdagen den januari 6 Skrivtid: 9.-3. Inga jälpmedel. Fyll i omslaget fullständigt oc skriv namn på varje papper.
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
B1 Lösning Givet: T = 20 C 0 T = 72 C T = 100 C D x1 = = 0.15 m 2 Det konvektiva motståndet kan försummas Beräkna X i punkten som är 6 cm från mitten T T 100 72 Y = = = 0.35 T T 100 20 1 0 m 0 (det konvektiva
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
20 Gamla tentamensuppgifter
20 Gamla tentamensuppgifter 20.1 Lätta avdelningen Övning 20.1 Beräkna f 0 ( 3) för f(x) = 3x2 2x + 1 med jälp av derivatans definition. Lösning: Här är det allmänna uttrycket för derivatans definition
KOKBOKEN. Håkan Strömberg KTH STH
KOKBOKEN Håkan Strömberg KTH STH Hösten 2007 Håkan Strömberg 2 KTH Syd Innehåll Genomsnittlig förändringshastighet...................... 5 Uppgift 1................................. 5 Uppgift 2.................................
Vägen till en förbättrad biologisk rening på ett koksverk. Erika Fröjd, SSAB Oxelösund
Vägen till en förbättrad biologisk rening på ett koksverk Erika Fröjd, SSAB Oxelösund 2 Utgångsläge befintlig biologisk rening Buffertbassänger 400*2 m3 Blandningsbassäng ca 13 m3 Luftningsbassäng 657
Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 31 augusti 2007 kl 8:30-12:30 i M. Man får svara på svenska eller engelska!
2007-08-31 Sid 2(6) Uppgift 1 (5 poäng) Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Fredagen den 31 augusti 2007 kl 8:30-12:30 i M Examinator: Derek Creaser Derek Creaser (0702-283943) kommer
TNA004 Analys II Tentamen Lösningsskisser
TNA004 Analys II Tentamen 20-06-0 Lösningsskisser. a) De båda kurvorna skär varandra i x 0 och x. På intervallet 0 x är x x. Området D är då det skuggade i figuren nedan, där även en tunn rektangel är
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),
Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska
Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:
Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.
Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =
SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e
Undersökning av deammonifikationsprocessens optimala uppstartsförhållanden för kväverening av rejektvatten på Ryaverket
Undersökning av deammonifikationsprocessens optimala uppstartsförhållanden för kväverening av rejektvatten på Ryaverket Teoretisk studie baserad på vetenskapliga artiklar. Anja Baatz Sofia Rasmusson Instutitionen
Gamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
BIO P PÅ KÄLLBY ARV. Elin Ossiansson Processingenjör
BIO P PÅ KÄLLBY ARV Elin Ossiansson Processingenjör KÄLLBY ARV TOTALFOSFOR,3 mg/l enl tillstånd Tidigare problem p.g.a. dammar Håller ca,25 mg/l ut till dammarna Styr FeCl3 dosering i efterfällning med
Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 23 2 5 Skrivtid: -5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande
Louise Olsson (031-772 4390) kommer att besöka tentamenslokalen på förmiddagen.
Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdagen den 11 april 2012 kl 8:30-13:30 i Väg och vattensalarna Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-772 4390) kommer att besöka
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Bilaga 1. Teknisk beskrivning av. Tångens avloppsreningsverk H2OLAND. Mark de Blois/Behroz Haidarian www.h2oland.se 0322-66 04 67
Bilaga 1 av Tångens avloppsreningsverk Orust kommun 2013-07-02 Tångens avloppsreningsverk Tillståndsansökan Orust kommun av Tångens avloppsreningsverk Innehållsförteckning 1 INLEDNING... 3 2 UTSLÄPPSVILLKOR...
Louise Olsson ( ) kommer att besöka tentamenslokalen på förmiddagen.
Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Tisdag den 18 december 2012 kl 8:30-13:30 i V Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-722 4390) kommer att besöka tentamenslokalen
Sammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
3 Deriveringsregler. Vi ska nu bestämma derivatan för dessa fyra funktioner med hjälp av derivatans definition
3 Deriveringsregler 3.1 Dagens Teori Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. 3.1.1 Vi är på jakt efter ett mönster
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Lördagen den 19 december 2009 kl 8:30-13:30 i Hörsalar på hörsalsvägen
Comment [PM1]: Här fyller du i ev. diarienummer. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Lördagen den 19 december 2009 kl 8:30-13:30 i Hörsalar på hörsalsvägen Examinator: Docent Louise
R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002
RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då
Lösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
1. INLEDNING 3 2 INTRODUKTION 7 3 BIOANLÄGGNINGENS RENINGSKAPACITET 24 4 PROVTAGNING OCH ANALYS RESULTAT 32
INNEHÅLLSFÖRTECKNING 1. INLEDNING 3 1.1 BAKGRUND 3 1.2 SYFTE 4 1.3 METOD 4 1.4 AVGRÄNSNINGAR 5 1.5 UPPLÄGG 5 2 INTRODUKTION 7 2.1 ANLÄGGNINGEN 7 2.2 KVÄVEREDUCERING 9 2.2.1 ALLMÄNT 9 2.2.2 NITRIFIKATION
u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen
Differentialekvationer I Modellsvar till räkneövning 6 Den frivilliga uppgiften U1 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Lös funktionerna u(x) och v(x) från
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål
ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),
DERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas
Anammox - kväverening utan kolkälla. Var ligger forskningsfronten? E. Płaza J.Trela J. Yang A. Malovanyy
Anammox - kväverening utan kolkälla. Var ligger forskningsfronten? E. Płaza J.Trela J. Yang A. Malovanyy Stockholm 24 november 2010 Anammox och Deammonifikation Anammox = Anaerob ammoniumoxidation (med
Transformkodning Idé: 1. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block
Transformkodning Idé:. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block med en lämplig, reversibel transform till en ny sekvens.
Louise Olsson ( ) kommer att besöka tentamenslokalen på förmiddagen.
Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Tisdag den 2 april 2013 kl 8:30-13:30 i V Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-722 4390) kommer att besöka tentamenslokalen på
Optimering med bivillkor
Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =
RENINGSVERKETS MIKROBIOLOGI BIOLOGISKA RENINGSSTEGET KVÄVETS KRETSLOPP ANDRA BIOLOGISKA RENINGSMETODER
RENINGSVERKETS MIKROBIOLOGI BIOLOGISKA RENINGSSTEGET KVÄVETS KRETSLOPP ANDRA BIOLOGISKA RENINGSMETODER Ammoniak RENINGSVERKETS MIKROBIOLOGI Heterotrofa bakterier äter organiskt material Tillgång på syre
x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a
Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,
Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter.
Kap 3.7, 17.8 Linjära differentialekvationer med konstanta koefficienter. 401. (A) Bestäm de allmänna lösningarna till följande differentialekvationer: a. y 3y = 0 b. y 2y 3y = 0 c. y 2y = 0 d. y 4y +
Mer om generaliserad integral
Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av
Allt du behöver veta om exponentialfunktioner
Allt du behöver veta om exponentialfunktioner Problem 1. Funktionerna a) a(x) = e x b) b(x) = e x c) c(x) = 4 x e x ln4 d) d(x) = 3 10 x 3 e x ln10 e) e(x) = ex 3 avbildas i figuren. Vilken är vilken?
D 1 u(x, y) = e x (1 + x + y 2 ), D 2 u(x, y) = 2ye x + 1, (x, y) R 2.
Differentialekvationer I Modellsvar till räkneövning 4 De frivilliga uppgifterna U1 och U2 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Sök en potentialfunktion
Energitransport i biologiska system
Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym
Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.
Typexempel med utförliga lösningar TMV3. Matem. Analys i En Var.. V, AT. Försök alltid att lösa exemplen själv först. Integration. ([AE, Adams&Essex] Ex. 5.6. ) Beräkna integralen x + 6x + 3 dx LSN (Lösning).
Ammoniumåterkoppling på Himmerfjärdsverket utvärdering genom försök och simuleringar
UPTEC W12024 Examensarbete 30 hp September 2012 Ammoniumåterkoppling på Himmerfjärdsverket utvärdering genom försök och simuleringar Sofia Andersson REFERAT Ammoniumåterkoppling på Himmerfjärdsverket
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005
KTH Matematik B Matematik modeller Lösningsförslag till tentamen den januari. a) I en triangel är två av sidlängderna 7 respektive 8 längdeneter vinkeln mellan dessa sidor är. Bestäm den tredje sidans
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
Biogasanläggning Energibesparing med avloppsvatten. 2008-09-05 Peter Larsson ver 2
Biogasanläggning Energibesparing med avloppsvatten 2008-09-05 Peter Larsson ver 2 Biogasanläggning Förutsättningar Processprincip Processparametrar Driftprincip och anläggningsutförande Biogas Anläggningskostnad
polynomfunktioner potensfunktioner exponentialfunktioner
Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,