Originalbild Dilation Erosion Slutning Öppning R esultat av morfolo giska op er ationer til l upp gift 6(b). 2
|
|
- Birgit Bergqvist
- för 5 år sedan
- Visningar:
Transkript
1 Numerisk analys och datalogi, KTH Tony Lindeberg Lösningar till tentamen i 2D420 Datorseende gk Allmänt: För de teorifrνagor där svaren pνa uppgifterna direkt stνar att finna i kurslitteraturen ges i dessa lösningar endast referenser till relevanta avsnitt. Uppgift : ffl receptiva fält: sidan 80 i utdraget ur av Coren, Ward och Enns samt föreläsningsanteckningarna Biologiskt seende" respektive Theory of a visual front-end". ffl Voronoidiagram: se föreläsningsanteckningarna Digital geometry" ffl Butterworths högpassfilter: se avsnitt i Gonzalez och Woods ffl närmaste-tyngdpunkts-klassificering: se föreläsningsanteckningarna Pixelklassificering" ffl förkortningseffekten: se föreläsningsanteckningarna Textur" ffl apparent motion: se föreläsningsanteckningarna Rörelse I" ffl Huffmankodning: se föreläsningsanteckningarna Bildkompression" Uppgift 2: (a) Sammanhängande komponent samt algoritm för att beräkna sνadana: se avsnitt och i Gonzalez och Woods samt föreläsningsanteckningarna Digital geometri". (b) Se föreläsningsanteckningarna Fouriertransformen" Uppgift 3: Denna uppgift kan genomföras genom att transformera bilden med en projektiv transformation; som bestäms exempelvis genom att välja ut fyra punkter i bildens hörn och avbilda dessa pνa en rektangel av önskad storlek. När väl koordinattransformationen är bestämd vidtar ett interpolationsförfarande. Detaljer gällande dessa bearbetningssteg beskrivs i (supplementet till) föreläsningsanteckningarna Image formation", se ocksνa exempel.2 pνa sid 3-4 i utdraget ur Hartley och Zissermann. Uppgift 4: Ett lämpligt sätt att reducera känsligheten för belysningsvariationer i detta fall är genom att medelst anpassa en linjär modell log f(x; y) = a + bx + cy som approximerar belysningsvariationerna i logaritmen av bildintensiteten som funktion av bildkoordinaterna (x; y). Koefficienterna a, b och c bestäms lämpligen via
2 Originalbild Dilation Erosion Slutning Öppning Resultat av morfologiska operationer till uppgift 6(b). 2
3 minstakvadratanpassning och därefter subtraheras denna funktion frνan logaritmen av originaldata. Klassifikation utförs slutligen pνa den korrigerade signalen, se föreläsningsanteckningarna Pixelklassificering" för ytterligare detaljer. Uppgift 5: Se avsnitt i G & W, föreläsningsanteckningarna Segmentering, Houghtransformen" samt Laboration 3. Uppgift 6: (a) Gällande skalrumsrepresentation och pyramidrepresentation, se föreläsningsanteckningarna Theory of a visual front-end' samt översiktsartikeln Scalespace: A framework for handling image structures at multiple scales". (b) Gällande definitionerna av de morfologiska operationerna, se avsnitt 8.4. och i Gonzalez och Woods, samt föreläsningsanteckningarna Representation, morfologi". Resultatet av att applicera de angivna morfologiska operationerna pνa det givna objektet ges i bifogad figur. (c) Gällande stereomatchning, se föreläsningsanteckningarna Stereomatchning". (d) Gällande DCT-baserad bildkompression, se föreläsningsanteckningarna Bildkompression" samt avsnitt och avsnitt i Gonzalez och Woods. Uppgift 7: (a) (i) Definiera '( ) = X n= c n e in där 2 [ ß; ß]. Dνa följer '( ) =i( ( sin 2 ) 2( sin )+2sin + sin 2 ) = i (4 sin + 2 sin 2 ) =4isin ( + cos ) Fouriertransformen är rent imaginär eftersom filtret är antisymmetriskt. Grafiskt har denna imaginärdel följande utseende: 3
4 För smνa gäller att '( ) =8i + O( 3 ) och det linjära beteendet kring origo avspeglar att filtret har en deriverande verkan för lνaga frekvenser, medan avtagandet mot noll dνa!±ßavspeglar att filtret helt undertrycker frekvenser nära samplingsgränsen! = ±ß. Den diskreta Fouriertransformen X N ^c(u) = n=0 c n e 2ßiun=N kan (medelst periodisk utvidgning) ses som en sampling av denna funktion med = 2ßu N (ii) Givet koefficienterna i beräkningsmolekylen för filtret, betrakta uttrycket D h (x) =f(x+2h)+2f(x+h)+0f(x) 2f(x h) f(x 2h) och Taylorutveckla. Dνa erhνalles D h (x) =8hf 0 (x)+ 0 3 h3 f 000 (x)+o(h 5 ) Av detta drar vi slutsatsen att filtret approximerar en förstaderivata i x-led multiplicerad med faktorn 8. (iii) Detta filter är resultatet av att applicera följande tvνa filter i kaskad: (; 2; ) och ( ; 0; ) För enhetsnormalisering skall det första binomialfiltret divideras med 4, och det andra differensfiltret med 2. Produkten av dessa normaliseringskonstanter syns i form av faktorn 8 i derivate-estimeringen i uppgift (ii) samt lutningen 8 i origo i uppgift (i). 4
5 (b) Lνat x beteckna bildkoordinater, samt lνat f vara en indikatorfunktion sνa att f(x) = i omrνadet och f(x) = 0 utanför. Dνa definieras den normaliserade spatiala momentdeskriptorns M enligt. N = där μx är omrνadets tyngdpunkt R x2r 2 (x μx)(x μx) T f(x) dx R x2r 2 f(x) dx μx = R x2r 2 xf(x)dx R x2r 2 f(x) dx Detta objekt är symmetriskt, tyngdpunktens läge är uppenbart. Vi kan därför välja att förlägga koordinatsystemet med origo i tyngdpunkten sνa att μx =0. För att beräkna komponenterna i matris N, lνat oss först beräkna: M = m20 m Z(x;x2)2R2 x = 2 xx2 m m02 xx2 x 2 f(x) dx där respektive komponent iintegralen evalueras till: Z Z =2 Z 2 Z =2 m20 = x = 2 x 2 = 3=2 x2 dx dx2 + x = 2 x 2 = =2 x2 dx dx2 Z 2 Z 3=2 + x = x 2 ==2 x2 dx dx2 = =0 Z Z =2 Z 2 Z =2 m = x = 2 x 2 = 3=2 x x2 dx dx2 + x = 2 x 2 = =2 x x2 dx dx2 Z 2 Z 3=2 + x = x 2 ==2 x x2 dx dx2 = =3 Z Z =2 Z 2 Z =2 m02 = x = 2 x 2 = 3=2 x2 2 dx dx2 + x = 2 x 2 = =2 x2 2 dx dx2 Z 2 Z 3=2 + x = x 2 ==2 x2 2 dx dx2 = = 7 3 Efter normalisering med objektets massa Z Z =2 Z 2 Z =2 m00 = x = 2 x 2 = 3=2 dx dx2 + x = 2 x 2 = =2 dx dx2 Z 2 Z 3=2 + x = x 2 ==2 dx dx2 =+4+=6 5
6 följer därefter att n20 = m 20 m00 = 0 6 n = m m00 = 3 6 n02 = m 02 m00 = 7 8 Givet denna spatiala andramomentsdeskriptor N, ges motsvarande ellipsapproximation av (x μx)n (x μx) =C där C är en obestämd konstant. Med tyngdpunkten μx i origo, och med utnyttjande av att N = n20 n = n n02 n20n02 n 2 n02 n n n20 kan det explicita uttrycket för denna ellipsapproximation skrivas x 2 n20 2n xx2 + x2 2 n20n02 n02 = C n2 n20n02 vilket med de angivna värdena pνa n20, n och n02 samt C =4antar formen 2x 2 54xx2 +90x 2 2=86 Figuren nedan visar formen hos denna ellips (c) Inför ett världskoordinatsystem med Z-axeln horisontellt riktad framνat, X- axeln horisontellt riktad νat sidan och Y -axeln vertikalt riktad uppνat. En robot som rör sig pνa ett plant golv har tre frihetsgrader; translation med hastighet U i X-riktningen, translation med hastighet V i Z-riktningen, 6
7 samt rotation med rotationsvektor! kring Y -axeln. Dνa kan rörelsen hos punkter relativt roboten skrivas _ X _Y _Z 0 A u 0 v 0 0! 0 0 X Y Z 0 A U +!Z 0 V!X Med kameran är monterad rakt framνat med optiska axeln parallell med Z-axeln samt horisontellt riktad x-axel parallell med X-axel, och vertikalt riktad y-axel parallell med Y -axeln kan ekvationerna för perspektivavbildningen skrivas x f = X Z ; y f = Y Z Derivering av dessa relationer kombinerat med de explicita uttrycken för _X, _ Y respektive _Z ger _x = Z _X X _Z f Z 2 _y = Z Y _ Y _Z f Z 2 Z(U +!Z) X(V!X) = Z 2 0 Y (V!X) = Z 2 vilket med användning av ekvationerna för perspektivavbildningen kan skrivas om pνa formen _x f = U Z! + x f _y f = y f V Z! xy f 2 V x2 Z! f 2 Dessa uttryck ger det generella utseende pνarörelsefältet för en translaterande och roterande robot pνa ett plant horisontellt golv. I fallet ren translation med! = 0 reduceras uttrycken till _x f = U Z + x f _y V = y f f Z där punkter i bildplanet parametriseras av (x; y) medan punkter i världen parametriseras enligt (X; h; Z). Av det senare följer enligt ekvationerna för perspektivavbildningen att y f = h Z vilket ger följande relation mellan y och Z (som pga villkoret Z > 0gäller endast dνa y<0) = y Z fh 7 V Z A
8 Efter insättning i rörelse-ekvationerna ovan fνar vi att rörelsefältet (_x; _y) i bildpunkter (x; y) med y<0 ges av _x y = U V f h f h _y = V y 2 f h f 2 Dessa relationer innebär att rörelsefältet beskrivs av ett andragradspolynom. En rättfram metod för hinderdetektion bestνar sνaledes i att anpassa en polynom-modell till ett uppmätt rörelsefält, och därefter detektera hinder genom att detektera avvikelser mellan modellen och det faktiska rörelsefältet. xy f 2 Kommentarer: Som framgνar av ekvationerna är formen pνa rörelsefältet beroende av objektens höjd relativt kameran, varför hinder med avvikande höjd kan förväntas ge upphov till variationer i rörelsefältet. Gällande modellanpassningen är det vara värt att notera att koefficienterna för tre monom skall bestämmas (monomen y, xy och y 2 ). I det allmänna fallet svarar detta mot tre obestämda koefficienter; här är dock tvνa av dessa koefficienter lika vilket förenklar förfarandet. Bestämning av dessa tvνa koefficienter innebär i praktiken att vi bestämmer robotens hastighet (U; V ) relativt omgivningen. 8
Dilation Erosion. Slutning. Öppning
Numerisk analys och datalogi, KTH Tony Lindeberg Lösningar till tentamen i 2D42 Datorseende gk 22 4 6 llmänt: För de teorifrνagor där svaren pνa uppgifterna direkt stνar att finna i kurslitteraturen ges
Läs merffl Utdrag ur kap 2 ur R. O. Duda and P. E. Hart, Pattern Classification", ffl Utdrag ur kap 8 ur R. A. Johnson and D. W. Wichern, Applied Multi
Numerisk analys och datalogi, KTH (Uppdaterat 21 januari 2003) Tony Lindeberg 2D1420 Datorseende gk (Period 3; VT 2003) för D3, D4, E4, F4, (L4, M4, T4) och doktorander. Lärare Kursledare och föreläsare
Läs merBildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Läs merStudietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Läs merInnehνall 1 Introduktion Processbeskrivning Inloggning och uppstart
UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA, 2002 Dynamiska System (STS) Modellering av en DC-motor Sammanfattning Dynamiken för en dc-motor bestäms utifrνan en s k icke-parametrisk modellering, i detta
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merTisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Läs merTransformkodning Idé: 1. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block
Transformkodning Idé:. Tag datasekvensen och dela in den i block av storlek N (eller N N om signalen är tvνadimensionell). Transformera dessa block med en lämplig, reversibel transform till en ny sekvens.
Läs mer2D1420 Datorseende gk (Period 3; VT 2004)
Numerisk analys och datalogi, KTH (Uppdaterat 20 januari 2004) Tony Lindeberg (Danica Kragic) 2D1420 Datorseende gk (Period 3; VT 2004) för D3, D4, E4, F4, (L4, M4, T4) och doktorander. Lärare Kursledare
Läs meru(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen
Differentialekvationer I Modellsvar till räkneövning 6 Den frivilliga uppgiften U1 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Lös funktionerna u(x) och v(x) från
Läs merQ, Sin, Xin=0 Q, S, X S, X. Volym V
Bengt Carlsson 9711, rev 98, 99 Vattenreningsteknik W4 Kursinfo pνa nätet: www.syscon.uu.se/education/mc/courses/wastwattrm.html N ν AGRA RÄKNEUPPGIFTER, del 1 0) e till att ni kan ta fram en dynamisk
Läs merLösningar till tentamen i Matematik II, 5B1116, 5B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004.
Institutionen för matematik. KTH Lösningar till tentamen i Matematik II, B1116, B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004. 1. Välj en punkt i planet 3x + 3y z = 4, exempelvis
Läs merFler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
Läs merFrågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Läs merLösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs merLaboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs mer= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Läs mer7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Läs merSF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Läs mer= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merInstitutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merv0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Läs merx(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Läs merPreliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
Läs merTentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
Läs merLösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs mervarandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs mer= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merMMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
Läs merInstitutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
Läs merx ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs mer1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Läs merFunktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Läs merSF1626 Flervariabelanalys
1 / 14 SF1626 Flervariabelanalys Föreläsning 7 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 14 SF1626 Flervariabelanalys Dagens Lektion Kap 12.8 1. Implicit definierade
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Läs merTeori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:
Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd
Läs merLösningsförslag obs. preliminärt, reservation för fel
Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:
Läs merSF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
Läs merFrågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.
Läs merTentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Läs merSF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013
SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre
Läs merhar ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Läs mer7 Extremvärden med bivillkor, obegränsade områden
Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,
Läs merBildregistrering Geometrisk anpassning av bilder
Bildregistrering Geometrisk anpassning av bilder Björn Svensson, Johanna Pettersson, Hans Knutsson Inst. för Medicinsk Teknik, Linköpings Univeristet Maj, 2007 1 Problembeskrivning Sök förflyttningsfält
Läs mer1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Läs merBanach-Tarskis paradox
Banach-Tarskis paradox Tony Johansson 1MA239: Specialkurs i Matematik II Uppsala Universitet VT 2018 Banach-Tarskis paradox, bevisad 1924 och döpt efter Stefan Banach och Alfred Tarski, är en sats inom
Läs merLaboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Läs merInstitutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.
Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)
Läs merSF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
Läs merx +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Läs merRobotarm och algebra
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-12-07 Robotarm och algebra I denna laboration skall du lära dig lite mer om möjlighetera att rita ut mer avancerade
Läs mer2 Funktioner från R n till R m, linjära, inversa och implicita funktioner
Nr, feb -5, Amelia Funktioner från R n till R m, linjära, inversa och implicita funktioner.1 Funktioner från R n till R m Vi har i tidigare föreläsningar sett olika tolkningar av funktioner från R n till
Läs merTATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Läs merx sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx
TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.
Läs merSF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
Läs merLösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december 2017 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära betygsgränser:
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merBildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merSF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
Läs merLösningsförslag envariabelanalys
Lösningsförslag envariabelanalys 09-06-05. Ekvationen är linjär och har det karakteristiska polynomet pr) = r 4 + r 3 + 5r = r r + r + 5) = r r + i)r + + i). Således ges lösningarna till den homogena ekvationen
Läs mer4. Vad kan man multiplicera x med om man vill öka värdet med 15 %?
Axel Weüdelskolan/Komvux Matematik/Sibe 1. Förenkla x 1 1 1 1 1 x 2. Förenkla 5 3. Beräkna värdet av a 2 b om a = -3 och b = 2 4. Vad kan man multiplicera x med om man vill öka värdet med 15 %? 5. Vilket
Läs merTentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Läs merÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF Nyckelord och innehåll. a n (x x 0 ) n.
ÖVN 6 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Potensserielösningar Analytiska funktioner Konvergensradie Rot- och
Läs merTentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Läs merSF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)
Läs merDen räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Läs mer1 x. SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 26-3-2 DEL A. Låt D vara fyrhörningen med hörn i punkterna, ), 6, ),, 5) och 4, 5). a) Skissera fyrhörningen D och beräkna dess area. p) b) Bestäm
Läs merDen räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Läs merx 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
Läs merEXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Läs mery + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
Läs merLösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.
Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 24. 1. Gausselimination ger: 2 3 5 2 1 5 6 b 1 2 3 3 1 2 3 1 1 1 1 3 b/3 1 8 1
Läs merLösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.
Lösningsförslag, tentamen, Differentialekvationer och transformer II, del, för CTFYS2 och CMEDT3, SF629, den 9 oktober 20, kl. 8:00 3:00 av 8 3 poäng. Svar: i. sant, ii. falskt, iii. sant, iv. sant, v.
Läs mer= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Läs merTATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
Läs merMaclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om
Läs mer1 Koordinattransformationer
Nr 1, 21 feb -5, Amelia 2 Obs: "m.a.p." betyder "med avseende på". 1 Koordinattransformationer 1.1 Bakgrund (inte på denna föreläsning) 1.1.1 Från R till R 2, och R till R 3 Vi har sett att en funktion
Läs merMöbiusavbildningar. 1 Inledning. Låt a, b, c och d vara komplexa tal och antag att ad bc = 0. Då kallas. Definition 1.
Möbiusavbildningar Lars-Åke Lindahl 1 Inledning Definition 11 avbildningen en Möbiusavbildning Låt a, b, c och d vara komplexa tal och antag att ad bc = 0 Då kallas Tz = az + b cz + d (Om ad bc = 0 är
Läs merANDRAGRADSKURVOR Vi betraktar ekvationen
ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga
Läs merLösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Läs mer