TK051B Bt2 (Högskoleingenjör i Bioteknik, Åk 2) eller motsvarande
|
|
- Carl-Johan Larsson
- för 5 år sedan
- Visningar:
Transkript
1 Fysikalisk Kemi 7,5 högskolepoäng Ladokkod: Tentamen ges fö: TK051B Bt2 (Högskoleingenjö i Bioteknik, Åk 2) elle motsvaande Namn: (Ifylles av student) Pesonnumme: (Ifylles av student) Tentamensdatum: 03/06/2015 Tid: 14:00 18:00 Hjälpmedel: Valfi miniäknae Fomelblad som delas ut vid tentamen Totalt antal poäng på tentamen: Tentamen omfatta sammanlagt 60 poäng. Fö att få espektive betyg kävs: Fö godkänt (betyg 3) kävs 24 poäng, fö betyget 4, 36 p och fö betyget 5, 48 p Allmänna anvisninga: Rättningstiden ä som längst te vecko Viktigt! Glöm inte att skiva namn på alla blad du lämna in. Lycka till! Ansvaig läae unde tentamen: Kim Bolton Telefonnumme:
2 Motivea alla sva!! (Note that English tanslation is given fo some wods. Howeve, the Swedish question is the official question that must be answeed.) 1 En manomete (tyckmätae) användes fö att bestämma om 5,10 g popangas (C 3 H 8 ) vid 30,0 o C i en 150 cm 3 behållae uppfö sig som en ideal gas. Gastycket osakade att skillnaden i vätskenivåena i manometen ändades med 60 cm. Vätskan i manometen ha densiteten 0,85 kg cm -3. a) Beäkna popangastycket i enheten atmosfäe. (3) b) Använd allmänna (ideala) gaslagen fo att beäkna det ideala tycket, i atmosfäe, av denna gas. (3) c) Uppfö sig popan som en ideal gas unde dessa föhållanden? Motivea ditt sva! (1) (A manomete was used to detemine if 5,10 g of popane gas at 30,0 o C and that is in a 150 cm 3 containe behaves as an ideal gas. The gas pessue caused the diffeence in the liquid levels in the manomete to incease by 60 cm. The liquid in the manomete has a density of 0,85 kg cm -3. a) Calculate the popane gas pessue in atmosphees. b) Use the ideal gas law to calculate the pessue, in atmosphees, of the popane gas. c) Does popane behave as an ideal gas unde these conditions? Motivate you answe.) 2 Ammoniaks smält- och kokpunkt ä 195,3 K espektive 239,7 K. Densiteten av ammoniak i vätskefas ä 0.9 kg dm -3 och dess moläa vämekapacitet ä 88 J K -1 mol -1. Smältentalpin vid 195,3 K ä 5.65 kj mol -1. a) Vilken vämemängd (i kj) behövs fö att föånga fast NH 3 vid 195,3 K till gasfas vid 239,7 K? Volymen NH 3 i vätskefasen ä 75 cm 3. (7) b) Vad måste man antaga med avseende på vämekapacitet fö att lösa detta poblem? (1) (Ammonia s melting and boiling points ae 195,3 K and 239,7 K. The density of liquid phase ammonia is 0.9 kg dm -3 and its mola heat capacity is 88 J K -1 mol -1. The enthalpy of fusion of ammonia at 195,3 K is 5.65 kj mol -1. a) What heat (in kj) is equied to vapouise solid phase NH 3 at 195,3 K to gas phase at 239,7 K? The volume of NH 3 in the liquid phase is 75 cm 3. b) What does one need to assume about the heat capacity to solve this poblem?) 1
3 3 a) Vissa eaktione, som ä icke-spontana vid låga tempeatue, ä spontana vid höge tempeatue. Föklaa, med avseende på ändinga i Gibbs enegi, entopi och entalpi, vafö dessa eaktione bete sig på detta sätt. (3) b) Löses KI(s) spontant i vatten vid standadtillstånd? Om detta ä fallet, vid vilka tempeatue? Motivea ditt sva med hjälp av temodynamiska data! Reaktionen ä KI(s) KI(aq) (9) ( a) Some eactions, which ae not spontaneous at low tempeatues, ae spontaneous at highe tempeatues. Explain, with espect to changes in Gibbs fee enegy, enthalpy and entopy, why these eactions behave in this way. b) Does KI(s) dissolve spontaneously in wate unde standad conditions? If this is the case, at what tempeatues? Motivate you answe using themodynamical data.) 4. Vid ett expeiment med en gas (som bland annat innehöll vätgas) och vatten va gasens totaltyck öve en bägae 1,0 atm. Bägaen innehöll 2,5 kg vatten, och molbåket vätgas i gasen va Vilken massa vätgas va upplöst i vattnet? Antag att gasen uppföde sig som en ideal gas. (8) (In an expeiment the total pessue of a gas above a beake was 1.0 atm. The beake contained 2,5 kg of wate, and the mol faction of hydogen in the gas was What was the mass of the hydogen that was dissolved in the wate? Assume that the gas behaved ideally.) 5. I en elektokemisk cell ske följande eaktion 2Al(s) + 3I 2 (s) 2Al 3 (aq) + 6I (aq) Vad ä cellens potential nä koncentationen av Al 3 (aq) ä 26,5 mol dm 3 och av I (aq) 19,5 mol dm 3? Tempeatuen ä 298 K. (4), (The above eaction takes place in an electochemical cell. What is the cell potential when the concentation of Al 3 (aq) and I (aq) ae 26,5 mol dm 3 and 19,5 mol dm 3, espectively? The tempeatue is 298 K.) 2
4 6a) Skiv ned definitionen fö eaktionshastigheten med avseende på en eaktant A. (1) b) Skiv också ned definitionen fö eaktionshastigheten fö en eaktion som ä av fösta odningen med avseende på en eaktant A. (1) c) Använd ekvationena i a) och b) fö att häleda hastighetsuttycket (integated ate law) fö en eaktion som ä av fösta odningen med avseende på en eaktant A. Visa alla steg! (2) d) Häled ekvationen fö halveingstiden fö en eaktion som ä av fösta odningen med avseende på en eaktant A. Visa alla steg! (2) e) Halveingstiden fö en fösta odningens eaktion A P ä 650 s vid 30 o C. Aktiveingsenegin fö eaktionen ä 35,0 kj mol -1. Vad ä halveingstiden vid 50 o C? (4) ( a) Wite down the definition of the eaction ate with espect to eactant A. b) Also wite down the definition of the eaction ate fo a eaction that is of fist ode with espect to eactant A. c) Use these equations to deive the integated ate law fo a eaction that is of fist ode with espect to eactant A. Show all steps. d) Deive an equation fo the half life fo a eaction that is of fist ode with espect to eactant A. Show all steps. e) The half life fo a eaction A P that is of fist ode with espect to eactant A is 650 s at 30 o C. The activation enegy fo the eaction is 35,0 kj mol -1. What is the half life at 50 o C?) 7a) Använd ett kinetiskt esonemang baseat på adsoptions- och desoptionshastighete fö gase på en yta fö att häleda Langmui isotemen: p A θ pa K Visa alla steg! (8) b) Beskiv i od vad som menas med, p A och K i Langmui-isotemen. (3) ( a) Use kinetic aguments based on adsoption and desoption of gases on a suface to deive the Langmui isothem. Show all steps! b) Descibe, in wods, what is meant with, p A and K in the Langmui isothem.) 3
5 4
6 5
7 6
8 7
9 8
10 9
11 10
12 11
13 12
14 13
15 14
16 15
17 16
18 Ingenjöshögskolan i Boås Fomelsamling i fysikalisk kemi p = g h 1J = 1V x 1A x 1s E= hc Enhete: 1J = 1 kg m 2 s -2 1Pa = 1 kg m -1 s Pa = 1 atm Pa = 1 ba 760 To = 1 atm Kinetisk gasteoi p = c = nmc 3V 2 3RT M f = 4 2 M RT 3 / 2 s 2 exp(-ms 2 /2RT) s = RT 2N Ap = d 2 c = z Tillståndsekvatione pv m B C = RT V m V m p = nrt V nb - a n V 2 17
19 Temokemi U = q + w w = -p ex V w (max) = -p dv (evesibelt abete i slutet system) V f = -nrtln (ideala gas) V q = C T H = q (konstant p) U = C v T (konstant volym) H = C p T (konstant tyck) C p = C v + n R (ideala gas) i ds T dq (vid evesibla pocesso gälle likhetstecknet) V S = nrln V Pi S = nrln P T f S = C v ln T fus S = vap S = fus T f vap T H = U + pv G = H - TS b f i i f H H (evesibel pocess, ideala gas, konstant tempeatu) (konstant volym) vissa specialfall H = U + p V (konstant tyck) G = H - T S (konstant tyck och tempeatu) G = - T S total (konstant tyck och tempeatu) G = w (max) (konstant tyck och tempeatu) 18
20 G = n f G pod) pod H = n f H pod) pod S = ns pod) pod eak ( - n f G ( eak) eak ( - n f H ( eak) eak ( - ns ( eak) dg = V dp S dt p G m = RT ln (ideala gas, konstant tempeatu) f p i Clausius-Clapeyons ekvation p ln f ΔH vap 1 1 = p i R T i T f G = G + RT lnq G = -RT lnk (g) = J J (l) = F=C-P+2 (g) + RT ln a J (ideala gas) J * p J (g) + RT ln J p + RT ln J (ideal lösning) p j = j K j p j = j p* T f = K f b j T b = K b b j V n j R T h RT Bc 1 c c gm M n ( A )= n ( A A ) A Kichhoffs lag H (T 2 ) = H (T 1 ) + C p T van t Hoff ekvation ln K(T 2 ) = ln K(T 1 ) + H R 1 T1 1 T 2 19
21 Elektokemi G = - FE (evesibel stöm) Nenst ekvation RT E = E - ln Q F RT E = lnk F E S = F ( T ) E ( T T2 T1 H = G + T S 2 1) Reaktionkinetik = k [A] = k [A][B] = k [A] 2 = k [A][B][C] [ A ] 0 ln =kt [ A] 1 [ A ] = 1 [ A ] + kt 0 k = A exp(-e a /RT) Langmiu isotem p θ A k p des A kads Lindemann kakb AB M ka'm kb Michaelis-Menten d P k S b E 0 dä dt S K M K M k a' k k a b 20
22 21
TK051B Bt2 (Högskoleingenjör i Bioteknik, Åk 2) eller motsvarande
Fysikalisk Kemi Povmoment Ladokkod: Tentamen ges fö: TentamensKod: 7,5 högskolepoäng Tentamen TK051B Bt2 (Högskoleingenjö i Bioteknik, Åk 2) elle motsvaande Tentamensdatum: 27/10/2015 Tid: 09:00 13:00
Provmoment Ladokkod: Tentamen ges för: Tentamen TK051B Bt2 (Högskoleingenjör i Bioteknik, Åk 2) eller motsvarande. TentamensKod:
Fysikalisk Kemi Povmoment Ladokkod: Tentamen ges fö: TentamensKod: 7,5 högskolepoäng Tentamen TK051B Bt2 (Högskoleingenjö i Bioteknik, Åk 2) elle motsvaande Tentamensdatum: 24 oktobe 2016 Tid: 09:00 13:00
Provmoment Ladokkod: Tentamen ges för: Tentamen TK051B Bt2 (Högskoleingenjör i Bioteknik, Åk 2) eller motsvarande. TentamensKod:
Fysikalisk Kemi Povmoment Ladokkod: Tentamen ges fö: TentamensKod: 7,5 högskolepoäng Tentamen TK051B Bt2 (Högskoleingenjö i Bioteknik, Åk 2) elle motsvaande Tentamensdatum: 23/10/2017 Tid: 14:00 18:00
TK051B Bt2 (Högskoleingenjör i Bioteknik, Åk 2) eller motsvarande
Fysikalisk Kemi 7,5 högskolepoäng Ladokkod: Tentamen ges fö: TK051B Bt2 (Högskoleingenjö i Bioteknik, Åk 2) elle motsvaande Namn: (Ifylles av student) Pesonnumme: (Ifylles av student) Tentamensdatum: 12/01/2012
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin
Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer
Tentamen i KFK080 Termodynamik kl 08-13
Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För
funktion och termodynamik Björn Wickman TIF190 Fysik för hållbar utveckling, 2009 Hur en bränslecell fungerar Termodynamik för bränsleceller:
ll i ett hållbat samhälle funktion och temodynamik Du komme att läa dig: Vad en bänslecell ä Histoia och definitione i ett hållbat samhälle Hu en bänslecell fungea Fundamentala pincipe Paktiska tillämpninga
Övningstentamen i KFK080 för B
Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel
Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.
21. Boltzmanngasens fria energi
21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw
Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15
Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.
I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att
Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.
Analys och bedömning av företag och förvaltning Omtentamen Ladokkod: SAN023 Tentamen ges för: Namn: (Ifylles av student Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2014-02-17 Hjälpmedel: Lexikon
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM
Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt
Spontanitet, Entropi, och Fri Energi 17.1 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 17.5 17.6 och kemiska reaktioner 17.7 och inverkan av tryck 17.8
Kapitel 17. Spontanitet, Entropi, och Fri Energi
Kapitel 17 Spontanitet, Entropi, och Fri Energi Kapitel 17 Innehåll 17.1 Spontana processer och entropi 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 Fri
Repetition. Termodynamik handlar om energiomvandlingar
Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10
Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2009-12-16 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem.
Kapitel 2 Här hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart
jämvikt (där båda faserna samexisterar)? Härled Clapeyrons ekvation utgående från sambandet
Tentamen i kemisk termodynamik den 14 december 01 kl. 8.00 till 13.00 (Salarna E31, E3, E33, E34, E35, E36, E51, E5 och E53) Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast
2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)
Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
Hur förändras den ideala gasens inre energi? Beräkna också q. (3p)
entamen i kemisk termodynamik den 4 juni 2013 kl. 14.00 till 19.00 Hjälpmedel: Räknedosa, BEA och Formelsamling för kurserna i kemi vid KH. Endast en uppgift per blad! Skriv namn och personnummer på varje
7,5 högskolepoäng. Väveriteknik, skriftlig tentamen 51TV10 och AX10VT TD
Väv Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Väveriteknik, skriftlig tentamen 51TV10 och AX10VT TD 7,5 högskolepoäng Tentamensdatum: 2016-04-24
Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.
Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):
Tentamen i kemisk termodynamik den 12 juni 2012 kl till (Salarna L41, L51 och L52)
Tentamen i kemisk termodynamik den 12 juni 2012 kl. 14.00 till 19.00 (Salarna L41, L51 och L52) Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv
TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl
CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-08-21 kl.
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Molekylärbiologi Provmoment: Ladokkod: Tentamen ges för: Tentamen TK151C Bt3 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2016-01-12 Tid: 14:00 18:00 Hjälpmedel: Tillåtna hjälpmedel är lexikon. Dock
Lösningar till tentamen i tillämpad kärnkemi den 10 mars 1998 kl
Lösninga till tentamen i tillämpad känkemi den 10 mas 1998 kl 0845-145 Ett öetag ha köpt natuligt uan ö 10 k/. Konveteing till UF 6 kosta 60 k/ tillvekad UF 6. I en gascentiugbasead anikningsanläggning
Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum
Tentamen, Termodynamik och ytkemi, KFKA01,
Tentamen, Termodynamik och ytkemi, KFKA01, 2016-10-26 Lösningar 1. a Mängden vatten är n m M 1000 55,5 mol 18,02 Förångningen utförs vid konstant tryck ex 2 bar och konstant temeratur T 394 K. Vi har alltså
Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Efter överenskommelse med studenterna är rättningstiden fem veckor.
Kemi Bas A Provmoment: Tentamen Ladokkod: TX011X Tentamen ges för: Tbas, TNBas 7,5 högskolepoäng Namn: Personnummer: Tentamensdatum: 2012-10-22 Tid: 9:00-13:00 Hjälpmedel: papper, penna, radergummi kalkylator
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002
UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook
7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.
Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),
Tentamen i kemisk termodynamik den 17 januari 2014, kl
entamen i kemisk termodynamik den 7 januari 04, kl. 8.00 3.00 Hjälpmedel: Räknedosa, BEA och Formelsamlin för kurserna i kemi vid KH. Endast en uppift per blad! Skriv namn och personnummer på varje blad!.
Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Tentamen i Termodynamik för K och B kl 8-13
Tentamen i Termodynamik för K och B 081025 kl 8-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas.
Grundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)
Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
Tentamen i Kemisk termodynamik kl 8-13
Institutionen för kemi entamen i Kemisk termodynamik 22-1-19 kl 8-13 Hjälmedel: Räknedosa BE och Formelsamling för kurserna i kemi vid KH. Endast en ugift er blad! kriv namn och ersonnummer å varje blad!
Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl
Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Kapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning.
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 5. 5.3 Den ideala gaslagen 5.4 5.5 Daltons lag för partialtryck 5.6 5.7 Effusion och Diffusion 5.8 5.9 Egenskaper hos några verkliga gaser 5.10 Atmosfärens kemi Copyright
Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/ kl
Tentamensskrivning i FYSIKALISK KEMI Bt (Kurskod: KFK 162) den 19/10 2010 kl 08.30-12.30 Observera! Börja på nytt ark för varje ny deluppgift. Tillåtna hjälpmedel 1. Miniräknare av valfri typ. 2. Utdelad
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Den enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y
Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback
Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng)
1 (6) Tentamen i Allmän kemi 7,5 hp 5 november 2014 (50 + 40 poäng) Tentamen består av två delar, räkne- respektive teoridel: Del 1: Teoridel. Max poäng: 50 p För godkänt: 28 p Del 2: Räknedel. Max poäng:
Tentamen KFKA05 och nya KFK080,
Tentamen KFKA05 och nya KFK080, 2013-10-24 Även för de B-studenter som läste KFK080 hösten 2010 Tillåtna hjälpmedel: Miniräknare med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser
18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)
18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två
Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors
Tentamen i KE1160 Termodynamik den 13 januari 2015 kl 08.00 14.00 Lösningsförslag Ulf Gedde - Magnus Bergström - Per Alvfors 1. (a) Joule- expansion ( fri expansion ) innebär att gas som är innesluten
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F9 Process (reversibel, irreversibel) Entropi o statistisk termodynamik: S = k ln W o klassisk termodynamik: S = q rev / T o låg S: ordning, få mikrotillstånd o hög S: oordning, många mikrotillstånd
Tentamen i Energilagringsteknik 7,5 hp
UMEÅ UNIVERSIE illämpad fysik och elektonik Las Bäckstöm Åke Fansson entamen i Enegilagingsteknik 7,5 hp Datum: -3-5, tid: 9. 5. Hjälpmedel: Kusboken: hemal Enegy Stoage - systems and applications, Dince
Repetition F12. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F12 Kolligativa egenskaper lösning av icke-flyktiga ämnen beror främst på mängd upplöst ämne (ej ämnet självt) o Ångtryckssänkning o Kokpunktsförhöjning o Fryspunktssänkning o Osmotiskt tryck
Termodynamiska potentialer Hösten Assistent: Frans Graeffe
Räkneövning 3 Termodynamiska potentialer Hösten 206 Assistent: Frans Graeffe (03-) Concepts in Thermal Physics 2.6 (6 poäng) Visa att enpartielpartitionsfunktionen Z för en gas av väteatomer är approximativt
Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00
Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel
Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h. Tentamensdatum: Tid: 09:00 13:00
Grundläggande kemiteknik Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h 7,5 högskolepoäng Tentamensdatum: 2018-05-29 Tid: 09:00 13:00 Hjälpmedel: Tillåtna hjälpmedel är miniräknare, Alvarez
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Kemi Bas 1 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 40S01A KBAST och KBASX 7,5 högskolepoäng Tentamensdatum: 2016-10-27 Tid: 09:00-13:00 Hjälpmedel: papper, penna, radergummi, kalkylator
Studenter i lärarprogrammet LAG F-3 T6. Periodiska systemet, tabell över joner och skrivverktyg. 55 p. Väl godkänd: 41 p
Kemi 11F360 Provmoment: Ladokkod: Tentamen ges för: Kemi 2,5 hp Studenter i lärarprogrammet LAG F3 T6 22,5 högskolepoäng TentamensKod: Tentamensdatum: 180406 Tid: 09.00 13.00 Hjälpmedel: Periodiska systemet,
Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt
Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus
Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng
Gaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller:
Introduktion till energiteknik Provmoment: Tentamen Ladokkod: TK2211 Tentamen ges för: Energiingenjör 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2013-04-04
Tentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Lösningar till tentamen i Kemisk termodynamik
Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,
Tentamen KFKA05 för B, 2011-10-19 kl 14-19
Tentamen KFKA05 för B, 2011-10-19 kl 14-19 Även för de som läste KFK080 för B hösten 2010 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall
Räkneövningar / Classroom exercises (Ri) kurs-assistent / course assistent MSc ChemEng Evelina Koivisto
The five underlined questions shall be discussed, for the four other questions the answer is enclosed. 1.1 Gammal tentfråga / old exam question 411 Värme- och strömningsteknik / Thermal and Flow Engineering
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
Tentamen i Kemisk termodynamik kl 14-19
Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.
010-04-6 Sammanfattning Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION p V z H const. g Quantity
Arvika 2019_243 Stömne Bertil Persson Betongteknik AB DECIBEL - Huvudresultat Beräkning: VKV SWE99TM VKV typ Ljuddata
SVENSKA BESTÄMMELSER FÖR EXTERNT BULLER FRÅN LANDBASERADE VINDKRAFTVERK 2019-03-02 07:25 / 1 Beräkningen är baserad på den av Statens Naturvårdsverk rekommenderad metod "Ljud från landbaserade vindkraftverk",
Module 4 Applications of differentiation
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 4 Applications of differentiation Chapter 4 of Calculus by Adams and Essex. Three lectures, two tutorials, one seminar. Important concepts.
Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.
Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):
Tentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
SYST14h, Systemvetarutbildningen. Tentamensdatum: Tid: Tentamenstiden är tre timmar, 09:00 12:00. för betyget VG krävs minst 53 poäng
Systemarkitekturer Provmoment: Ladokkod: Tentamen ges för: TE01 / TEN1 21SA1C ADAEK14h, Dataekonomutbildningen SYST14h, Systemvetarutbildningen 7,5 högskolepoäng TentamensKod: (Ifylles av student) Tentamensdatum:
Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan
Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten
Allmän Kemi 2 (NKEA04 m.fl.)
Allmän Kemi (NKEA4 m.fl.) --4 Uppgift a) K c [NO] 4 [H O] 6 /([NH ] 4 [O ] 5 ) eller K p P(NO) 4 P(H O) 6 /(P(NH ) 4 P(O ) 5 ) Om kärlets volym minskar ökar trycket och då förskjuts jämvikten åt den sida
TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V
CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.