Problemdemonstration 1
|
|
- Rut Nyström
- för 5 år sedan
- Visningar:
Transkript
1 Problemdemonstration 1 Divisorsummor och perfekta tal Låt oss för ett givet positivt naturligt tal x, summera alla naturliga tal d som x är delbar med, och som är mindre än x. Talen d kallas divisorer eller delare till x, och summan (som beräknas av proceduren nedanför) benämnes divisorsumman till x. T.ex. har 6 divisorsumman Divisorsumman till x i r = r 1 d Sålänge d < x { Om x är delbar med d så Addera d till r Öka d} Primtalens divisorsummor är alltid lika med 1, eller hur! Och sammansatta tals divisorsummor är alltid större än 1. I sällsynta fall blir ett tals divisorsumma lika med x själv. När det inträffar sägs x vara perfekt. Talet 6 är det minsta perfekta talet. x divisorsumman till x perfekt Det är okänt hur många perfekta tal det finns. I skrivande stund känner man bara till fyrtioåtta stycken. Det största av dessa upptäcktes år 008, och är över 5 miljoner siffror långt, något som antyder att de perfekta talen är mycket sällsynta. Märkligt nog kan ett program, som för ett godtyckligt x reder ut om x är perfekt eller ej, vara mycket kort: x är perfekt? i s = Divisorsumman till x i r x r? i s
2 Problemdemonstration 1.nb Perfekta tals primtalsfaktorer När man primtalsfaktoriserar de fyra minsta perfekta talen, finner man ett anmärkningsvärt mönster, där primtalet har en framträdande roll: 6 ÿ3 1 ÿi M ÿi - 1M 8 ÿÿ7 ÿi M ÿi 3-1M 496 ÿÿÿÿ31 4 ÿi M 4 ÿi 5-1M 818 ÿÿÿÿÿÿ17 6 ÿi M 6 ÿi 7-1M Som synes kan de fyra första perfekta talen skrivas på formen p-1 ÿh p - 1L, där p är ett primtal. (1) Den schweiziske matematikern Leonhard Euler visade för drygt hundra år sedan att alla jämna perfekta tal (inte bara de fyra första) har primtalsfaktoriseringar på formen (1). Primtalsfaktorn p - 1 () från (1) har väckt matematikers intresse under århundranden. Tidigt upptäckte man att om man pluggar in de fyra första primtalen p =, 3, 5, 7 i (), så får man primtalen 3, 7, 31, 17. Därför dristade sig en del matematiker i den tidiga matematikhistorien att formulera den djärva hypotesen att p - 1 är ett primtal för varje primtalsvärde på p. Emellertid upptäckte man snart att 11-1 inte är ett primtal, trots att 11 är det. Och längre fram upptäcktes ännu flera undantag från hypotesen. Marin Mersenne, en fransk munk, musikteoretiker, filosof och matematiker framförde år 1644 hypotesen att p - 1 genererar primtal enbart för p =, 3, 5, 7, 13, 17, 19, 31, 67, 17 och 57. Fastän också denna hypotes har visat sig vara falskt, kallas primtal som är på formen p - 1 för Mersenneprimtal. Notera till sist att (1) är lika med en produkt mellan två på varandra följande tal dividerat med två:
3 3 Problemdemonstration 1.nb där n = p. p-1 ÿh p - 1L p 1 ÿhp - 1L n ÿhn - 1L Hn - 1L ÿ n Tal som är hälften av en produkt mellan två på varandra följande tal återkommer nedanför. (3) Triangeltal När man räknar antalet kulor i trianglar med n = 0, 1,, 3, 4, 5, 6, 7 kulrader, uppträder talen 0, 6, 10, 15, 1, 8. Se figuren nedanför. Talen, som av de gamla grekerna kallades för triangeltal, har en tendens att dyka upp i kombinatoriska sammanhang. Lägg märke till att de två perfekta talen 6 och 8 återfinns här. Vi ska se att detta inte är en slump. n triangeltal Den vänstra proceduren nedanför beräknar det n:te triangeltalet genom att lägga ihop talen 0, 1,,, n i turordning, det ena efter det andra.
4 Triangeltal n i r = r 0 k 1 Sålänge k n { Addera k till r Öka k} Problemdemonstration 1.nb 4 x är ett triangeltal? i s = t 0 n 1 Sålänge t < x { Triangeltal n i t Öka n} t x? i s Den högra reder ur om x är ett triangeltal, genom att undersöka det minsta triangeltal t som inte ligger till vänster om x. Detta triangeltal är nämligen det enda som möjligen kan vara lika med x. För att hitta nämnda triangeltal, beräknas det ena triangeltalet efter det andra i storleksordning tills det framräknade triangeltalet t inte längre är mindre än x. Då är t det minsta triangeltal som inte ligger till vänster om x. x t EN SLUTEN FORMEL Istället för att lägga ihop talen 0, 1,,, n i storleksordning, kan man förstås börja med att lägga samman det första talet och det sista, vilket ger 1 + n, sedan ta det andra och det näst sista som också (varför då?) ger 1 + n, osv. Totalt blir det n ê stycken termer av storlek n + 1. Det n:te triangeltalet n ges därför av den slutna formeln n ÿhn + 1L = n ÿ Hn+1L Men vi påpekade nyss (Se (3).) att varje jämnt perfekt tal kan skrivas som hälften av en produkt mellan två på varandra följande tal (där det största är lika med ett Mersennprimtal). Det följer att alla jämna perfekta tal är triangeltal. t x
5 5 Problemdemonstration 1.nb Pyramidtal Den enklaste kulpyramiden har en kula i toppen och därunder tre kulor som bildar en triangel. Större pyramider fås genom att tillfoga flera (och större) kultrianglar i botten. Antalet kulor i en kulpyramid är därför en summa av triangeltal. Vi kallar nämnda antal för ett pyramidtal. n pyramidtal En procedur som beräknar pyramidtal behöver bara addera triangeltal. Pyramidtal n i r = r 0 k 1 Sålänge k n { Triangeltal k i t Addera t till r Öka k} Försök hitta en s.k. sluten formel för pyramidtalen motsvarande den slutna formeln n ÿ Hn+1L för triangeltalen.
6 Problemdemonstration 1.nb 6 Summor av summor av summor av ettor Vi ska nu visa att triangeltal och pyramidtal ingår som byggstenar i ett omfattande byggnadsverk skapat med hjälp av 1:or allena. Börja med att ställa upp en inledande kolumn av 1:or. Upprätta sedan en ny kolumn till höger om den första. Fyll varje position i den nya kolumnen med summan av de tal som finns ovanför och till vänster (om den nämnda positionen). Fortsätt sedan att upprätta den ena kolumnen efter den andra med positioner fyllda enligt samma princip. Till slut får vi lika många kolumner som rader. kol 0 kol 1 kol kol 3 kol 4 kol 5 rad rad rad rad rad rad Man kan konstatera att kolumn innehåller triangeltal. Och det är ju inte så konstigt med tanke på vilka tal som adderas när man fyller i rutorna i kolumn. Och i kolumn 3 hittar vi förstås pyramidtal, eftersom varje ruta i nämnda kolumn har fyllts med en summa av triangeltal. T.ex. uppstår pyramidtalet 10 på rad 5 och kolumn 3 genom addition av de markerade talen 1, 3, 6 i kolumn, vilka i sin tur är byggda med hjälp av tal i kolumn 1, vilka slutligen är byggda av 1:or från kolumn 0. För att framhäva detta kan vi skriva
7 7 Problemdemonstration 1.nb 10 = = 1 + H1 + L + H L = 1 + H1 + H1 + 1LL + H1 + H1 + 1L + H LL Tal som beskrivs med hjälp av samma sorts tal men enklare (så är det ju med talen i de olika positionerna), kan med fördel beräknas med en procedur som anropar sig själv. Proceduren nedanför som beräknar ett tal i en godtycklig position (rad, kolumn) är konstruerad på detta sätt. Tal i position (rad, kol) i r = Om kol > rad så r 0 annars r 1 Om kol > 0 så rad' rad kol' kol Minska rad' Minska kol' Sålänge rad' > kol ' { Tal i position (rad', kol') i t Addera t till r Minska rad' } Lägg märke till att de positioner som fylls med nollskilda tal bildar en (liksidig) triangel. Den brukar kallas Pascals triangel efter den franske matematikern Blaise Pascal som (på 1600-talet) tillsammans med advokaten Pierre de Fermat formulerade de första idéerna för sannolikhetsteorin. Talen i triangeln spelar en väsentlig roll i denna teori. Det är nämligen så att det tal som ligger på rad r i kolumn k beskriver antalet sätt att välja k element av r element. T.ex. beskriver triangeltalet 6 (på rad 4 i kolumn ) antalet sätt att välja två element av fyra element, varför sannolikheten att just Adam och Eva väljs, när två personer skall väljas på måfå ur gruppen Adam, Kalle, Eva och Steve är 1/6..
En av matematikhistoriens mest berömda trianglar är Pascals triangel,
Michael Naylor Okända skrymslen i Pascals triangel Pascals triangel, som har varit känd av indiska, persiska, arabiska och kinesiska matematiker i mer än tusen år, fick sitt nuvarande namn i mitten av
1 Talteori. Det här kapitlet inleder vi med att ta
1 Talteori DELKAPITEL 1.1 Kongruensräkning 1. Talföljder och induktionsbevis FÖRKUNSKAPER Faktorisering av tal Algebraiska förenklingar Formler Direkta och indirekta bevis CENTRALT INNEHÅLL Begreppet kongruens
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Inlämningsuppgift, LMN100
Inlämningsuppgift, LMN100 Delkurs 3 Matematik Lösningar och kommentarer 1 Delbarhetsegenskaper (a) Påstående: Ett heltal är delbart med fyra om talet som bildas av de två sista siffrorna är delbart med
Arbeta vidare med aritmetik 2018
Arbeta vidare med aritmetik 2018 I det här materialet har vi samlat problem inom aritmetik från flera olika tävlingsklasser, från Ecolier till Student. Årtal Varje år förekommer det problem som utgår från
Lösningar till utvalda uppgifter i kapitel 5
Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar
UPPSALA UNIVERSITET Institutionen för informationsteknologi NUMERISK TALTEORI. Eva-Lotta Högberg Daniel Norin Linn Stengård Joakim Widén
UPPSALA UNIVERSITET Institutionen för informationsteknologi NUMERISK TALTEORI Eva-Lotta Högberg Daniel Norin Linn Stengård Joakim Widén INLEDNING Vi skall i detta arbete belysa den numeriska talteorins
INDUKTION OCH DEDUKTION
Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln
PROV I MATEMATIK Algoritmik 26 mars 2008
UPPSALA UNIVERSITET Matematiska institutionen Salling, Wilander PROV I MATEMATIK Algoritmik 26 mars 2008 SKRIVTID: 8-12. HJÄLPMEDEL: Inga. Lösningarna skall åtföljas av förklarande text. För godkänt prov
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på
A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas papper med de olika räknesättens
Aktivitet 1:1 LÄRARVERSION Göra tal av siffror Eleverna ska träna på positionssystemet. A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas
Arbeta vidare med Junior 2010
Arbeta vidare med Junior 010 Känguruproblemen är kanske inte av samma karaktär som de problem eleverna möter i läroboken. De är inga rutinuppgifter utan bygger på förståelse och grundläggande kunskaper.
2 = 2. Tal skrivna på det sättet kallas potenser. I vårt fall har vi tredje tvåpotensen. Tredje tvåpotensen har 2 som bas och 3 som
616 Talföljder på laborativt vis Vikt papper Vik ett A-4 ark mitt itu så att du får två stycken A-5 ark. Vik det en gång till på samma sätt. Hur stora och hur många är dina ark? Vad händer om du fortsätter?
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd
I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4
Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet
Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd
7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.
Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex
Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg II Del 1: Om programmering Aktiviteter Del 1 Lennart Rolandsson, Uppsala universitet, Ulrica Dahlberg och Ola Helenius, NCM Ni
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.
Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)
De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)
Matematikboken UTMANINGEN. Lennart Undvall Kristina Johnson Conny Welén
Matematikboken UTMANINGEN Lennart Undvall Kristina Johnson Conny Welén ISBN 978-91-47-08519-4 2011 Lennart Undvall, Kristina Johnson, Conny Welén och Liber AB Projektledare och redaktör: Sara Ramsfeldt
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,
4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.
Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två
formler Centralt innehåll
Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska
Matematisk kommunikation för Π Problemsamling
Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och
Sannolikhetsbegreppet
Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34
2 Matematisk grammatik
MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk
LABBA MED PRIMTAL OCH DELBARHET. Andreas Wannebo
LABBA MED PRIMTAL OCH DELBARHET Andreas Wannebo Vi ska studera egenskaper för heltalen. Det finns heltal såsom 1,2,3,4,... De är de positiva heltalen och det är dem vi vill studera. Först kan man ställa
Matematiska uppgifter
Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,
Explorativ övning 11 GEOMETRI
Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
Matematisk kommunikation för Π Problemsamling
Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 1B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Hälften och dubbelt av antal, strategier Rita dubbelt så många. Skriv. 2 4 6 4 8 5 Minska med 1. Öka med 1. 1 + 1
PROBLEMLÖSNINGSUPPGIFTER
PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ ETT Sannolikhet ELEV Du kommer nu att få bekanta dig med Google Kalkylark. I den här uppgiften får du öva dig i att skriva
1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Student 016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till
Lutande torn och kluriga konster!
Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den
Kvalificeringstävling den 28 september 2010
SKOLORNS MTEMTIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 28 september 2010 Förslag till lösningar Problem 1 En rektangel består av nio smårektanglar med areor (i m 2 ) enligt figur
2-2: Talförståelse, faktoruppdelning Namn:
2-2: Talförståelse, faktoruppdelning Namn: Inledning I det här delmomentet skall du öva upp din talförståelse, dvs hur tal är uppbyggda. Hur då uppbyggda? frågar du säkert. Man startar väl med talet ett
Kängurutävlingen Matematikens hopp 2019 Benjamin
Kängurutävlingen Matematikens hopp 2019 Benjamin Trepoängsproblem 1 Carrie har börjat att rita en katt. Hur kan hennes färdiga teckning se ut? (Norge) 2 Mayafolket skrev tal på ett annat sätt än vi gör.
DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio
Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från
LMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
Kapitel 2: De hela talen
Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Resurscentrums matematikleksaker
Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen
Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning
Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel
Kvalificeringstävling den 29 september 2009
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 29 september 2009 Förslag till lösningar Problem Visa att talet 2009 kan skrivas som summan av 7 positiva heltal som endast
Per Berggren och Maria Lindroth 2012-10-30
Varierad undervisning Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Kängurun Matematikens hopp
Kängurun Matematikens hopp Benjamin 2009 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt och
Matematik klass 3. Vårterminen. Anneli Weiland Matematik åk 3 VT 1
Matematik klass 3 Vårterminen Anneli Weiland Matematik åk 3 VT 1 Minns du från höstens bok? Räkna. Se upp med likhetstecknet, var finns det? 17-5= 16+ =19 18-2= 15-4= 19=12+ 19-3= 15+4= 20-9= 18=20- +16=20
Konkret kombinatorik. Per Berggren och Maria Lindroth
Konkret kombinatorik Per Berggren och Maria Lindroth 2018-01-26 Cars in the Garage En rikt problem med många möjligheter Centralt innhåll Slumpmässiga händelser i experiment och spel. Enkla tabeller och
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till
Magiska kvadrater. strävorna
strävorna 1A Magiska kvadrater taluppfattning huvudräkning mönster Avsikt och matematikinnehåll Avsikten är att ge eleverna färdighetsträning i huvudräkning, tillfälle att upptäcka mönster och att dra
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter
TDP Regler
Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Årgång 85, 2002. Första häftet
Elementa Årgång 85, 2002 Årgång 85, 2002 Första häftet 4060. Dorotea, Fredrika, Nora och Ulrika har tillsammans 117 glaskulor. Uppgifterna om hur många kulor var och en äger är ytterst knapphändiga. Man
Rekursion och induktion
Rekursion och induktion Vi börjar med ett exempel. EXEMPEL 1 I slutet av 1800-talet presenterade den franske matematikern Edouard Lucas ett slags matematiskt pussel ( recréation mathématiques ) vars mål
Rekursion och induktion
Rekursion och induktion Vi börjar med ett exempel. EXEMPEL 1 I slutet av 1800-talet presenterade den franske matematikern Edouard Lucas ett slags matematiskt pussel ( recréation mathématiques ) vars mål
Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7 Tävlingen genomförs under perioden 21 mars 29 mars. Uppgifterna får inte användas tidigare. Sista
1 D Linjerna på de plattorna går inte diagonalt. 2 E Båda djuren kommer ut, men vägarna möts inte.
Svar och lösningar 1 D Linjerna på de plattorna går inte diagonalt. 2 E Båda djuren kommer ut, men vägarna möts inte. 3 C: 1 och 3 4 C: David 5 B: 2 Flytta myntet på toppen och myntet som ligger i mitten
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
Uppgifter till Första-hjälpen-lådan
Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.
PROV I MATEMATIK Algoritmik 14 april 2012
UPPSALA UNIVERSITET Matematiska institutionen Salling (070-6527523) SKRIVTID: 9-13 HJÄLPMEDEL: Inga. PROV I MATEMATIK Algoritmik 14 april 2012 Svar/lösningar skall åtföljas av förklarande text. För godkänt
Problemreduktion. Vad utmärker en matematiker? Valentina Chapovalova. 22 januari 2011. HMT-finalen
Vad utmärker en matematiker? HMT-finalen 22 januari 2011 Kylskåpsproblem 1 Problem 1: Hur lägger vi in en giraff i ett kylskåp med hjälp av tre operationer? Kylskåpsproblem 1 Problem 1: Hur lägger vi in
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
TALTEORI FÖR ALLA 1 Juliusz Brzezinski
TALTEORI FÖR ALLA 1 Juliusz Brzezinski För exakt 10 år sedan publicerade Andrew Wiles sitt bevis av Fermats Stora Sats. Nyheten om hans resultat väckte enorm uppmärksamhet i hela världen. Vägen till lösningen
Bråk. Introduktion. Omvandlingar
Bråk Introduktion Figuren till höger föreställer en tårta som är delad i sex lika stora bitar Varje tårtbit utgör därmed en sjättedel av hela tårtan I nästa figur är två av sjättedelarna markerade Det
Kombinatorik. Författarna och Bokförlaget Borken, 2011. Kombinatorik - 1
Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13
1Mer om tal. Mål. Grundkursen K 1
Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform
Explorativ övning Geometri
Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
Programmeringsolympiaden 2012 Kvalificering
Programmeringsolympiaden 2012 Kvalificering TÄVLINGSREGLER Tävlingen äger rum på ett av skolan bestämt datum under sex timmar effektiv tid. Tävlingen består av sex uppgifter som samtliga ska lösas genom
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
Arbeta vidare med Ecolier 2010
Arbeta vidare med Ecolier 2010 Nu är tävlingsdelen av Kängurun avslutad, men vi hoppas att problemen ska kunna vara underlag för många intressanta diskussioner. I samband med genomgång passar det bra att
Nonogram
Nonogram. Vad är nonogram? Nonogram är små enkla men fascinerande pyssel som ursprungligen kommer från Japan. De har också givits ut i söndagsbilagan i engelska dagstidningar under flera år. Idén bakom
Hela tal LCB 1999/2000
Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
Bok: Z (fjärde upplagan) Kapitel : 1 Taluppfattning och tals användning Kapitel : 2 Algebra
PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 1 Taluppfattning och tals användning Kapitel : 2 Algebra Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ
Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum:
Matematik Namn: Datum: Mattepapper Blandad räkning 340 + 210 = 720 + 130 = 400-50 = 800-350 = 40 2 = 30 2 = 800 = + 300 700 = + 350 Visa hur du löser uppgifterna! 58 + 29 129 + 37 Visa hur du löser uppgifterna!
(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C
Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B
Matematiska uppgifter
Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som
Tio vanliga Excel-problem
Tio vanliga Excel-problem Aris Velizelos Linda Larsson Kakuli SVT Nyheter Problem: Tomma rader Du har laddat ner en färdig Excel-fil från t ex SCB men det saknas uppgifter på varannan rad. Du vill ha uppgift
(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
matematik Lektion Kapitel Uppgift Lösningg T.ex. print(9-2 * 2) a) b) c) d)
1 Print 2.6 Prioriteringsregler 1 Beräkna a) 9 2 2 b) 10 + 5 6 c) 5 6 10 d) 16 + 4 5 6 2.6 Prioriteringsregler 7 Stina köper 3 chokladbollar för 10 kr styck och 1 kopp te för 14 kr. a) Skriv ett uttryck
Den välkända dikten av Sten Selander
BERNT HERNELL Kul kulkombinatorik Med utgångspunkt i kulspel på 0-talet undersöker författaren sambandet mellan, pyramider, målade golfbollar och Pascals triangel. Den välkända dikten av Sten Selander
Lösningsförslag Junior 2018
Lösningsförslag Junior 2018 poäng 1. (C) 5 2. (C) 5 Av triangelolikheten följer att varje sida i en triangel är längre än differensen av övriga två sidor och kortare än dess summa. Den tredje sidan måste
PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER
Explorativ övning 4 PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER Syftet med detta avsnitt är att bekanta sig med delbarhetsegenskaper hos heltalen. De viktigaste begreppen är Aritmetikens fundamentalsats
4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 009 Student för elever på kurs D och E. Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 0 7 mars användas, däremot
Dagens Teori. a 1,a 2,a 3,...a n
Dagens Teori 10.1 Summor och talföljder 10.1.1 Talföljder En talföljd är en uppräkning av tal a 1,a,a 3,...a n här n stycken. Ofta kan talföljder skrivas på ett mer kompakt sätt, som dessa oändliga talföljder