Gamla Årstabron. FEM-beräkning av förstärkningsåtgärders inverkan på betongbågarna. Andreas Andersson. Stockholm 2006

Storlek: px
Starta visningen från sidan:

Download "Gamla Årstabron. FEM-beräkning av förstärkningsåtgärders inverkan på betongbågarna. Andreas Andersson. Stockholm 2006"

Transkript

1 Gamla Årstabron FEM-beräkning av förstärkningsåtgärders inverkan på betongbågarna Andreas Andersson Stockholm 2006 TRITA-BKN Rapport 101 ISSN ISRN KTH/BKN/R-101-SE Byggkonstruktion 2006 Brobyggnad KTH Byggvetenskap KTH, SE Stockholm

2

3 Gamla Årstabron FEM-beräkning av förstärkningsåtgärders inverkan på betongbågarna Andreas Andersson Copyright Dept. of Civil and Architectural Engineering KTH Stockholm September 2006 iii

4

5 Förord Föreliggande rapport har utarbetats av KTH Byggvetenskap, avdelning för brobyggnad på uppdrag av Banverket Östra banregionen. Rapporten utgör delunderlag för beslut om åtgärder för förstärkning av gamla Årstabron i Stockholm. Vidare utgör rapporten underlag för upprättande av arbetsritningar. Under 2005 har Carl Bro AB utfört tillståndsbedömning och skadeinventering av gamla Årstabrons betongbågar. Resultaten har visat på nedbrytningar och systematiska försvagningar i ej tidigare känd omfattning. På uppdrag av Banverket Östra banregionen har KTH Byggvetenskap, avdelning för brobyggnad under 2005 utfört fältmätningar samt FEM-beräkningar för att utreda brons verkningssätt samt säkerhet i brottgränstillstånd. Dessa beräkningar visar att med gjorda antaganden beträffande betongens egenskaper och inte alltför pessimistiska antaganden om de försvagningar som finns, kan nuvarande trafiklast klaras i både bruksgränstillstånd och brottgränstillstånd. Enligt Banverkets direktiv anges en återstående livslängd av gamla Årstabron på 50 år med en trafiklast motsvarande STAX25. P.g.a. de stora osäkerheter som råder beträffande betongens egenskaper, försvagningszoner samt nuvarande nedbrytningsprocesser har föreslagits att betongbågarna förstärks för att säkerställa en återstående livslängd på 50 år. På uppdrag av Banverket Östra banregionen har KTH Byggvetenskap, avdelning för brobyggnad upprättat beräkningar av olika förstärkningsåtgärders inverkan på betongbågarna vilka redovisas i denna rapport. De förstärkningsalternativ som presenteras har framkommit genom samarbete med Banverket Östra banregionen. En systemhandlingsprojektering har utförts av Carl Bro AB där ett antal förstärkningsalternativ har framtagits, vilka redovisas i [5, 6]. Det av Banverket beslutade slutliga alternativ har studerats i denna rapport avseende bärförmåga i brottgränstillstånd. Stockholm i september 2006 Andreas Andersson Stockholm 26 februari 2007 Avsnitt 3.6 om tvärkraftskapacitet har rättats till avseende Ekv och 3.13 samt Figur Andreas Andersson v

6

7 Sammanfattning Denna rapport omfattar brottgränsberäkningar av gamla Årstabrons betongbågar samt olika förstärkningsåtgärders inverkan på bärförmågan i brottgränstillstånd. Endast nolledsbågarna har studerats och de treledsbågar som återfinns i anslutning till lyftspannet har inte behandlats i föreliggande rapport. Beräkningarna utförs med finita elementmetoder (FEM) i det generella FEM-programmet SOLVIA-03. Fyra principiellt olika modeller har studerats: - 2D balkmodell för jämförelse med ursprungsberäkningar samt för brottgränsberäkningar, fyllning och trafik påförs bågen som yttre last. - 2D plan modell för beräkning i brottgränstillstånd samt jämförelse med 2D balkmodell, fyllning och trafik påförs bågen som yttre last. - 3D modell för beräkning i brottgränstillstånd och analys av förstärkningsåtgärders inverkan på bärförmågan. Jämförelse med 2D plan modell för att studera inverkan av bågens tvärgående bärförmåga. Fyllning och trafik påförs bågen som yttre last. - 3D modell som ovan fast fyllning och sidomurar medverkar som bärande element som skapar mothåll mot bågen. Olika förstärkningsåtgärder studeras utgående från en s.k. grundmodell där bågen inte är förstärkt. Grundmodellen ges betongkvalitet C12/15 i bågen och försvagade gjutfogar motsvarande 50 % av C12/15 avseende tryckhållfasthet. Ingen draghållfasthet medräknas i betongen. De olika modellerna ger avsevärd skillnad i bärförmåga. Störst skillnad i bärförmåga fås beroende på om fyllning och sidomurar betraktas som enbart yttre last eller som kraftöverförande material. Det sistnämnda ger högre bärförmåga p.g.a. mothållande krafter från fyllning och sidomurar. Om fyllning och sidomurar endast verkar som yttre last fås i brottgränstillstånd en karakteristisk bärförmåga på 26 ton/axel för trafiklast UIC-71 på befintlig oförstärkt bro. Med partialkoefficient 1.4 motsvarar detta tillåten trafiklast på ca: 19 ton/axel. Motsvarande värden för trafiklast D4 är 32.5 ton/axel karakteristiskt, vilket med partialkoefficient 1.3 ger tillåten trafiklast på 25 ton/axel. Brottgränsberäkningar utgående från linjärelastiska snittkrafter och bågens kapacitet i varje snitt resulterar i en bärförmåga lägre än dagens tillåtna trafik, ca: 24 ton/axel för trafiklast UIC-71 utan partialkoefficient på lasten, med antagna värden på randvillkor och materialegenskaper. Enligt Banverkets direktiv anges en återstående livslängd av gamla Årstabron på 50 år med en trafiklast motsvarande STAX25. Enligt föreliggande beräkningar klaras ej trafiklast UIC-71 utan förstärkning av betongbågarna. I nuläget tillåts trafik D4 med undantag för tunga transporter. Banverkets bedömning är att p.g.a. stora osäkerheter i betongens hållfasthet och verkningssätt bör förstärkningsåtgärder utföras så snart som möjligt. I denna rapport har olika förstärkningsåtgärders inverkan studerats avseende bärförmåga i brottgränstillstånd. Med bakgrund av de enskilda förstärkningarnas statiska verkningssätt har Carl Bro AB tagit fram ett antal förstärkningsförslag i [5], vilka beskrivs utifrån utförande och kostnad. Det förslag som av Banverket bedömts fördelaktigast utifrån verkningssätt, utförande vii

8 och kostnad har vidare studerats i denna rapport avseende bärförmåga i brottgränstillstånd. Det slutliga förstärkningsförslaget, benämnt alternativ F, omfattar följande etapper: 1) Befintlig skadad betong på bågens kanter avlägsnas med vattenbilning, djup ca: 250 mm och ny armerad betong med pre-pack eller annan förhållandevis krympningsfri betong gjuts till nya bågstrimlor. 2) Befintlig båge och de nya bågstrimlorna spänns ihop med hjälp av tvärgående stag, vilka även motverkar längsgående sprickors inverkan i bågen. 3) Förstärkning av gjutfogar genom vattenbilning av dålig betong samt återgjutning med pre-pack eller annan förhållandevis krympningsfri betong. 4) Vattenbilning av hela bågens undersida ca: 20 mm. Förstärkning med uk-armering och pågjutning med pre-pack eller annan förhållandevis krympningsfri betong, ca: 80 mm (20+60 mm). Gjutetappfogarna åtgärdas i samband med att bågens ytor vattenbilas och gjuts. Under förstärkningsskedet försvagas bågen, främst då bågens kanter bilas bort. Utgående från tillåten trafiklast D4 minskar tillåten trafiklast från 25 ton/axel till som lägst 23 ton/axel. Beräkningarna utförs utan någon medverkande ursprunglig armering. Brottgränsberäkningarna är i huvudsak utförda utan hänsyn till befintlig armering. Anledningen är dels att armeringens tillstånd inte är känt, dels att dess samverkan med betongen inte är verifierbar i ett brottgränstillstånd. Tillståndsbedömningar och skadeinventeringar utförda av Carl Bro AB visar dock att en betydande andel armering fortfarande finns kvar och fältmätningar utförda under 2005 har visat förväntade armeringsspänningar under brukslaster [1]. Armeringens inverkan på bärförmågan under förstärkningsåtgärderna har studerats för fallet då 50 % av all ursprunglig armering medräknas med full samverkan mot betongen. För det studerade fallet används trafiklast UIC-71. Armeringens inverkan resulterar i en ökad tillåten bärförmåga för oförstärkt bro från 19 ton/axel till ca: 25 ton/axel. Under förstärkningsarbetet minskar bärförmågan tillfälligt till lägst ca: 23 ton/axel, vilket inträffar under förstärkning av bågens kanter. Då tvärstagen har monterats fås en tillräcklig bärförmåga för att hela bågens undersida ska kunna vattenbilas och återgjutas i en etapp längs hela bron samtidigt. Den slutliga förstärkningen, utan medräknande av någon ursprunglig armering, resulterar i en tillåten trafiklast motsvarande minst 26 ton/axel för trafik UIC-71. Detta uppfyller kraven för STAX25. Då beräkningarna är utförda med ickelinjära FE analyser kan en högre slutlig bärförmåga uppnås, vilket dock kan ge resultat på osäkra sidan p.g.a. numeriska konvergenstoleranser. Nyckelord: Finita Element Metoder, bågkonstruktioner, brottanalys, förstärkning, SOLVIA viii

9 Innehållsförteckning Förord...v Sammanfattning...vii 1 Inledning Beräkningsmodeller Geometri och modellbeskrivning Randvillkor Laster Materialegenskaper Toleranser vid brottgränsberäkningar med FEM Betongbågarnas statiska verkningssätt Egentyngd Trafiklast Lastfördelning i fyllning Lastkombination i brottgränstillstånd med FEM Beräknad bärförmåga i brottgränstillstånd baserat på linjära snittkrafter Tvärkraftskapacitet Sprickviddsberäkningar Utmattning Förstärkningsåtgärders inverkan på bärförmågan Förstärkningsåtgärder Resultat 2D plan modell Resultat 3D modell av båge utan mothållande fyllning Resultat 3D modell av en båge med mothållande fyllning Förstärkningsförslag F Förstärknings- och modellbeskrivning Resultat av FEM-beräkningar Avlänkningskrafter Slutsats och analys av gjorda beräkningar D modeller D modell av båge utan mothållande fyllning D modell av båge med mothållande fyllning Slutlig förstärknings inverkan på bärförmågan...87 Litteraturförteckning...89 A Gjutetapper vid bortbilning och ingjutning av ny betong B C Resultat från 2D plan modell...95 Resultat från 3D modell av båge utan mothållande fyllning...99 D Resultat från 3D modell av båge med mothållande fyllning E Indata till SOLVIA FEM-modeller F G Ursprungliga beräkningar av nolledsbågens statiska verkningssätt Linjärelastiska snittkrafter från 2D balkmodell ix

10

11 1 Inledning Tidigare tillståndsbedömningar och skadeinventeringar av gamla Årstabrons betongbågar, utförda av Carl Bro AB [2, 3, 4] har visat på nedbrytningar och systematiska försvagningar i ej tidigare känd omfattning. Beräkningar utförda av KTH [1] avseende bärförmåga i brottgränstillstånd har visat på tillräcklig bärförmåga för att klara dagens trafiklast. Det bör påpekas att beräknad bärförmåga innehåller flera osäkerheter, främst avseende betongens egenskaper. Banverkets direktiv om en återstående livslängd på 50 år hos bron har föranlett rekommendationer om att förstärka betongbågarna. Föreliggande rapport behandlar således olika förstärkningars inverkan på brons bärförmåga samt de av Carl Bro AB framtagna förstärkningsförslag [5]. Beräkningarna är baserade på tidigare framtagna FEM-modeller [1] som är kalibrerade mot fältmätningar. Syftet med beräkningarna i denna rapport är att utvärdera olika förstärkningsförslag och beräkningsmässigt visa hur de påverkar konstruktionen. Beräkningarna avser främst trafiklast i brottgränstillstånd. Skadeinventering av bågarnas undersidor har visat på flera typer av skador. De största skadorna i betongen är koncentrerade vid gjutfogar men även stokastiskt fördelade skador förekommer. Omfattande armeringskorrosion har hittats vilken i jämförelse med tidigare undersökning, utförd av CBI 1996, bedöms ha tilltagit. Med bakgrund av detta har beräkningsmodellerna anpassats genom att anta en genomgående betongkvalitet motsvarande betong C12/15 med en tryckhållfasthet i brottgränstillstånd på 6.4 MPa samt ingen draghållfasthet. Vidare har områden vid gjutfogar antagits ha betongkvalitet motsvarande en tryckhållfasthet på 3.2 MPa. P.g.a. tilltagande armeringskorrosion har ingen befintlig armering medräknats i ett slutligt skede, betraktat under brons återstående livslängd på minst 50 år. Försvagad zon vid gjutfog Figur 1.1: Placering av försvagade zoner i anslutning till gjutetappfogar i bågen. 1

12

13 2.1. Geometri och modellbeskrivning 2 Beräkningsmodeller Följande avsnitt beskriver upprättade FEM-modellers egenskaper avseende geometri, randvillkor, laster och analysmetoder vid brottlastberäkningar. 2.1 Geometri och modellbeskrivning Beräkningsmodellerna är gjorda med det generella FEM-programmet SOLVIA-03. Fyra olika beräkningsmodeller har upprättats: - 2D balkmodell (BEAM och ISOBEAM element). - 2D plan modell (PLANE STRESS element), där fyllning och sidomurar verkar som yttre last på bågen. - 3D modell (SOLID element), där fyllning och sidomurar verkar som yttre last på bågen. - 3D modell (SOLID element), där fyllning och sidomurar medverkar som element. 2D balkmodellerna har används dels för jämförelse med ursprungliga beräkningar dels för beräkningar i brottgränstillstånd. För det sistnämnda har ISOBEAM element används, vilka i SOLVIA-03 kan tilldelas icke-linjära betongegenskaper. Ett flertal beräkningar har med denna modell utförts för att bl.a. studera fyllningens lastspridande egenskaper samt olika lasters inverkan på bågen. Beräkningar i brottgränstillstånd har gjorts med laster enligt gällande normer, BVS [22], dels med icke-linjära FEM-modeller dels baserat på analys av linjära snittkrafter. En 2D plan modell formulerad med PLANE STRESS element har upprättats med vilken bågens längsgående bärförmåga kan beräknas. Resultaten är att jämföras med 2D balkmodellen men ger en tydligare bild av bågens brottmoder samt spänningsfördelning över tvärsnittet. För att beräkna brons totala bärförmåga har två olika 3D modeller upprättats. Den ena modellen omfattar en båge där tillhörande sidomurar och fyllning medverkar som bärande element med motsvarande styvhet. I den andra modellen studeras endast betongbågen och tyngd från sidomurar och fyllning påförs endast som yttre last. Figur 2.1: Elevation gamla Årstabron, CAD ritning från [7] baserad på originalritningar. Bågens geometri beskrivs enligt ritningar med ett antal olika radier som i Figur

14 2. Beräkningsmodeller Figur 2.2: Geometri nolledsbåge, [7]. I SOLVIA-03 [19] beskrivs bågens geometri som båglinjer mellan nodpunkterna i Figur 2.3: LINE ARC 4 6 NCENTER=2 LINE ARC 6 7 NCENTER=1 LINE ARC 7 8 NCENTER=3 Figur 2.3: Bågens geometribeskrivning i FEM-modellerna. 4

15 2.1. Geometri och modellbeskrivning Nodernas koordinater beskrivs i Tabell 2.1. Tabell 2.1: Geometri för upprättande av FEM-modeller av gamla Årstabrons betongbågar. styrnoder: Y: Z: TP-båge: Y: Z: uk-båge: Y: Z: ök-båge: Y: Z: Bågens tyngdpunktslinje kan approximeras med en konstant radie som yx ( ) = x 2, 0 < x < 10.15, (2.1) bågens tvärsnittshöjd räknat från tyngdpunktslinjen kan approximeras som hx ( ) = x x , 0 < x < 10.15, (2.2) och fyllningens höjd, räknat från överkant båge kan approximeras som Hx ( ) = x x x , 0 < x < (2.3) Figur Figur 2.8 nedan visar bågens geometri för olika FEM-modeller. 5

16 2. Beräkningsmodeller Figur 2.4: 2D balkmodell av tre bågar med pelare, 627 frihetsgrader. Figur 2.5: 2D plan modell av en båge, 920 frihetsgrader. Figur 2.6: 3D modell av en båge, 5650 frihetsgrader. 6

17 2.1. Geometri och modellbeskrivning Figur 2.7: 3D modell av en båge med sidomurar och fyllning som medverkande element, frihetsgrader. Figur 2.8: 3D modell av sidomurar som medverkande element. 7

18 2. Beräkningsmodeller 2.2 Randvillkor Bågarna betraktas som nolledsbågar där anfangen är helt rotationsförhindrade i inspänningssnitt 1 enligt Figur Då flera bågar studeras, som i Figur 2.4, bestäms bågarnas horisontalstyvhet av pelarna och intilliggande bågar. Då endast en enskild båge betraktas, beskrivs horisontalstyvheten med en elastisk fjäder med styvheten motsvarande en dubbelsidigt inspänd konsol som K = 12EI L, vilket med antagna värden ger ca: K = = 5400 MN/m. Intilliggande båges horisontalstyvhet uppskattas i separat FEM-modell till ca: 100 MN/m, vilket motsvarar lutningen av förskjutning - kraft kurvan i Figur 2.9. Bågens totala mothållande horisontalstyvhet i anfangen sätts därmed till 5500 MN/m. Pelarnas tillstånd har studerats 1998 av [ 8] genom akustisk emission. Resultaten visade på stora sprickor främst i pelare 6 och Horisontalkraft (MN) y = 8.33E+07x E+06 R 2 = 9.77E-01 K1 K2 y = 1.04E+07x E+06 R 2 = 9.09E Figur 2.9: Förskjutning (m) Samband mellan horisontalförskjutning och horisontalkraft i anfanget för båge med betongkvalitet C12/15 med försvagade gjutfogar. Bågarna är konstruerade som nolledsbågar med teoretisk spännvidd 21 m och pilhöjd 6.5 m. Detta motsvarar att anfanget definieras i inspänningssnitt 2 enligt Figur 2.10, vilket även används i ursprungsberäkningarna, se Bilaga F. Inspänningssnitt 2 utgörs dock av en gjutetappfog varför denna inte med säkerhet kan antas vara helt rotationsförhindrad. I 3D FEM-modellerna antas därför att bågens anfang ligger i inspänningssnitt 1, som är helt rotationsförhindrad. Detta motsvarar att anfanget definieras i inspänningssnitt 2 med en momentstyvhet motsvarande sträckan mellan inspänningssnitt 1 och 2. 8

19 2.3. Laster Inspänningssnitt 2 Inspänningssnitt 1 Koppling pelare-båge Pelare Figur 2.10: Randvillkor anfang båge. 2.3 Laster Beräkningarna i denna rapport omfattar primärt permanenta laster samt trafiklast i brottgränstillstånd. Inverkan av temperatur, broms- och accelerationskraft samt utbredd trafiklastandel har endast studerats för en 2D balkmodell. Trafiklasten består av fyra axellaster med avståndet 1.6 m vilket motsvarar tåglast BV-2000 eller UIC-71. Beroende på influenslinjernas utformning ger medtagande av utbredda lastandelar liten inverkan på bärförmågan, varför endast axellasterna används. Permanenta laster består av: - betongbågens egentyngd, γ = 2400 kg/m 3 - sidomurarnas egentyngd, γ = 2200 kg/m 3 - fyllningens egentyngd, γ = 1700 kg/m 3 Last av sidomurar och fyllning bestäms enligt Figur 2.7 och 2.8 där en gravitationslast på sidomurarnas och fyllningens element ger resulterande krafter på bågens översida. Dimensionerande trafiklast bestäms ur: Qdim = 1.0 Q egen Q trafik (2.4) där lägsta tillåtna bärförmåga av karakteristisk trafiklast Q trafik motsvarar 25 tons axeltryck. Trafiklasten påförs som axellaster i höjd med rälsen och sprids ner till bågen via räls, slipers, fyllning och sidomurar. I de fall då fyllningens och sidomurarnas bärförmåga eller mothållande egenskaper inte medräknas, ersätts dessa element med motsvarande yttre last på bågen. Lastens fördelning beräknas med en modell omfattande dessa delar som element och bågens ovansida som upplag. Resulterande reaktionskrafter påförs med omvänt tecken som yttre punktlaster i en modell med enbart betongbågen. Samma förfarande används vid beräkning av trafiklastens utbredning på bågen. 9

20 2. Beräkningsmodeller Dimensionerande lastposition beräknas genom att flytta trafiklasten statiskt över bågen med steglängden ca: 0.5 m. Analysen utförs med icke-linjära materialegenskaper enligt nedan. Ett flertal beräkningar görs med ökande trafiklast. Bågen genomsöks därefter för extremvärden på spänningar, vilket resulterar i ett antal fasta lastpositioner. Dessa lastpositioner studeras var för sig i en förfinad analys för beräkning av brottlast. Lastpositionen som svarar mot den lägsta bärförmågan används i fortsatta analyser. Liknande metoder för framtagande av dimensionerande lastposition i icke-linjära analyser används t.ex. i det kommersiella programmet RING [30, 31] som är framtaget för beräkning av stenvalvsbroar i brottgränstillstånd. 2.4 Materialegenskaper I beräkningsmodellerna har två olika typer av ickelinjära materialmodeller använts, i FEM- SOLVIA-03 benämnda CONCRETE och NONLINEAR-ELASTIC. För programmet materialmodellen CONCRETE anges en arbetskurva för betongen enligt Figur Modellen är anpassad för att återge betongens egenskaper vid brottlast och tar hänsyn till ett triaxiellt spänningstillstånd, enligt Figur 2.12 och Figur De i SOLVIA-03 fördefinierade parametrarna för triaxiellt spänningstillstånd används. Enaxiellt beskrivs betongens arbetskurva enligt Figur Materialparametrar motsvarande betong C12/15 med partialkoefficienter i brottgränstillstånd och säkerhetsklass 3 används, se nedan. Materialmodellen NONLINEAR-ELASTIC är en generell icke-linjär materialmodell som används för att beskriva godtyckliga ickelinjära materialegenskaper. I FEM-modellerna för brottberäkningar används NONLINEAR-ELASTIC för att beskriva jordmaterialet. Då fyllningen beskrivs med en materialmodell tas hänsyn till både vertikal och horisontell last mot bågen. För ett helt elastiskt material motsvaras fck fck f cd = = ηγ mγ n Eck Eck Ecd = = ηγ mγ n f yk f yk f yd = = ηγ mγ n Ek Ek Ed = = ηγ γ m εc 0 = 0.20% ε = 0.35% cu n Figur 2.11: Enaxiell arbetskurva för betong formulerad med materialmodellen CONCRETE, [19]. 10

21 2.4. Materialegenskaper Figur 2.12: Triaxiellt spänningstillstånd i tryck för materialmodellen CONCRETE, [19]. Figur 2.13: Ökning av betonghållfasthet vid fleraxligt spänningsstillstånd med materialmodellen CONCRETE, [19]. Figur 2.13 visar betongens egenskaper vid fleraxligt spänningstillstånd, där betongens tryckhållfasthet ökas från σ c till σ c. 11

22 2. Beräkningsmodeller Figur 2.14: Arbetskurva för ett generellt ickelinjärt material enligt NONLINEAR-ELASTIC, [19]. 2.5 Toleranser vid brottgränsberäkningar med FEM Beräkningarna i denna rapport omfattar brottgränsberäkningar av bågens yttersta bärförmåga, d.v.s. då all bärförmåga är uttömd. I detta tillstånd beter sig betongen på ett mycket icke-linjärt sätt vilket med FEM-beräkningar ställer höga krav på beräkningsmetod för att uppnå ett riktigt resultat. För att hitta jämvikt i varje beräkningssteg krävs ett antal numeriska iterationer p.g.a. ickelinjära egenskaper av t.ex.. materialet eller 2:a ordningens effekter. För att uppnå konvergens inom rimligt antal iterationer krävs att särskilda toleranskrav ställs på beräkningarna, d.v.s. konvergens anses ha uppfyllts inom vissa gränsvärden. I beräkningarna i denna rapport styrs toleranskravet enligt: t + Δt t +Δt ( i 1) ( i 1) t +Δt ( i 1) t +Δt R M U C RNORM U F 2 RTOL (2.5) t + Δt t +Δt ( i 1) ( i 1) t +Δt ( i 1) t +Δt R M U C U RMNORM F 2 RTOL (2.6) Eftersom beräkningarna är statiska innebär detta att feltermen, täljaren, är differensen mellan krafter och reaktionskrafter i varje punkt i modellen. För att konvergens ska uppnås krävs att de obalanserade krafterna i varje punkt är mindre än produkten RTOL RNORM. Då betongen spricker upp kraftigt sker spänningsomlagringar vilket ökar svårigheten att hitta konvergens. Genom att öka produkten RTOL RNORM under en liten lastökning kan dessa spänningsomlagringar fortgå, varefter toleranskraven återigen minskas. Ett konstant toleranskrav RTOL RNORM innebär vid ökad last att högre noggrannhet uppnås i förhållande till lastnivån samtidigt som materialet beter sig mer ickelinjärt. Detta gör att fler iterationer krävs för att hitta jämvikt. Då större delen av konstruktionens bärförmåga är uttömd måste toleranskravet ökas för att beräkningarna ska fortgå. Vid denna tidpunkt kan modellen inte ta nämnvärt högre last och deformationerna ökar under i princip konstant last. Det värde på bärförmågan som redovisas i denna rapport är den precis innan denna tidpunkt. 12

23 2.5. Toleranser vid brottgränsberäkningar med FEM Beräkningarna kan optimeras genom att välja ett lagom stort laststeg som resulterar i rimligt många iterationer. För att säkerställa att rätt brottlast nås görs känslighetsanalyser avseende toleranser samt konvergenstester avseende modelluppbyggnad och elementindelning. Dessutom studeras flera olika typer av modeller för att verifiera att samma verkningssätt och brottmod uppträder. Den iterationsprocess som krävs för att hitta konvergens vid varje beräkningssteg kan i SOLVIA-03 utföras enligt tre olika metoder enligt [19]: - Modifierad Newton iteration. - Broyden-Fletcher-Goldfarb-Shanno (BFGS) iteration. - Full-Newton iteration. Vald iterationsmetod inverkar på förmågan att hitta konvergens i beräkningarna samt beräkningstid. Generellt gäller att modifierad Newton kräver minst beräkningstid, därefter BGFS och sist Full-Newton iteration. Full-Newton iteration är användbar vid t.ex.. kontaktproblem eller då konvergens är svår att hitta. Modifierad Newton iteration används om endast relativt små olinjära problem studeras. I denna rapport har BFGS valts, vilken ofta används vid beräkningar av betong i ett icke-linjärt tillstånd. BFGS metoden har bl.a. använts av [21] för beräkning av skjuvbrott i betongbalkar vilka uppvisat goda resultat jämfört med laboratorieförsök. Då skjuvning ofta resulterar i spröda brott anses dessa vara svåra att beräknas med FEM p.g.a. konvergensproblem. 13

24

25 3.1. Egentyngd 3 Betongbågarnas statiska verkningssätt Ursprungliga beräkningar av nolledsbågens verkningssätt finns redovisad i Bilaga F. Påkänningar och snittkrafter av permanent last beräknas för en enskild båge. Vid beräkning av trafiklastens inverkan tas hänsyn till pelarnas horisontalstyvhet samt intilliggande bågar. Jämförande beräkningar har utförts med en 2D balkmodell i FEM. Indata till FEM-modellerna återfinns i Bilaga E. Beräkningarna utförs här med icke-linjära materialegenskaper varvid i detta avsnitt redovisade snittkrafter härrör till dessa. Vid beräkning av snittkrafter och påkänningar av permanent last studeras en enskild båge där randvillkoren vid anfangen varieras. Vid beräkning av trafiklast omfattar modellen 3 bågar, enligt Figur 3.1. Anfangen är fortfarande rotationsförhindrade men har en horisontalstyvhet K (N/m). I samtliga 2D balkmodeller är anfangen definierade i inspänningssnitt 2 enligt Figur 2.10, för att vara jämförbara med ursprungliga beräkningar. f a) K1 2 L K f K3 K3 L L L b) Figur 3.1: Systemmodell av a) en båge för beräkning med permanenta laster, b) tre bågar för beräkning med trafiklast. Pelarnas horisontalstyvhet representeras av K (N/m). 3.1 Egentyngd Fördelning av permanent last på bågen erhålls i separat FEM-beräkning genom att påföra fyllningen som element med bågen som upplag, vilka resulterar i punktlaster på bågen i modell Figur 3.1a. Last från båge och fyllning redovisas i originalberäkningar till ton för halva bågen, motsvarande värde i FEM-modellen är ton, d.v.s. 3 % större. Inverkan av momentinspänning och horisontalstyvhet studeras avseende snittkrafter och spänningar. Om anfangen betraktas som helt momentinspända ökar momentet i anfangen betydligt då horisontalstyvheten minskas. Momentet i hjässan ökar mindre samtidigt som momentet i fjärdedelspunkten förblir konstant. Motsvarande normalkraft i Figur 3.3 minskar något längs helt bågens sträckning, mest dock i hjässan. Om anfangen betraktas som helt ledade i anfangen kan inget böjande moment upptas där varvid momentökning av minskad horisontalkraft sker högre upp i bågen som i Figur 3.4. Motsvarande normalkraft är i princip oförändrad. Figur 3.6 visar båge med helt momentinspända anfang och olika horisontalstyvheter, 15

26 3. Betongbågarnas statiska verkningssätt där böjande moment är projicerad på bågen. Momentet är dock ej skalenligt visade för olika horisontalstyvheter inspänd, K= inspänd, K=5500E6 inspänd, K=1800E6 inspänd, K=1000E6 inspänd, K=500E Böjande moment (knm) x/l Figur 3.2: Böjande moment av permanent last för helt momentinspänd i anfangen och variation av horisontalstyvheten K (N/m), baserat på icke-linjärt material x/l Normalkraft (kn) inspänd, K= inspänd, K=5500E6 inspänd, K=1800E6 inspänd, K=1000E6 inspänd, K=500E Figur 3.3: Normalkraft i bågen av permanent last för helt momentinspända anfang, variation av horisontalstyvheten K (N/m), baserat på icke-linjärt material. 16

27 3.1. Egentyngd Böjande moment (knm) ledad, K= ledad, K=5500E6 ledad, K=1800E6 ledad, K=1000E6 ledad, K=500E6 x/l Figur 3.4: Böjande moment av permanent last för båge ledad i anfangen, variation av horisontalstyvheten K (N/m), baserat på icke-linjärt material x/l Normalkraft (kn) ledad, K= ledad, K=5500E6 ledad, K=1800E6 ledad, K=1000E6 ledad, K=500E Figur 3.5: Normalkraft i bågen av permanent last för båge helt ledad i anfangen, variation av horisontalstyvheten K (N/m), baserat på icke-linjärt material. 17

28 3. Betongbågarnas statiska verkningssätt K = K = 5500 MN/m K = 1800 MN/m K = 500 MN/m Figur 3.6: Böjande moment av permanent last på nolledsbåge med olika horisontalstyvheter K (N/m). Tabell 3.1 och Tabell 3.2 sammanställer snittkrafterna i anfang, fjärdedelspunkt och hjässa för de olika modellerna. 18

29 3.1. Egentyngd Tabell 3.1: Böjande moment och normalkraft av permanent last och momentinspända anfang, variation av horisontalstyvhet K (N/m). Böjande moment (knm) Normalkraft (kn) Horisontalstyvhet anfang L/4 L/2 anfang L/4 L/2 K = K=5500 MN/m K=1800 MN/m K=1000 MN/m K=500 MN/m ursprunglig ber Tabell 3.2: Böjande moment och normalkraft av permanent last och helt ledade anfang, variation av horisontalstyvhet K (N/m). Böjande moment (knm) Normalkraft (kn) Horisontalstyvhet anfang L/4 L/2 anfang L/4 L/2 K = K=5500 MN/m K=1800 MN/m K=1000 MN/m K=500 MN/m ursprunglig ber Spänningsfördelningen för motsvarande modeller redovisas i Figur 3.7 Figur Längsgående spänning i över- och underkant båge presenteras. Beräkningarna görs med icke-linjära betongegenskaper i bågen som inte kan ta någon dragkraft. Helt momentinspänd båge visar största spänningar vid anfang och hjässa då horisontalförskjutningen är förhindrad, Figur 3.7 och Figur Vid minskad horisontalstyvhet ökas spänningarna vid anfang, max vid ca: L/20. För låga horisontalstyvheter fås dessutom dragning i båge över- och underkant kring hjässan på en sträcka från 0.3L till 0.7L. För båge med ledade anfang fås för låga horisontalstyvheter dragning mellan fjärdedelspunkt och hjässa, Figur 3.9 och Figur Spänningsfördelningen i under- och överkant visas i Figur 3.11 projicerade på bågen. 19

30 3. Betongbågarnas statiska verkningssätt x/l uk spänning (MPa) inspänd, K= inspänd, K=5500E6 inspänd, K=1800E6 inspänd, K=1000E6 inspänd, K=500E Figur 3.7: Längsgående spänning av permanent last i underkant båge för helt momentinspända anfang, variation av horisontalstyvhet K (N/m), baserat på ickelinjärt material. 0.5 x/l ök spänning (MPa) inspänd, K= inspänd, K=5500E6 inspänd, K=1800E6 inspänd, K=1000E6 inspänd, K=500E Figur 3.8: Längsgående spänning av permanent last i överkant båge för helt momentinspända anfang, variation av horisontalstyvhet K (N/m), baserat på icke-linjärt material. 20

31 3.1. Egentyngd x/l uk spänning (MPa) Figur 3.9: ledad, K= ledad, K=5500E6 ledad, K=1800E6 ledad, K=1000E6 ledad, K=500E6 Längsgående spänning av permanent last i underkant båge för helt ledade anfang, variation av horisontalstyvhet K (N/m), baserat på icke-linjärt material x/l ök spänning (MPa) Figur 3.10: ledad, K= ledad, K=5500E6 ledad, K=1800E6 ledad, K=1000E6 ledad, K=500E6 Längsgående spänning av permanent last i överkant båge för helt ledade anfang, variation av horisontalstyvhet K (N/m), baserat på icke-linjärt material. 21

32 3. Betongbågarnas statiska verkningssätt Figur 3.11: Längsgående spänningar i under- och överkant båge av permanent last, helt inspänd anfang med horisontalförhindrade anfang. Spänningarna i under- och överkant i anfang, fjärdedelspunkt och hjässa sammanställs i Tabell 3.3 och Tabell 3.4. Tabell 3.3: Sammanställning av längsgående spänningar i över- och underkant för momentinspänd båge med olika horisontalstyvheter K (N/m). Spänning underkant (MPa) Spänning överkant (MPa) Horisontalstyvhet anfang L/4 L/2 anfang L/4 L/2 K = K=5500 MN/m K=1800 MN/m K=1000 MN/m K=500 MN/m ursprunglig ber Tabell 3.4: Sammanställning av längsgående spänningar i över- och underkant för båge ledad i anfangen och med olika horisontalstyvheter K (N/m). Spänning underkant (MPa) Spänning överkant (MPa) Horisontalstyvhet anfang L/4 L/2 anfang L/4 L/2 K = K=5500 MN/m K=1800 MN/m K=1000 MN/m K=500 MN/m ursprunglig ber Resultaten ovan visar att horisontalstyvheten har stor inverkan främst avseende böjande moment, se t.ex. Figur 3.2. Av permanent last baseras dock resultaten på en modell omfattande en båge, där horisontalmothållet utgörs av en fjäder. Detta resulterar i att bågens anfang horisontalförflyttas under permanent last. Last från intilliggande bågar ger dock upphov till en mothållande horisontalkraft resulterande i att bågens anfang inte förflyttas nämnvärt av permanent last. Figur 3.12 och Figur 3.13 visar horisontalmothållets inverkan på snittkrafter av 22

33 3.2. Trafiklast permanent last. Figur 3.12 visar att momentet vid anfanget reduceras ca: 50 % av horisontalmothållet. I dimensionerande snitt L/4 däremot, är momentet oförändrat. Inverkan av normalkraften är förhållandevis liten och ger en största differens på ca: 250 kn i hjässan, Figur ΔΜ = 950 knm med mothållande kraft utan mothållande kraft Moment (knm) 500 ΔΜ = 300 knm 0 x/l Figur 3.12: Böjande moment av permanent last, inverkan av en horisontal-kraft i anfanget resulterande i horisontalförskjutning noll x/l ΔΝ = 250 kn utan mothållande kraft med mothållande kraft Normalkraft (kn) Figur 3.13: Normalkraft av permanent last, inverkan av en horisontalkraft i anfanget resulterande i horisontalförskjutning noll. 3.2 Trafiklast Från ursprungliga beräkningar som upprättades då bron byggdes redovisas influenslinjer enligt Figur 3.14 och Dessa baseras på en styvhet motsvarande pelarlängd 25 m och tröghetsmoment 78 m 4. Pelarens horisontalstyvhet om denna är rotationsförhindrad i båda ändar ger K = 12EI L = = 1800 MN/m. 23

34 3. Betongbågarnas statiska verkningssätt M/PL Figur 3.14: x/l Influenslinje för böjande moment i hjässan, ursprungliga beräkningar M/PL Figur 3.15: x/l Influenslinje för böjande moment i anfanget, ursprungliga beräkningar. Motsvarande beräkningar görs med FEM-modellen där resultaten presenteras i Figur 3.16 och Figur Influenslinjerna är beräknade baserat på en icke-linjär materialmodell fast med laster tillräckligt långt från brottlast för att materialet ska befinna sig inom det linjärelastiska området. 24

35 3.2. Trafiklast M/PL Ursprunglig K= K=0 K=1790MN/m 0.01 x/l Figur 3.16: Influenslinje för böjande moment i hjässan, FEM-modell Ursprunglig K= K=0 K=1790MN/m M/PL 0.02 x/l Figur 3.17: Influenslinje för böjande moment i anfanget, FEM-modell. Samtliga modeller är rotationsförhindrade i anfangen. Utan mothållande kraft från pelarna fås större moment i både hjässa och anfang. För böjande moment i hjässan ligger momentet i 25

36 3. Betongbågarnas statiska verkningssätt M intervallet < < för PL > K > 0, för en punktlast placerad i hjässan. För böjande M moment i anfanget ligger momentet i intervallet < < PL K = 0 inträffar i fjärdedelspunkten och för K = i ca: 0.4L. för 0 < K < vilket för Figur 3.16 och 3.17 visar att horisontalstyvheten har liten inverkan på trafiklasten inom rimliga gränser, differensen mellan K=1800 MN/m och K= är förhållandevis liten främst för moment i hjässan men även för moment i anfanget. Från Figur 3.2 och 3.3 framgick att inspänningsgraden har större inverkan av permanent last. 3.3 Lastfördelning i fyllning I ursprungliga beräkningar användes influenslinjer på bågen för att beräkna snittkrafter av dimensionerande trafiklaster utan hänsyn till fyllningens lastspridning, se Bilaga F. Exempel på influenslinjer som beaktar lastfördelning genom fyllningen ges i Figur 3.18 och Ursprunglig K=1790 MN/m, fyllning M/PL x/l Figur 3.18: Influenslinje för böjande moment i hjässan, inverkan av lastspridning. 26

37 3.3. Lastfördelning i fyllning Ursprunglig K=1790 MN/m, fyllning 0.04 M/PL 0.02 x/l Figur 3.19: Influenslinje för böjande moment i anfanget, inverkan av lastspridning. Lastspridningen i Figur 3.18 och 3.19 baseras på en FEM-modell där fyllningen beskrivs med icke-linjära materialegenskaper som inte kan ta dragspänningar och begränsade tryckspänningar. I det linjära området har materialet styvheten E = 50 MPa. Lastspridningen resulterar i en halvering av böjande momentet i hjässan och ca: 40 % reducerat moment i anfanget. Influenslinjens längd ökas dock, främst i anfanget, vilket kan resultera i större snittkrafter för utbredda laster. I beräkningarna tas hänsyn till horisontellt jordtryck i materialbeskrivningen av fyllningen. Detta inkluderar såväl vilojordtryck som överlast. För att exkludera fyllningens eventuella bärförmåga eller mothållande egenskaper kan fyllningen ersättas med yttre verkande laster, som tidigare beskrivits i avsnitt 2.3. Då de yttre lasterna är beräknade baserat på fyllningens egenskaper inkluderar nodlasterna horisontellt jordtryck från såväl permanent last som trafiklast. Fyllningens lastfördelande egenskaper beskrivna med den ickelinjära materialmodellen kan illustreras med en rektangulär 2D platta enligt Figur Plattan har dimensionerna L h och är 9 m bred. Lasten från en punktlast P sprids via räls och slipers c/c 0.6 m ner i fyllningen och bildar ett jordtryck q(x). P h L q(x) Figur 3.20: Lastspridning i en rektangulär platta. 27

38 3. Betongbågarnas statiska verkningssätt q(x)/p h = 1m h = 2m h = 3m h = 4m h = 5m L (m) Figur 3.21: Lastspridning i en rektangulär platta för olika höjder h, E jord = 100 MPa q/p E = 200 MPa E = 100 MPa E = 50 MPa L (m) Figur 3.22: Lastspridning i en rektangulär platta för olika E-moduler, h = 2m. I Figur 3.21 visas lastfördelningen från en punktlast genom en rektangulär platta med olika höjder. Jordens E-modul påverkar trycket rakt under lasten mer än det påverkar lastens spridning längre bort, vilket visas i Figur

39 3.3. Lastfördelning i fyllning Enligt Boussinesq kan spänningen i jorden av en vertikal linjelast p beskrivas som σ = 2 p 4 z cos α πz (3.2) p z α x σ z Figur 3.23: Lastspridning enligt Boussinesq för en vertikal linjelast. 2 p 0.24 p största spänning fås rakt under lasten då α = 0, ger σ z =. En jämförelse mellan π 2 z z spänningsfördelning enligt Boussinesq och en FEM-modell visas i Figur Det framgår att lastfördelningen enligt Boussinesq ger större lastspridning än motsvarande FEM-modell, även för 0.75 p låga E-moduler. För E-modulen 100 MPa ger FEM-modellen största spänningen ca: z Från kalibrering av modell i [1] har visats att en E-modul i jorden på ca: 150 MPa gav bäst överensstämmelse med fältmätningar q(x)/p FEM, E = 100 MPa FEM, E = 10 MPa Boussinesq L (m) Figur 3.24: Jämförelse i lastspridning mellan FEM och Boussinesq, h = 2m. Lastfördelningen av en 100 kn punktlast genom fyllningen på bågen visas projicerad på bågen i Figur 3.25 i anfang, fjärdedelspunkt och hjässa. Normerade kurvor på desamma återfinns i Figur Fyllningen tillåter lastspridning till intilliggande bågar. Resultaten visar att då punktlasten står i hjässa går all last ner i den bågen. Då lasten flyttas till fjärdedelspunkten går ca: 4 % av lasten över till intilliggande båge. Då lasten står vid anfanget går ca: 34 % ner i 29

40 3. Betongbågarnas statiska verkningssätt intilliggande båge. Figur 3.27 och Figur 3.28 visar motsvarande för en trafiklast med fyra axlar med avståndet 1.6 m. I princip samma andel last fördelas mellan valven som för en punktlast. Figur 3.25: 0.10 Lastfördelning av en axellast 100 kn i anfang, fjärdedelspunkt och hjässa q(x)/p anfang L/2 hjässa Figur 3.26: x/l Lastfördelning på bågen genom fyllningen av en punktlast. 30

41 3.3. Lastfördelning i fyllning Figur 3.27: Lastfördelning av fyra axlar c/c 1.6 m, vardera 100 kn, i anfang, fjärdedelspunkt och hjässa q(x)/p anfang L/2 hjässa x/l Figur 3.28: Lastfördelning av fyra axlar c/c 1.6 m, vardera 100 kn. 31

42 3. Betongbågarnas statiska verkningssätt 3.4 Lastkombination i brottgränstillstånd med FEM En lastkombinering i brottgränstillstånd har utförts enligt BVS [22] med undantag att brottlasten beräknas med en icke-linjär FEM-analys. Detta innebär att omlagring av krafter och spänningar kan ske. Motsvarande lastkombinering görs i avsnitt 3.5 fast utgående från linjära snittkrafter där brottlasten bestäms av tvärsnittets kapacitet. Följande laster studeras: Permanenta laster: - Egentyngd båge. - Fyllning och sidomurar. Variabla laster: - Tåglast UIC 71, se Figur Broms- och accelerationskraft. - Jämn temperaturändring. Permanenta laster påförs som punktlaster på bågen. Variabla laster av tåglast samt broms- och accelerationskraft påförs i höjs med rälsen vilken tillåts lastfördelas genom fyllningen för att i brottgränsberäkningarna ersättas med nodlaster på bågen. Temperaturlasten påförs i SOLVIA-03 som en yttre last med LOADS TEMPERATURE kopplad till en längdutvidgningskoefficient definierad i materialmodellen betecknad ALFA. Tåglasten sätts som huvudlast varvid denna ges lastkoefficienten ψγ = 1.4. Detta resulterar i fyra axellaster om = 350 kn/axel samt en utbredd lastandel = 112 kn/m per spår. Den utbredda lastandelen påförs längs positiv influenslinje för böjande moment enligt Figur P.g.a. influenslinjernas utseende av böjande moment, Figur 3.16 och Figur 3.17 samt fyllningens inverkan på desamma, Figur 3.17 och Figur 3.18, kan medtagande av utbredda lastandelar ge en högre bärförmåga. Fem olika lastpositioner med endast axellasterna i Figur 3.29 studeras för att bestämma dimensionerande lastposition. Axellasterna placeras centriskt i hjässa, fjärdedelspunkt och anfang samt mellan hjässa och fjärdedelspunkt respektive mellan fjärdedelspunkt och anfang som i Figur Trafiklast räknas på båda spåren. 4 x 250 kn 80 kn/m 80 kn/m 3 x 1.6 m 6.4 m Figur 3.29: Tåglast UIC 71 enligt BVS [22]. 32

43 3.4. Lastkombination i brottgränstillstånd med FEM LC5 LC4 LC3 LC2 LC1 L/4 L/2 L Figur 3.30: Fasta lastpositioner LC1 LC5 på modell med tre bågar. Broms- och accelerationskraft påförs som en längs spåret jämt fördelad horisontell last. För trafiklast UIC 71 uppgår bromskraften till 20 kn/m, dock max kn på ett spår. För andra spåret räknas samtidigt en accelerationskraft på 30 kn/m, dock max 1000 kn. Broms- och accelerationskraft ges lastkoefficienten ψγ = 0.4 resulterande i bromskraft på 8 kn/m och accelerationskraft på 12 kn/m. Största lastutbredning är / 20 = 200 m för bromskraft samt / 30 = 33 m för accelerationskraft. Lasterna påförs modell beskriven i Figur 3.1 varvid bromskraft påförs längs hela bron och accelerationskraft påförs längs sträckan 33 m från hjässa mittersta bågen. Horisontalstyvheten i anfanget sätts till MN/m. Enligt BVS [22] godtas att broar dimensionerade innan 1975 endast beräknas för jämn temperaturfördelning. Karakteristiska max- och min temperaturer väljs till T + = 24 C samt T - = -16 C. lastkoefficienter för temperatur är ψγ = 0.6 vilket ger T + = 15 C och T - = -10 C. ländutvidgningskoefficient α = C -1 används. Beräkning av ovanstående laster görs med samma icke-linjära FEM-modell med ISOBEAM element som beskrivits tidigare. 33

44 3. Betongbågarnas statiska verkningssätt Paxel (ton) LC1 LC2 LC3 LC4 LC disp (m) Figur 3.31: Karakteristisk axellast för lastposition LC1 LC5 med enbart axellaster utan inverkan av temperatur- eller bromskraft. Resultaten i Figur 3.31 visar att dimensionerande lastposition med enbart axellaster och utan temperatur- eller bromskrafter är i LC3, där axelgruppen är placerad centriskt över fjärdedelspunkten. Axellast i brottgränstillstånd är för denna lastplacering 52.5 ton/axel. Figur 3.32 visar bågens deformation då all bärförmåga beräkningsmässigt är uttömd. 34

45 3.4. Lastkombination i brottgränstillstånd med FEM disp (m) x/l LC1 LC2 LC LC4 LC Figur 3.32: Vertikal nedböjning av bågens tyngdpunktslinje vid brottgränstillstånd för LC1 - LC Paxel (ton) LC3 LC3_utbredd LC3_Tmax LC3_Tmin LC3_Broms disp (m) Figur 3.33: Brottlastens inverkan av medtagande av utredd trafiklastandel, temperaturlaster och bromskrafter. 35

46 3. Betongbågarnas statiska verkningssätt disp (m) x/L LC3 LC3_utbredd LC3_Tmax LC3_Tmin LC3_Broms Figur 3.34: Vertikal nedböjning av bågens tyngdpunktslinje för lastposition LC3 med respektive utbredd lastandel, max temperatur T +, min temperatur T - samt bromsoch accelerationskraft. Utgående från den lastposition som gav lägst bärförmåga i Figur 3.30, LC3, studeras inverkan av utbredd lastandel, jämn temperaturändring samt broms- och accelerationskraft. Figur 3.33 och Figur 3.34 redovisar resultaten av dessa beräkningar var för sig. Resultaten visar att ingen av de tillkommande studerade lasterna har någon avgörande skillnad på den slutliga bärförmågan. Inverkan av broms- och accelerationskraft ger en slutlig bärförmåga på ca: 48 ton/axel. Temperaturinverkan på bågkonstruktioner har studerats av [13] där långtidsmätningar av temperatur och spänningar har visats ha liten inverkan på konstruktionen. I följande beräkningar av bågens bärförmåga används endast axellaster från tåglastmodell UIC

47 3.5. Beräknad bärförmåga i brottgränstillstånd baserat på linjära snittkrafter 3.5 Beräknad bärförmåga i brottgränstillstånd baserat på linjära snittkrafter Brottgränsberäkningar med lastkombinationer som ovan utförs i detta avsnitt baserat på linjära snittkrafter. Detta innebär att dimensionerande last bestäms av varje snitts momentkapacitet. Ingen dragkapacitet i tvärsnittet medräknas. Momentkapaciteten beräknas i varje snitt med en förenklad arbetskurva för betong [23] utan hänsyn till befintlig armering. Tvärsnittsbeteckningar redovisas i Figur Materialegenskaper för betong C12/15 i brottgränstillstånd används, resulterande i en tryckhållfasthet f ccd = 6.4 MPa och E-modulen 18.8 GPa. ε f cu ccd ε h/2 TP cu x ε N c0 N2 e0,1 α x e 0,2 e 0 0 e N 1 Figur 3.35: Tvärsnittbeteckningar, töjnings- och spänningsfördelning. Betongtöjningarna definieras som: f ε = (3.4) ccd c 0 ε cu 0.35%, ε c 0 =, α = 0.8Ecd ε cu Normalkraften i tvärsnittet är: N = N 1 + N 2 = x(1 α ) f ccd b αx f ccd b (3.5) Ur Ekv. 3.5 kan tryckzonens höjd beräknas för en given normalkraft: x = f ccd N b( 1 0.5α ) Hävarmen e 0 till tryckkraftens resultat N kring 0 beräknas genom: (3.6) M = N e + N e = N e e M / N (3.7) 0 1 0,1 2 0,2 0 0 = där e = 0.5x(1 + ) och e = 2α / 3. Tvärsnittets inre hävarm beräknas nu som e = 0,1 α 0.5h ( x e 0 ) 0,2 x varefter brottmomentet tecknas: 0 M brott = N e (3.8) Tvärsnittet begränsas även av betongens tryckhållfasthet som: N brott = b h f (3.9) ccd 37

48 3. Betongbågarnas statiska verkningssätt I en numerisk beräkningsslinga ökas givna snittkrafter med en linjär förstoringsfaktor tills tvärsnittets kapacitet uppnås i något snitt. Det snitt med lägst förstoringsfaktor bestämmer bågens bärförmåga. Linjärelastiska snittkrafter för trafik, broms/acceleration samt temperatur finns i Bilaga G redovisade för horisontalstyvheten 5500 MN/m. Resulterande bärförmåga redovisas för några lastkombinationer i Tabell 3.5. Då endast trafiklast i position LC3 medtages fås bärförmågan ca: 34 ton/axel, jämfört med FEMmodellen i avsnitt 3.4 som gav ca: 48 ton/axel, d.v.s. 40 % högre bärförmåga. Detta anses bero på den icke-linjära FEM-modellens förmåga till lastomlagring. Samtidig inverkan av broms- och accelerationskraft ger brottlasten 30 ton/axel. En temperatursänkning på -10 C minskar bärförmågan från 34 ton/axel till 28 ton/axel, medan däremot en temperaturökning på +15 C ökar bärförmågan till 40 ton/axel p.g.a. ökad tryckkraft i bågen. Lastkombinationen trafik, broms/acceleration samt negativ temperatur ger en bärförmåga på ca: 24 ton/axel. Trafiklasten redovisas utan partialkoefficienter på last. Detta innebär att för lastkoefficienten ψγ = 1.4 kan endast 24/ ton/axel tillåtas, med antagna randvillkor och materialegenskaper. Tabell 3.5: Sammanställningar av brottlaster för några lastkombinationer baserat på snittkrafter redovisade i Bilaga G. Samtliga lastfall inkluderar permanent last. Lastfall Brottlast (ton/axel) Trafik, position LC3 34 Trafik + broms 30 Trafik + T max 40 Trafik + T min 28 Trafik + broms + T min 24 Om horisontalstyvheten varieras fås med ovanstående beräkningsförfarande resultat enligt Figur För högre horisontalstyvheter ökas bärförmågan marginellt med för värden lägre än 1800 MN/m minskar bärförmågan avsevärt Brottlast (ton/axel) Horsiontalstyvhet (MN/m) Figur 3.36: Samband horisontalstyvhet brottlast för trafiklast i position LC3. 38

Gamla Årstabron, kompletterande beräkningar av nolledsbågarnas bärförmåga under förstärkningsetapper

Gamla Årstabron, kompletterande beräkningar av nolledsbågarnas bärförmåga under förstärkningsetapper PM Ärendenummer: Till: Från: Andreas Andersson Box 7 7 Sundbyberg Datum: -6-8 Trafikverket Box 7 7 Sundbyberg Besöksadress: Landsvägen 5A Telefon: 8-76 www.trafikverket.se Andreas Andersson Trafik Teknik,

Läs mer

Gamla Årstabron. FEM-beräkningar av 3-ledsbågarnas verkningssätt och inverkan på förstärkningsåtgärder. Andreas Andersson.

Gamla Årstabron. FEM-beräkningar av 3-ledsbågarnas verkningssätt och inverkan på förstärkningsåtgärder. Andreas Andersson. REACTION 15.82(MN) PRINCIPAL STRESS MIN (MPa) 0.00-1.51-3.02-4.53-6.03-7.54-9.05-10.56 Gamla Årstabron FEM-beräkningar av 3-ledsbågarnas verkningssätt och inverkan på förstärkningsåtgärder Andreas Andersson

Läs mer

Gamla Årstabron, kompletterande beräkningar av 3-ledsbågarnas bärförmåga och förstärkningsmetodik

Gamla Årstabron, kompletterande beräkningar av 3-ledsbågarnas bärförmåga och förstärkningsmetodik PM Ärendenummer: Till: Från: Andreas Andersson Box 1070 172 22 Sundbyberg Datum: 2010-06-09 Trafikverket Box 1070 172 22 Sundbyberg Besöksadress: Landsvägen 50A Telefon: 08-762 22 00 www.trafikverket.se

Läs mer

Gamla Årstabron. Några beräkningar inför fältmätningar 2007

Gamla Årstabron. Några beräkningar inför fältmätningar 2007 Gamla Årstabron Några beräkningar inför fältmätningar 7 tvärstag ny bågstrimla pågjutning uk båge Brobyggnad KTH Brinellvägen 3, SE- Stockholm Tel: 8-79 79 58, Fax: 8-69 9 www.byv.kth.se/avd/bro Andreas

Läs mer

Gamla Årstabron. Sammanställning av beräkningar avseende förstärkning av betongbågarna. Andreas Andersson. Stockholm 2007

Gamla Årstabron. Sammanställning av beräkningar avseende förstärkning av betongbågarna. Andreas Andersson. Stockholm 2007 Gamla Årstabron Sammanställning av beräkningar avseende förstärkning av betongbågarna Andreas Andersson Stockholm 2007 TRITA-BKN Rapport 105 ISSN 1103-4289 ISRN KTH/BKN/R-105-SE Byggkonstruktion 2007 Brobyggnad

Läs mer

Gamla Årstabron Utvärdering av verkningssätt hos betongvalv genom mätning och FEM-modellering, Etapp 1

Gamla Årstabron Utvärdering av verkningssätt hos betongvalv genom mätning och FEM-modellering, Etapp 1 Gamla Årstabron Utvärdering av verkningssätt hos betongvalv genom mätning och FEM-modellering, Etapp Andreas Andersson Håkan Sundquist Stockholm 5 Teknisk Rapport 5:3 ISSN 44-845 Byggkonstruktion 5 Brobyggnad

Läs mer

Gamla Årstabron. Förslag till varselgränser under vattenbilning fas 3, undersida båge 2

Gamla Årstabron. Förslag till varselgränser under vattenbilning fas 3, undersida båge 2 Gamla Årstabron Förslag till varselgränser under vattenbilning fas 3, undersida båge 2 Brobyggnad KTH Brinellvägen 34, SE-100 44 Stockholm Tel: 08-790 79 8, Fax: 08-21 9 49 www.byv.kth.se/avd/bro Andreas

Läs mer

Gamla Årstabron. Sammanställning av töjningsmätningar utförda

Gamla Årstabron. Sammanställning av töjningsmätningar utförda Gamla Årstabron Sammanställning av töjningsmätningar utförda 7--7 5. Etapp 4. Etapp Max-min töjning (με) 3.... -. -. -3. -4. -5. 3 4 5 6 7 8 9 3 4 5 6 Givare nr. Brobyggnad KTH Brinellvägen 34, SE- 44

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 27 Pelaren i figuren nedan i brottgränstillståndet belastas med en centriskt placerad normalkraft 850. Kontrollera om pelarens bärförmåga är tillräcklig. Betong C30/37, b 350, 350, c 50,

Läs mer

Dimensionering för moment Betong

Dimensionering för moment Betong Dimensionering för moment Betong Böjmomentbelastning x Mmax Böjmomentbelastning stål och trä σmax TP M σmax W x,max z I y M I z max z z y max x,max M W z z Bärförmåga: M R f y W Betong - Låg draghållfasthet

Läs mer

FEM modellering av instabilitetsproblem

FEM modellering av instabilitetsproblem FEM modellering av instabilitetsproblem Richard Malm, Andreas Andersson KTH Brobyggnad Uppgiftsbeskrivning En balk med I-tvärsnitt bestående av två hopsvetsade U-profiler är fritt upplagd med en spännvidd

Läs mer

Spännbetongkonstruktioner. Dimensionering i brottgränstillståndet

Spännbetongkonstruktioner. Dimensionering i brottgränstillståndet Spännbetongkonstruktioner Dimensionering i brottgränstillståndet Spännarmering Introducerar tryckspänningar i zoner utsatta för dragkrafter q P0 P0 Förespänning kablarna spänns före gjutning Efterspänning

Läs mer

Betongbalkar. Böjning. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström. Räkneuppgifter

Betongbalkar. Böjning. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström. Räkneuppgifter UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström Räkneuppgifter 2012-11-15 Betongbalkar Böjning 1. Beräkna momentkapacitet för ett betongtvärsnitt med bredd 150 mm och höjd 400 mm armerad

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning

Läs mer

Exempel 3: Bumerangbalk

Exempel 3: Bumerangbalk Exempel 3: Bumerangbalk 3.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera bumerangbalken enligt nedan. Bumerangbalk X 1 600 9 R18 000 12 360 6 000 800 10 000 10 000 20 000 Statisk modell

Läs mer

Gamla Årstabron. Sammanställning av töjningsmätningar utförda

Gamla Årstabron. Sammanställning av töjningsmätningar utförda Gamla Årstabron Sammanställning av töjningsmätningar utförda 9-3 Brobyggnad KTH Brinellvägen 3, SE-1 Stockholm Tel: 8-79 79 58, Fax: 81 9 9 www.byv.kth.se/avd/bro Andreas Andersson 9 Royal Institute of

Läs mer

Dimensionering i bruksgränstillstånd

Dimensionering i bruksgränstillstånd Dimensionering i bruksgränstillstånd Kapitel 10 Byggkonstruktion 13 april 2016 Dimensionering av byggnadskonstruktioner 1 Bruksgränstillstånd Formändringar Deformationer Svängningar Sprickbildning 13 april

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

Betongkonstruktion BYGC11 (7,5hp)

Betongkonstruktion BYGC11 (7,5hp) Karlstads universitet 1(12) Betongkonstruktion BYGC11 (7,5hp) Tentamen Tid Torsdag 17/1 2013 kl 14.00 19.00 Plats Universitetets skrivsal Ansvarig Asaad Almssad tel 0736 19 2019 Carina Rehnström tel 070

Läs mer

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT

PPU408 HT15. Beräkningar stål. Lars Bark MdH/IDT Beräkningar stål 1 Balk skall optimeras map vikt (dvs göras så lätt som möjligt) En i aluminium, en i höghållfast stål Mått: - Längd 180 mm - Tvärsnittets yttermått Höjd: 18 mm Bredd: 12 mm Lastfall: -

Läs mer

Gamla Årstabron. Sammanställning av töjningsmätningar utförda

Gamla Årstabron. Sammanställning av töjningsmätningar utförda Gamla Årstabron Sammanställning av töjningsmätningar utförda 9-9-4 Brobyggnad KTH Brinellvägen 34, SE-1 44 Stockholm Tel: 8-79 79 58, Fax: 8-1 69 49 www.byv.kth.se/avd/bro Andreas Andersson 9 Royal Institute

Läs mer

Exempel 2: Sadelbalk. 2.1 Konstruktion, mått och dimensioneringsunderlag. Exempel 2: Sadelbalk. Dimensionera sadelbalken enligt nedan.

Exempel 2: Sadelbalk. 2.1 Konstruktion, mått och dimensioneringsunderlag. Exempel 2: Sadelbalk. Dimensionera sadelbalken enligt nedan. 2.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera sadelbalken enligt nedan. Sadelbalk X 1 429 3,6 360 6 000 800 10 000 10 000 20 000 Statisk modell Bestäm tvärsnittets mått enligt den preliminära

Läs mer

I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av

I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av Uppgift 2 I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av fackverkstakstol i trä, centrumavstånd mellan takstolarna 1200 mm, lutning 4. träreglar i väggarna, centrumavstånd

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Reliability analysis in engineering applications Tillförlitlighetsanalyser av existerande konstruktioner Fredrik Carlsson Structural Engineering - Lund University 1 Allmänt β Säker β target Osäker t 0

Läs mer

Exempel 11: Sammansatt ram

Exempel 11: Sammansatt ram Exempel 11: Sammansatt ram 11.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera den sammansatta ramen enligt nedan. Sammansatt ram Tvärsnitt 8 7 6 5 4 3 2 1 Takåsar Primärbalkar 18 1,80 1,80

Läs mer

Betongkonstruktion BYGC11 (7,5hp)

Betongkonstruktion BYGC11 (7,5hp) Karlstads universitet 1(11) Betongkonstruktion BYGC11 (7,5hp) Tentamen Tid Fredag 17/01 2014 kl. 14.00 19.00 Plats Universitetets skrivsal Ansvarig Asaad Almssad tel 0736 19 2019 Carina Rehnström tel 070

Läs mer

1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast.

1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik Uppgifter 2016-08-26 Träkonstruktioner 1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast.

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 7 LÖSNING Dimensionerande materialegenskaper Betong C30/37 f cc f cc 30 0 MMM γ c 1,5 E cc E cc 33 γ cc 1, 7,5GGG Armering f yy f k 500 435 MMM γ s 1,15 ε yy f yy 435. 106,17. 10 3 E s 00.

Läs mer

Exempel 13: Treledsbåge

Exempel 13: Treledsbåge Exempel 13: Treledsbåge 13.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledsbågen enligt nedan. Treledsbåge 84,42 R72,67 12,00 3,00 56,7º 40,00 80,00 40,00 Statisk modell Bestäm tvärsnittets

Läs mer

Tentamen i. Konstruktionsteknik. 26 maj 2009 kl

Tentamen i. Konstruktionsteknik. 26 maj 2009 kl Bygg och Miljöteknolo gi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 26 maj 2009 kl. 8.00 13.00 Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter kan

Läs mer

BÄRANDE KONSTRUKTIONER MED EPS BERÄKNINGSPRINCIPER. Anpassad till Eurokod

BÄRANDE KONSTRUKTIONER MED EPS BERÄKNINGSPRINCIPER. Anpassad till Eurokod BÄRANDE KONSTRUKTIONER MED EPS BERÄKNINGSPRINCIPER Anpassad till Eurokod 2 (12) BÄRANDE KONSTRUKTIONER MED EPS Dimensioneringsprocessen Dimensioneringsprocessen för bärande konstruktioner kan delas upp

Läs mer

Beräkningsstrategier för murverkskonstruktioner

Beräkningsstrategier för murverkskonstruktioner Beräkningsstrategier för murverkskonstruktioner Tomas Gustavsson TG konstruktioner AB 2017-06-08 Dimensionerande lastfall ofta endera av: 1. Vindlast mot fasad + min vertikallast 2. Max vertikallast +

Läs mer

www.eurocodesoftware.se

www.eurocodesoftware.se www.eurocodesoftware.se caeec220 Pelare betong Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev

Läs mer

Angående skjuvbuckling

Angående skjuvbuckling Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan

Läs mer

PM Gamla Årstabron Sammanställning av töjningsmätningar på båge 11

PM Gamla Årstabron Sammanställning av töjningsmätningar på båge 11 PM Gamla Årstabron Sammanställning av töjningsmätningar på båge Inledning I föreliggande PM redovisas en sammanställning av töjningsmätningar utförda på gamla Årstabrons båge. Mätningarna utfördes 9-3

Läs mer

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.

K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur. K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i

Läs mer

Tentamen i Konstruktionsteknik

Tentamen i Konstruktionsteknik Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 5 Juni 2015 kl. 14.00-19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamling Räknedosa OBS! I vissa uppgifter

Läs mer

Exempel 5: Treledstakstol

Exempel 5: Treledstakstol 5.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledstakstolen enligt nedan. Beakta två olika fall: 1. Dragband av limträ. 2. Dragband av stål. 1. Dragband av limträ 2. Dragband av stål

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

CAEBBK30 Genomstansning. Användarmanual

CAEBBK30 Genomstansning. Användarmanual Användarmanual Eurocode Software AB 1 Innehåll 1 INLEDNING...3 1.1 TEKNISK BESKRIVNING...3 2 INSTRUKTIONER...4 2.1 KOMMA IGÅNG MED CAEBBK30...4 2.2 INDATA...5 2.2.1 BETONG & ARMERING...5 2.2.2 LASTER &

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag

Läs mer

Möjligheter med samverkanskonstruktioner. Stålbyggnadsdagen Jan Stenmark

Möjligheter med samverkanskonstruktioner. Stålbyggnadsdagen Jan Stenmark Möjligheter med samverkanskonstruktioner Stålbyggnadsdagen 2016 2016-10-26 Jan Stenmark Samverkanskonstruktioner Ofrivillig samverkan Uppstår utan avsikt eller till följd av sekundära effekter Samverkan

Läs mer

Moment och normalkraft

Moment och normalkraft Moment och normalkraft Betong Konstruktionsteknik LTH 1 Pelare Främsta uppgift är att bära normalkraft. Konstruktionsteknik LTH 2 Pelare Typer Korta stubbiga pelare: Bärförmågan beror av hållfasthet och

Läs mer

Tentamen i Konstruktionsteknik

Tentamen i Konstruktionsteknik Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 2 Juni 2014 kl. 14.00-19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

Förstudie till ramprojektet: Utvärdering av tillåten trafiklast. Vägverket 1(9) Avdelningen för bro och tunnel

Förstudie till ramprojektet: Utvärdering av tillåten trafiklast. Vägverket 1(9) Avdelningen för bro och tunnel Vägverket 1(9) Förstudie till ramprojektet: Utvärdering av tillåten trafiklast Enheten för statlig väghållning 1998-12-17 Vägverket 1998-12-17 2(9) Förord Föreliggande förstudie till ramprojektet Utvärdering

Läs mer

BANSTANDARD I GÖTEBORG, KONSTRUKTION Kapitel Utgåva Sida K 1.2 SPÅR, Material 1 ( 5 ) Avsnitt Datum Senaste ändring K 1.2.13 Betongsliper 2014-10-15

BANSTANDARD I GÖTEBORG, KONSTRUKTION Kapitel Utgåva Sida K 1.2 SPÅR, Material 1 ( 5 ) Avsnitt Datum Senaste ändring K 1.2.13 Betongsliper 2014-10-15 BANSTANDARD I GÖTEBORG, KONSTRUKTION Kapitel Utgåva Sida K 1.2 SPÅR, Material 1 ( 5 ) Avsnitt Datum Senaste ändring K 1.2.13 Betongsliper 2014-10-15 Upprättad av Fastställd av Håkan Karlén Susanne Hultgren

Läs mer

Analys av belastning på räckesinfästning på tvärspänd platta

Analys av belastning på räckesinfästning på tvärspänd platta Analys av belastning på räckesinfästning på tvärspänd platta Slutrapport Mats Ekevad, Luleå Tekniska Universitet 2014-05-28 Förord Rapporten beskriver resultatet av beräkningar på räckesinfästningar på

Läs mer

Exempel 12: Balk med krökt under- och överram

Exempel 12: Balk med krökt under- och överram 6,00 Exempel 12: Exempel 12: 12.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera fackverket med krökt under- och överram enligt nedan. Överram Underram R 235,9 det.2 R 235,9 1,5 det.1 10,00

Läs mer

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz

= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett

Läs mer

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning

Belastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.

Läs mer

Material, form och kraft, F5

Material, form och kraft, F5 Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers

Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 1 Förord Denna skrift innehåller de konstruktionsuppgifter som avses lösas i kursen Strukturmekanik

Läs mer

Snittkrafter konsol. Plattjocklek i inspänningssnittet Plattjocklek insida kantbalk effektiv höjd vid inspänningssnittet

Snittkrafter konsol. Plattjocklek i inspänningssnittet Plattjocklek insida kantbalk effektiv höjd vid inspänningssnittet Snittkrafter konsol Detta dokument redovisar beräkning av dimensionerande snittkrafter av trafik för en konsol. Vid beräkning av moment används en modell med balk på fjädrande underlag. Vid beräkning av

Läs mer

KONSTRUKTIONSTEKNIK 1

KONSTRUKTIONSTEKNIK 1 KONSTRUKTIONSTEKNIK 1 TENTAMEN Ladokkod: 41B16B-20151-C76V5- NAMN: Personnummer: - Tentamensdatum: 17 mars 2015 Tid: 09:00 13.00 HJÄLPMEDEL: Formelsamling: Konstruktionsteknik I (inklusive här i eget skrivna

Läs mer

Blommenbergsviadukten,

Blommenbergsviadukten, Trafikverket, 2-2033-1 Kompletterande bärighetsutredning med avseende på kontroll av kapacitet i gjutfogar baserat på beräkningsmodell utvecklad av Chalmers tekniska högskola Stockholm 2014-03-21 Knr.

Läs mer

Bestämning av hängarkrafter i några av hängarna på Höga Kusten-bron

Bestämning av hängarkrafter i några av hängarna på Höga Kusten-bron Bestämning av hängarkrafter i några av hängarna på Höga Kusten-bron HÅKAN SUNDQUIST RAID KAROUMI CLAES KULLBERG STEFAN TRILLKOTT TRITA-BKN Teknisk Rapport 2005:12 Brobyggnad 2005 ISSN 1103-4289 ISRN Brobyggnad

Läs mer

Oarmerade väggar utsatta för tvärkraft (skjuvväggar) Stomanalys

Oarmerade väggar utsatta för tvärkraft (skjuvväggar) Stomanalys Oarmerade väggar utsatta för tvärkraft (skjuvväggar) Stomanalys Generellt Beskrivs i SS-EN 1996-1-1, avsnitt 6.2 och avsnitt 5.5.3 I handboken Utformning av murverkskonstruktioner enligt Eurokod 6, beskrivs

Läs mer

Gröndalsviadukten,

Gröndalsviadukten, Trafikverket, 2-2034-1 Kompletterande bärighetsutredning med avseende på kontroll av kapacitet i gjutfogar baserat på beräkningsmodell utvecklad av Chalmers tekniska högskola Stockholm 2014-03-21 Knr.

Läs mer

Bromall: Lastkombinationer järnvägsbro. Lastkombinering av de olika verkande lasterna vid dimensionering av järnvägsbro.

Bromall: Lastkombinationer järnvägsbro. Lastkombinering av de olika verkande lasterna vid dimensionering av järnvägsbro. Bromallar Eurocode Bromall: Lastkombinationer järnvägsbro Lastkombinering av de olika verkande lasterna vid dimensionering av järnvägsbro. Rev: A EN 1990: 2002 EN 1991-2: 2003 EN 1992-2: 2005 Innehåll

Läs mer

TENTAMEN I KURSEN BYGGNADSMEKANIK 2

TENTAMEN I KURSEN BYGGNADSMEKANIK 2 UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström

Läs mer

Förstärkning av betongplattor, med och utan öppningar

Förstärkning av betongplattor, med och utan öppningar Förstärkning av betongplattor, med och utan öppningar Ola Enochsson 1, Björn Täljsten 1, 2, Thomas Olofsson 1 och Ove Lagerqvist 3 Bakgrund Utvecklingen av kolfiberbaserade produkter för reparation och

Läs mer

Brolaster enligt Eurocode

Brolaster enligt Eurocode www.eurocodesoftware.se Brolaster enligt Eurocode Dokumentmall som beskriver laster på vägbroar. Detta dokument reviderats av dig som användare, förbättringar och kommenterar på detta dokument skickas

Läs mer

Material, form och kraft, F11

Material, form och kraft, F11 Material, form och kraft, F11 Repetition Dimensionering Hållfasthet, Deformation/Styvhet Effektivspänning (tex von Mises) Spröda/Sega (kan omfördela spänning) Stabilitet instabilitet Pelarknäckning Vippning

Läs mer

Konstruktionsteknik 25 maj 2012 kl Gasquesalen

Konstruktionsteknik 25 maj 2012 kl Gasquesalen Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 25 maj 2012 kl. 14.00 19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

Program A2.06 Stabiliserande väggar

Program A2.06 Stabiliserande väggar SOFTWARE ENGINEERING AB Beräkningsprogram - Statik Program A2.06 Stabiliserande väggar Software Engineering AB Hisingsgatan 0 417 0 Göteborg Tel : 01 5080 Fa : 01 508 E-post : info@bggdata.se 2001-08-29,

Läs mer

Laster Lastnedräkning OSKAR LARSSON

Laster Lastnedräkning OSKAR LARSSON Laster Lastnedräkning OSKAR LARSSON 1 Partialkoefficientmetoden Den metod som används oftast för att ta hänsyn till osäkerheter när vi dimensionerar Varje variabel får sin egen (partiell) säkerhetsfaktor

Läs mer

Dimensionering för tvärkraft Betong

Dimensionering för tvärkraft Betong Dimensionering för tvärkraft Betong Tvärkrafter Huvudspänningar Skjuvsprickor Böjskjuvsprickorna initieras i underkant p.g.a. normalspänningar som överstiger draghållfastheten Livskjuvsprickor uppträder

Läs mer

Utvärdering, hantering och modellering av tvångslaster i betongbroar OSKAR LARSSON

Utvärdering, hantering och modellering av tvångslaster i betongbroar OSKAR LARSSON Utvärdering, hantering och modellering av tvångslaster i betongbroar OSKAR LARSSON Bakgrund Vid dimensionering av betongbroar är det fullt möjligt att använda 3D-modellering med hjälp av FEM Trafikverkets

Läs mer

Material, form och kraft, F9

Material, form och kraft, F9 Material, form och kraft, F9 Repetition Skivor, membran, plattor, skal Dimensionering Hållfasthet Styvhet/Deformationer Skivor Skiva: Strukturelement som är tunt i förhållande till utsträckningen i planet

Läs mer

VSMF10 Byggnadskonstruktion 9 hp VT15

VSMF10 Byggnadskonstruktion 9 hp VT15 VSMF10 Byggnadskonstruktion 9 hp VT15 F1-F3: Bärande konstruktioners säkerhet och funktion 1 Krav på konstruktioner Säkerhet mot brott Lokalt (balk, pelare etc får ej brista) Globalt (stabilitet, hus får

Läs mer

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25

Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25 Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en

Läs mer

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar

Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir

Läs mer

Tentamen i Konstruktionsteknik

Tentamen i Konstruktionsteknik Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 3 Juni 2013 kl. 8.00 13.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

caeec220 Pelare betong Användarmanual Eurocode Software AB

caeec220 Pelare betong Användarmanual Eurocode Software AB caeec220 Pelare betong Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev C Eurocode Software AB

Läs mer

GJUTNING AV VÄGG PÅ PLATTA

GJUTNING AV VÄGG PÅ PLATTA GJUTNING AV VÄGG PÅ PLATTA Studier av sprickrisker orsakat av temperaturförloppet vid härdningen Jan-Erik Jonasson Kjell Wallin Martin Nilsson Abstrakt Försök med gjutning av konstruktionen vägg på platta

Läs mer

Bilaga A - Dimensioneringsförutsättningar

Bilaga A - Dimensioneringsförutsättningar Dimensioneringsförutsättningar Allmänt Dimensionerande värden framräknas enligt nedanstående. Dimensionerande värden, X d = 1 γ m X k γ m, partialkoefficient, enligt tabell nedan. Jordparameter Partialkoefficienter

Läs mer

Rättelseblad 1 till Boverkets handbok om betongkonstruktioner, BBK 04

Rättelseblad 1 till Boverkets handbok om betongkonstruktioner, BBK 04 Rättelseblad till Boverkets handbok om betongkonstruktioner, BBK 04 I den text som återger BBK 04 har det smugit sig in tryckfel samt några oklara formuleringar. Dessa innebär att handboken inte återger

Läs mer

www.eurocodesoftware.se caeec710 Vinkelstödmur Programmet beräknar grundtryck och grundlaster i brott- och brukgränstillstånd för vinkelstödmurar. Det utför även stabilitetsberäkningar. Användarmanual

Läs mer

www.eurocodesoftware.se caeec201 Armering Tvärsnitt Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual

Läs mer

Eurokod grundläggning. Eurocode Software AB

Eurokod grundläggning. Eurocode Software AB Eurokod grundläggning Eurocode Software AB Eurokod 7 Kapitel 1 Allmänt Kapitel 2 Grunder för geotekniskdimensionering Kapitel 3 Geotekniska data Kapitel 4 Kontroll av utförande, uppföljning och underhåll

Läs mer

Projekteringsanvisning

Projekteringsanvisning Projekteringsanvisning 1 Projekteringsanvisning Den bärande stommen i ett hus med IsoTimber dimensioneras av byggnadskonstruktören enligt Eurokod. Denna projekteringsanvisning är avsedd att användas som

Läs mer

HUNTON FANERTRÄBALK LVL

HUNTON FANERTRÄBALK LVL TEKNISK ANDBOK FÖR GOLV OC TAK UNTON FANERTRÄBALK LVL Fanerträbalk för höga krav SE - 04/18 FANERTRÄBALK LVL MLT Ltd. Werk Torzhok Z-9.1-811 MLT Ltd. Werk Torzhok Z-9.1-811 Kvalitet och effektivitet UNTON

Läs mer

caeec201 Armering Tvärsnitt Användarmanual Eurocode Software AB

caeec201 Armering Tvärsnitt Användarmanual Eurocode Software AB caeec201 Armering Tvärsnitt Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev C Eurocode Software

Läs mer

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012

Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012 Umeå universitet Tillämpad fysik och elektronik Annika Moström 01-0-3 Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1:

Läs mer

caeec301 Snittkontroll stål Användarmanual Eurocode Software AB

caeec301 Snittkontroll stål Användarmanual Eurocode Software AB caeec301 Snittkontroll stål Analys av pelarelement enligt SS-EN 1993-1-1:2005. Programmet utför snittkontroll för givna snittkrafter och upplagsvillkor. Rev: C Eurocode Software AB caeec301 Snittkontroll

Läs mer

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER

TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström

Läs mer

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)

LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel) ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem

Läs mer

1a) Vad betyder den engelska [ ] Krympning [ ] Tillsatsämne termen contractor? [ ] Stumsvets [ ] Brotvärbalk [ ] Transformator [x] Entreprenör

1a) Vad betyder den engelska [ ] Krympning [ ] Tillsatsämne termen contractor? [ ] Stumsvets [ ] Brotvärbalk [ ] Transformator [x] Entreprenör LBT502-0101 BROBYGGNAD Bro1-08svar.doc 2008-12-17 - SL TENTAMEN Onsdagen den 17 december 2008 kl. 8.30-12.30 Examinator: Sören Lindgren tel.: 031-7722660 eller 0707731981 Hjälpmedel.: Godkänd miniräknare,

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Tvångskrafter i betongbroar - Analys och implementering av metod för reducering av tvångskrafter

Tvångskrafter i betongbroar - Analys och implementering av metod för reducering av tvångskrafter Tvångskrafter i betongbroar - Analys och implementering av metod för reducering av tvångskrafter Jörgen Andersson Linus Andersson Avdelningen för Konstruktionsteknik Lunds Tekniska Högskola Lund Universitet,

Läs mer

2 kn/m 2. Enligt Tabell 2.5 är karakteristisk nyttig last 2,0 kn/m 2 (kategori A).

2 kn/m 2. Enligt Tabell 2.5 är karakteristisk nyttig last 2,0 kn/m 2 (kategori A). Bärande konstruktioners säkerhet och funktion G k 0, 16 5+ 0, 4, kn/m Värdet på tungheten 5 (kn/m 3 ) är ett riktvärde som normalt används för armerad betong. Översatt i massa och med g 10 m/s innebär

Läs mer

(kommer inte till tentasalen men kan nås på tel )

(kommer inte till tentasalen men kan nås på tel ) Karlstads universitet 1(7) Träkonstruktion BYGB21 5 hp Tentamen Tid Tisdag 13 januari 2015 kl 14.00-19.00 Plats Ansvarig Hjälpmedel Universitetets skrivsal Carina Rehnström (kommer inte till tentasalen

Läs mer

1. Dimensionering och utformning av hallbyggnad i limträ

1. Dimensionering och utformning av hallbyggnad i limträ Tillämpad fysik och elektronik/ Byggteknik Fördjupningskurs i byggkonstruktion Annika Moström 2014 Sid 1 (5) Konstruktionsuppgift : Limträhall 1. Dimensionering och utformning av hallbyggnad i limträ Uppgiften

Läs mer

Exempel 7: Stagningssystem

Exempel 7: Stagningssystem 20,00 7.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera stagningssstemet enligt nedan. Sstemet stagar konstruktionen som beräknas i exempel 2. Väggens stagningssstem 5,00 Takets stagningssstem

Läs mer

Bromall: Utmattning av järnvägsbro

Bromall: Utmattning av järnvägsbro Bromall: Utmattning av järnvägsbro Beräkning av utmattning av järnvägsbro med λ-metoden. Rev: A EN 1992-2: 2005 Innehåll 1 Armering och spännarmering 2 2 Betong utsatt för tryck 8 Sida 2 av 11 Avgränsningar/Begränsningar

Läs mer

FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

FÖRDJUPNINGSKURS I BYGGKONSTRUKTION FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Summering Teori FÖRVÄNTADE STUDIERESULTAT EFTER GENOMGÅNGEN KURS SKA STUDENTEN KUNNA: Teori: beräkna dimensionerande lasteffekt av yttre laster och deformationer på

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer