Generering av ljud utifrån fysikalisk simulering

Storlek: px
Starta visningen från sidan:

Download "Generering av ljud utifrån fysikalisk simulering"

Transkript

1 UMEÅ UNIVERSITET Projektrapport Enheten för professionskurser Generering av ljud utifrån fysikalisk simulering Introduktion till ingenjörsarbete Namn Anders Berglund Viktor Johansson Sara Leonardsson Handledare Fredrik Nordfelth Martin Servin

2 Innehåll 1 Bakgrund Gitarrsträng Metodbeskrivning Tidsfördöjning/Samplingstid Resultat Material Analys & slutsats Rektangulär platta träffas av en sfär Metod Resultat Analys & slutsats i

3 1 Bakgrund En fysikmotor möjliggör simulering av rörelse hos fysikaliska modeller med egenskaper som till exempel massa, hastighet, friktion och luftmotstånd. Den kan under rätta förhållanden simulera och förutsäga effekter som motsvarar vad som sker i verkligheten. Främsta användningsområdet finns inom datorspel, animering och teknisk produktutveckling. Företaget Algoryx i Umeå har två fysikmotorer på marknaden, dels 3D-fysikmotorn AgX men även 2D-fysikmotorn Algodoo. En önskan från Algoryx är att kunna generera ljud i sina simuleringar där ljudet baseras på dynamiken i simuleringarna. Det här projektet har syftat till att ta fram ett första förslag på hur ljud kan genereras genom fysikalisk simulering. Förslaget ska ligga till grund för ett fortsatt utvecklingsarbete där slutmålet är en väl fungerande ljudmodell. Om det i en simulering släpps ett glas i golvet, glaset går sönder och skärvorna sprids över golvet, så ska ljudet som genereras utifrån dynamiken i simuleringen låta precis som om ett verkligt glas gått sönder. En bra modell att utgå ifrån var en gitarrsträng eftersom den endast svänger i två dimensioner och det finns teori om en gitarrsträngs svängningar, grundfrekvens, övertoner att jämföra med. 1.1 Gitarrsträng En modell av en gitarrsträng bestående av 100 punkter byggdes i fysikmotorn AgX. Gitarrsträngen sattes i rörelse genom att olika initialvillkor lades in i simuleringen Metodbeskrivning Hur skall man utifrån strängens rörelse kunna generera ljud? Ett sätt att få reda på med vilka frekvenser strängen svänger är att ta fram ett frekvensspektrum genom en Fourieranalys. En Fouriertransform kan genomföras både i tidsplanet och i rummet. Båda dessa metoder har sina för- respektive nackdelar Tidssplanet Fördelen med en fouriertransform i tidsplanet är att det är lätt att få ut ett frekvensspektra för svängningen. En annan fördel är att det skulle vara möjligt att utöka modellen genom att bestämma vilken punkt i rummet man lyssnar i. Nackdelen är att data måste samlas under en viss samplingstid för att kunna genomföra fouriertransformen. Det kommer att ge en viss tidsfördröjning av ljudet. Ljudet genereras i varje enskild tidpunkt utifrån den form som objektet i den givna tidpunkten antagit. Denna modell har fördelen att ljudet som genereras motsvarar vad som sker just nu utan någon tidsmässigt lagg. Rummet Fördelen med en fouriertransform i rummet är att det inte blir något problem med en tidsfördröjning av ljudet då varje tidssteg direkt ger ett 1

4 Figur 1: Med parallella samplingar kan mjukare övergångar åstadkommas ljud. Nackdelen är att det är svårare att utifrån det spektra som erhålls att få ut svängningens frekvens. Modellen går heller inte att bygga vidare på ett sådant sätt att man kan lyssna i olika punkter. Ljudet genereras här genom att följa hur de enskilda partiklarnas utsvängning från normalläget ändras under en tidperiod. Den här metoden har nackdelen av att en liten tidsmässig förskjutning uppstår då den beror av en viss lång samplingstid för att kunna användas. Efter att ha vägt för- och nackdelar mot varandra valdes metoden med fouriertransform i tidsplanet då den tillåter en mer direkt analys av ljudet. En fouriertransform ger här direkt de frekvenser som svängningen består av. En annan stor fördel med den här metoden är att den tillåter att man i ett senare skede lägger till funktioner som gör att ljudet uppfattas olika beroende på var man lyssnar Tidsfördöjning/Samplingstid Då det behövs en viss samplingstid för att kunna genomföra fouriertransformen i tidsplanet och upplösa de frekvenser man är intresserad av kommer en viss tidsfördröjning av ljudet alltid att förekomma. Exempelvis för att kunna upplösa 60 Hz krävs en samplingstid på minst 1/60 s. Däremot är det möjligt att undvika att ljudet upplevs hackigt när det spelas upp. Under den första samplingstiden finns ingen data att generera ljud utifrån. När den första samplingen är klar kan ett ljud spelas upp. För att åstadkomma ett kontinuerligt ljud så måste varje ljudsnutt spelas upp i motsvarande en samplingstid för att nästa ljud skall hinna bli klart för uppspelning och inget glapp skall uppstå. Problemet är att ljudet hinner förändras nämnvärt under denna samplingstid och när ljudet spelas upp så kan skarvarna mellan två ljudsnuttar höras tydligt. För att lösa detta problem gjordes fyra stycken parallella samplingar med en liten förskjutning sinsemellan. När den första samplingen började inväntades en fjärdedel av samplingstiden innan en andra sampling började. Denna sampling avslutades därmed en fjärdedel av en samplingstid efter den första. På samma sätt gjordes en tredje och en fjärde sampling med motsvarande förskjutningar. Detta medförde att när den första ljudbiten var klar behövde den bara spelas upp i en fjärdedel så lång tid innan nästa var klar för uppspelning, o.s.v. En schematisk förklaring ges i figur 1. 2

5 Figur 2: Grundfrekvens och första överton detekteras i Fourierspektrat. Figur 3: Grundfrekvens, först- och andra överton detekteras i Fourierspektrumet Resultat Fourieranalysen genomfördes i MATLAB på två olika punkter på strängen. Dels precis i mitten av strängen och även vid 3/4 av dess längd. De frekvenser som detekteras i Fourierspektrat beror på hur strängen anslås och var någonstans på strängen som fourieranalysen utförs samt hur styv och spänd gitarrsträngen är. I figur 2 visas ett spektra som innehåller grundfrekvensen och den första övertonen detekterat vid 3/4 av strängens längd. Ett annorlunda anslag av gitarrsträngen gör att även den andra övertonen kan detekteras i samma punkt på strängen. Frekvenserna och amplituderna som hittas i spektrat kan sedan spelas upp med funktionen sound i MATLAB. En sträng i rörelse får ett frekvensspektrum bestående av en grundton och multiplar av denna i form av övertoner med avtagande amplitud. När en sträng sätts i svängning kommer olika frekvenser ha olika noder, dvs. punkter på strängen där utsvängningen är konstant noll. Den första övertonen, dvs. 2f, har en nod mitt på strängen. Det betyder att den aldrig kommer att 3

6 Figur 4: Grundfrekvens och övertoner. Alla jämna övertoner har en nod i mittpunkten. kunna upptäckas i fourierspektrat från en punkt mitt på strängen även om gitarrsträngen egentligen svänger med den frekvensen. Detsamma gäller alla andra jämna övertoner (se figur 4). Det här tankesättet går att applicera på andra punkter på strängen, dvs. i en del punkter på strängen kan inte vissa frekvenser upptäckas Material För att få ett ljud som är så naturtroget som möjligt måste egenskaperna på strängen motsvara det hos ett verkligt material. Egenskaperna som i denna simuleringen gick att variera var styvheten på de tvång som band samman partiklarna med varandra, dämpningen på dessa samt vilka frihetsgrader de skulle ha i form av Joint. Joint Om man jämför BallJoint med DistanceJoint i fallet med gitarrsträngen så borde de ge samma resultat då partiklarnas eventuella spinn inte borde göra någon skillnad på svängningen. Fogen, eller jointen, är satt i partiklarna dvs. att det inte finns någon joint mellan partiklarna. I praktiken fungerar alltså balljointen som en distancejoint i strängfallet eftersom den enda begränsningen kommer från avståndet mellan dem. Dock har vi inte fått DistanceJoint att fungera så kan vi tyvärr inte verifiera detta. Compliance Compliance dvs. styvheten strängens styvhet var en annan variabel som kunde justeras. Enligt Algoryx är compliance en konstant gånger inversen av elasticitetsmodulen multiplicerat med objektets tvärsnittsarea. Det betyder att compliance får dimensionen [N] 1 dvs. att den är ett uttryck för 4

7 utsträckning per newton. Compliance = k EA = k N m m = k 2 N 2 För att kolla dess naturtrogenhet kördes en simulering där strängen tänktes vara 1 mm tjock och av stål vilket ger en area av ca 1E-6 och elasticitetsmodulen 200 GPa vilket ger att compliance blir 5E-6. Detta innebär, som en jämförelse, att om strängen är en meter lång måste den belastas med en kraft av ca 200 kg för att sträckas ut 1 cm eller 1 % Analys & slutsats Resultatet visar att vår modell gör det möjligt att generera ljud med frekvenser som är rimliga för en gitarrsträng. Spelar man ett A på en gitarr motsvarar det en frekvens på 440 Hz. Frekvenserna som vår modell genererade var i närheten av ett A om compliance har storleken 10 6, Detta stämmer bra med vad som antogs om compliance i teorin. Vårt förslag till Algoryx är att basera sin ljudmodell på en Fouriertransform i tidsplanet. Detta eftersom att frekvensanalysen blir enkel och rättfram då frekvenserns erhålls direkt från Fourierspektrat. En annan fördel är att modellen går att utöka med funktionen att ljudet kan detekteras i punkter på olika avstånd från det ljudalstrande objektet. Med andra ord kommer det vara möjligt att låta ljudstyrkan på ett längre avstånd från objektet vara svagare än i en punkt närmare objektet. Likaså kommer ljudet från olika delar av objektet att nå fram till avlyssningspunkten vid olika tidpunkter. Sammantaget ger en Fouriertransform i tidsplanet en fysikaliskt mer korrekt ljudmodell än en Fouriertransform i rummet. 1.2 Rektangulär platta träffas av en sfär Metod Plattan byggdes upp precis som gitarrsträngen med partiklar som bands ihop med hjälp av bolljoints. Partiklarna satt ihop med grannarna över, under och diagonalt uppåt. En sfär kastades från ett avstånd och träffade plattan ungefär på mitten och satte då partiklarna i svängning. Dessa partiklars position i y-led loggades precis som i modellen av gitarrsträngen och utifrån dessa genererades ljud i MATLAB Resultat Fourieranalysen genomfördes i MATLAB på olika punkter på plattan. Först loggades bara en partikels position och fourieranalyserades. Partikeln som valdes låg ungefär i mitten på plattan och gav då frekvensen som visas i figur 5. Partikeln svänger med en frekvens på 78 Hz. I artikeln [1] simuleras en liknande modell med hjälp av finita elementmetoder. I artikeln fås flera olika frekvenser, bland annat en frekvens på ca 70 Hz som 5

8 Hz Figur 5: Frekvens för en punkt detekteras i Fourierspektrat. 1.5 x Hz Figur 6: Frekvens för fyra punkter med ett compliance C = 10 6 detekteras i Fourierspektrat. skulle kunna vara den som även vår metod fick. Det skulle innebära att vårt resultat kan stämma, vi vet dock inte materialet på plattan de använder sig av och det gör det svårt att jämföra. Det gjordes även en fourieranalys på fyra olika punkter som var grannar. Dessa tillsammans med ett compliance på 10 6 gav upphov till spektrat som visas i figur 6. Frekvensen i denna ligger väldigt högt, ca 2000 Hz. Provar vi sänka compliance till 10 6 för att få en styvare platta fås resultatet som visas i figur 7 med en frekvens på 3500 Hz Analys & slutsats Även i detta resultat visar att vår modell gör det möjligt att generera ljud. Om detta ljud blir korrekt är frågan man kan ställa sig då vi får bara en frekvens och det gör det svårt att jämför med [1] resultat, vi anser dock att vi har en för höga frekvenser för att det ska kännas rimligt. Vi har inte heller uträtt tillräckligt mycket vad som händer med frekvenserna för olika värden på compliance, dämpning eller utgångshastighet på sfären. I vår modell har vi bara loggat partikelns position i en riktning som är i samma riktning som sfärens utgångshastighet. 6

9 3.5 x Hz Figur 7: Frekvens för en punkt med ett compliance C = detekteras i Fourierspektrat. En fortsättning på detta skulle kunna vara att få rätsida på vad som händer med frekvenserna för olika värden på compliance, dämpning och utgångshastigheter. Man bör även titta på partiklarnas vibrationer i alla riktningar (x, y och z). Referenser [1] James F. O Brien, Perry R. Cook och Georg Essl. Synthesizing sounds from physically based motion. I: Proceedings of ACM SIGGRAPH 2001, ss ACM Press, augusti

Prov i vågrörelselära vt06 Lösningsförslag

Prov i vågrörelselära vt06 Lösningsförslag Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela

Läs mer

Svängningar och frekvenser

Svängningar och frekvenser Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att

Läs mer

Upp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg.

Upp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg. 1. Bengt ska just demonstrera stående vågor för sin bror genom att skaka en slinkyfjäder. Han lägger fjädern på golvet och ber sin bror hålla i andra änden. Sen spänner han fjädern genom att backa lite

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och

Läs mer

Vad är ljud? När man spelar på en gitarr så rör sig strängarna snabbt fram och tillbaka, de vibrerar.

Vad är ljud? När man spelar på en gitarr så rör sig strängarna snabbt fram och tillbaka, de vibrerar. LJUD Vad är ljud? När man spelar på en gitarr så rör sig strängarna snabbt fram och tillbaka, de vibrerar. När strängen rör sig uppåt, pressar den samman luften på ovansidan om strängen => luftmolekylerna

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Vågfysik. Superpositionsprincipen

Vågfysik. Superpositionsprincipen Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor

Läs mer

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Ljud. Låt det svänga. Arbetshäfte

Ljud. Låt det svänga. Arbetshäfte Ljud Låt det svänga Arbetshäfte Ljud När ljudvågorna träffar örat börjar trumhinnan svänga i takt vi hör ett ljud! Trumhinnan Ljud är en svängningsrörelse. När ett föremål börjar vibrera packas luftens

Läs mer

Labbrapport svängande skivor

Labbrapport svängande skivor Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan

Läs mer

Signalbehandling Röstigenkänning

Signalbehandling Röstigenkänning L A B O R A T I O N S R A P P O R T Kurs: Klass: Datum: I ämnet Signalbehandling ISI019 Enk3 011211 Signalbehandling Röstigenkänning Jonas Lindström Martin Bergström INSTITUTIONEN I SKELLEFTEÅ Sida: 1

Läs mer

Handledning laboration 1

Handledning laboration 1 : Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen

Läs mer

Grundläggande signalbehandling

Grundläggande signalbehandling Beskrivning av en enkel signal Sinussignal (Alla andra typer av signaler och ljud kan skapas genom att sätta samman sinussignaler med olika frekvens, Amplitud och fasvridning) Periodtid T y t U Amplitud

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Ljud, Hörsel. vågrörelse. och. Namn: Klass: 7A

Ljud, Hörsel. vågrörelse. och. Namn: Klass: 7A Ljud, Hörsel och vågrörelse Namn: Klass: 7A Dessa förmågor ska du träna: använda fysikens begrepp, modeller och teorier för att beskriva och förklara fysikaliska samband i naturen och samhället genomföra

Läs mer

Läran om ljudet Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera.

Läran om ljudet Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. Akustik Läran om ljudet Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng vibrerar, rör den sig fram och tillbaka.

Läs mer

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p) Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger

Läs mer

Talets akustik repetition

Talets akustik repetition Pétur Helgason VT 29 Talets akustik repetition 29-3-3 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 8 % kväve och 2 % syre.

Läs mer

Uppgifter 2 Grundläggande akustik (II) & SDOF

Uppgifter 2 Grundläggande akustik (II) & SDOF Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den

Läs mer

Centralt innehåll. O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan.

Centralt innehåll. O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan. LJUD Fysik åk 7 Centralt innehåll O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan. Tre avsnitt O Ljudets egenskaper O Ljudvågor

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Partiklars rörelser i elektromagnetiska fält

Partiklars rörelser i elektromagnetiska fält Partiklars rörelser i elektromagnetiska fält Handledning till datorövning AST213 Solär-terrest fysik Handledare: Magnus Wik (2862125) magnus@lund.irf.se Institutet för rymdfysik, Lund Oktober 2003 1 Inledning

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

2. Mekaniska vågrörelser i en dimension

2. Mekaniska vågrörelser i en dimension 2. Mekaniska vågrörelser i en dimension Reflexion Även om alla vågrörelser kan beskrivas med begreppen och, för de flesta naturligt förekommande vågorna, de matematiska uttrycken introducerade i kapitel

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Mål med temat vad är ljud?

Mål med temat vad är ljud? Vad är ljud? När vi hör är det luftens molekyler som har satts i rörelse. När en mygga surrar och låter är det för att den med sina vingar puttar på luften. När en högtalare låter är det för att den knuffar

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

Tema - Matematik och musik

Tema - Matematik och musik Tema - Matematik och musik Författarna och Bokförlaget Borken, 2011 Allt vi uppfattar som ljud, från den nästan smärtsamma upplevelsen på en rockkonsert till insekternas surr en sommardag, består av mer

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm

= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm Bok Vågrörelse Fysik 3 Fysik 3, Vågrörelse Mekanisk vågrörelse Ljud Ljus Harmonisk kraft Ex [ F] [ k ] N / m [ x] Fjäder F -kx F -kx [ F] k fjäderkonstanten [ k ] [ x] - kraften riktad mot jämviktsläget

Läs mer

Angående skjuvbuckling

Angående skjuvbuckling Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan

Läs mer

Corioliseffekter. Uppdaterad: Om bildsekvenserna Bildsekvens 1: Boll far förbi rymdstationen längs en rät linje Bildsekvens 2:...

Corioliseffekter. Uppdaterad: Om bildsekvenserna Bildsekvens 1: Boll far förbi rymdstationen längs en rät linje Bildsekvens 2:... Corioliseffekter Uppdaterad: 170328 Om bildsekvenserna Bildsekvens 1: Boll far förbi rymdstationen längs en rät linje Bildsekvens 2:...... Har jag använt någon bild som jag inte får använda? Låt mig veta

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

Så vi börjar enkelt. Vad är då en vibration? Enkelt uttryck är det en svängningsrörelse kring en mittpunkt. Denna svängning kan beskrivas med olika

Så vi börjar enkelt. Vad är då en vibration? Enkelt uttryck är det en svängningsrörelse kring en mittpunkt. Denna svängning kan beskrivas med olika 1 Så vi börjar enkelt. Vad är då en vibration? Enkelt uttryck är det en svängningsrörelse kring en mittpunkt. Denna svängning kan beskrivas med olika uttryck så som amplitud och frekvens där amplituden

Läs mer

Tenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19

Tenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19 Tenta Elektrisk mätteknik och vågfysik (FFY616) 013-1-19 Tid och lokal: Torsdag 19 december kl. 14:00-18:00 i byggnad V. Examinator: Elsebeth Schröder (tel 031 77 844). Hjälpmedel: Chalmers-godkänd räknare,

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström

Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd? Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

räknedosa. Lösningarna ska Kladdblad rättas. vissa (1,0 p) frånkopplad. (3,0 p) 3. Uppgiften går. Faskonstanten: 0

räknedosa. Lösningarna ska Kladdblad rättas. vissa (1,0 p) frånkopplad. (3,0 p) 3. Uppgiften går. Faskonstanten: 0 TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ettt nytt blad och skriv bara på

Läs mer

Laboration 3 Sampling, samplingsteoremet och frekvensanalys

Laboration 3 Sampling, samplingsteoremet och frekvensanalys Laboration 3 Sampling, samplingsteoremet och frekvensanalys 1 1 Introduktion Syftet med laborationen är att ge kunskaper i att tolka de effekter (speglingar, svävningar) som uppkommer vid sampling av en

Läs mer

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant

FYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant Fysik - Måldokument Lena Folkebrant FYSIK ÅK 9 AKUSTIK OCH OPTIK Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng

Läs mer

Simulering av kontaktkrafter och nötning i transportörsystem för malm

Simulering av kontaktkrafter och nötning i transportörsystem för malm Simulering av kontaktkrafter och nötning i transportörsystem för malm John Nordberg 1, Martin Servin 1,2 1 UMIT Research Lab vid Umeå universitet 2 Algoryx Simulation 2011-08-25 Med stöd av ProcessIT Innovations

Läs mer

Datorlaboration i differentialekvationer

Datorlaboration i differentialekvationer Umeå Universitet --5 Matematiska instutitionen Datorlaboration i differentialekvationer Umeå universitet --5 Inledning Laborationen består av fyra uppgifter och för detaljer och givna ekvationer i uppgifterna

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Läs mer

Miniräknare, formelsamling

Miniräknare, formelsamling Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik B Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-29 Tid: 9.00-15.00 Kod:... Grupp:... Poäng:... Betyg U G VG... Tentamen i Fysik

Läs mer

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad UMEÅ UNIVERSITET Tillämpad fysik och elektronik Laborationer i byggnadsakustik Osama Hassan 2010-09-07 Byggnadsakustik: Luftljudisolering Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i

Läs mer

TENTAMEN. Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet. Lärare: Joakim Lundin

TENTAMEN. Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet. Lärare: Joakim Lundin Umeå Universitet TENTAMEN Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-28 Tid: 09.00-15.00 Kod:... Grupp:... Betyg Poäng:...

Läs mer

Projekt 3: Diskret fouriertransform

Projekt 3: Diskret fouriertransform Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov 1. En kylmaskin som drivs med en spänning på 220 Volt och en ström på 0,50 A kyler vatten i en behållare. Kylmaskinen har en verkningsgrad på 0,70.

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

II. Partikelkinetik {RK 5,6,7}

II. Partikelkinetik {RK 5,6,7} II. Partikelkinetik {RK 5,6,7} med kraft att beräkna och förstå Newtons lagar och kraftbegreppet är mycket viktiga för att beskriva och förstå rörelse Kenneth Järrendahl, 1: Tröghetslagen Newtons Lagar

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L

Läs mer

! = 0. !!!"ä !"! +!!!"##$%

! = 0. !!!ä !! +!!!##$% TENTAMEN I FYSIK FÖR n1 3 MAJ 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och för- sedda med svar. Kladdblad

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

TNMK054 - LJUDTEKNIK 1 RUM, REVERB,

TNMK054 - LJUDTEKNIK 1 RUM, REVERB, TNMK054 - LJUDTEKNIK 1 RUM, REVERB, TNMK054 - LJUDTEKNIK 1 SUSTAIN SUSTAIN Pianosustain SUSTAIN Pianosustain Analog sustain Uppåtkompression Distortion Brus Brum SUSTAIN Stråke och fiol Stråken skapar

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010 TENTAMEN Institution: DFM, Fysik Examinator: Pieter Kuiper Namn:... Adress:... Datum: april 2010... Tid: Plats: Kurskod: 1FY803 Personnummer: Kurs/provmoment: Vågrörelselära och Optik Hjälpmedel: linjal,

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Laborationsprojekt i digital ljudsyntes

Laborationsprojekt i digital ljudsyntes Laborationsprojekt i digital ljudsyntes A. Målsättning Att studenten skall få fördjupade kunskaper i digital signalbehandling genom att lära sig de grundläggande principerna för digital ljudsyntes av stränginstrumentliknande

Läs mer

Spänningsstyrd Oscillator

Spänningsstyrd Oscillator Spänningsstyrd Oscillator Referat I det här projektet byggs en delkrets till frekvensneddelare för oscilloskop som inte har tillräcklig bandbredd för dagens höga frekvenser. Kretsen som byggs är en spänningsstyrd

Läs mer

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Vi har väl alla stått på en matta på golvet och sedan hastigt försökt förflytta

Vi har väl alla stått på en matta på golvet och sedan hastigt försökt förflytta Niclas Larson Myra på villovägar Att modellera praktiska sammanhang i termer av matematik och att kunna använda olika representationer och se samband mellan dessa är grundläggande förmågor som behövs vid

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 01-08- Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som avses

Läs mer

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2,

m 1 =40kg k 1 = 200 kn/m l 0,1 =0.64 m u 0 =5.0 mm x p,1 = X 1 sin ωt + C 1 x p,2 = X 2 sin ωt + C 2, Linköpings tekniska högskola 2016 10 14 IEI/Mekanik och hållfasthetslära Peter Christensen Datorsimuleringsuppgift i Mekanik Y del 1 (TMME12) Syftet med denna uppgift är att simulera hur ett mekaniskt

Läs mer

Vindkraftverk. Principen bakom vårt vindkraftverk

Vindkraftverk. Principen bakom vårt vindkraftverk Vindkraftverk Min grupp har gjort ett speciellt vindkraftverk som är inspirerat av det flygande vindkraftverket Buoyant airborne turbine. Det som gör vårt vindkraftverk annorlunda jämfört med andra är

Läs mer

Ökad dämpning genom rätt design av utloppsstrypningen

Ökad dämpning genom rätt design av utloppsstrypningen Ökad dämpning genom rätt design av utloppsstrypningen Mikael Axin Fluida och mekatroniska system, Institutionen för ekonomisk och industriell utveckling, Linköpings universitet E-mail: mikael.axin@liu.se

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Grundläggande Akustik

Grundläggande Akustik Läran om ljud och ljudutbredning Ljud i fritt fält Ljudet utbreder sig som tryckväxlingar kring atmosfärstrycket Våglängden= c/f I luft, ljudhastigheten c= 344 m/s eller 1130 ft/s 1ft= 0.3048 m Intensiteten

Läs mer

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl

Läs mer

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan

Svängningar. TMHL09 - Övningstal till avsnittet. Övningstal: Tal 1, 2, 3 nedan (variant av 14/28) Hemtal: 14/23, 14/12, Tal 4 nedan TMHL09 - Övningstal till avsnittet Svängningar Övningstal: Tal 1,, 3 nedan (variant av 14/8) Hemtal: 14/3, 14/1, Tal 4 nedan Tre tal (en frihetsgrad - Tal 1, två frihetsgrader - Tal och kontinuerligt system

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Mekanik SG1108 Mekanikprojekt Dubbelpendel

Mekanik SG1108 Mekanikprojekt Dubbelpendel Mekanik SG1108 Mekanikprojekt Dubbelpendel Studenter: Peyman Ahmadzade Alexander Edström Robert Hurra Sammy Mannaa Handledare: Göran Karlsson karlsson@mech.kth.se Innehåll Sammanfattning... 3 Inledning...

Läs mer