Lösa ekvationer på olika sätt

Relevanta dokument
Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Hantera andragradskurvor del 2

Arbeta med normalfördelningar

Inga vanliga medelvärden

Exponentialfunktioner och logaritmer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

Matematik 1 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Avsnitt 1, introduktion.

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sidor i boken f(x) = a x 2 +b x+c

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Avsnitt 3, introduktion.

TI-89 / TI-92 Plus. en ny teknologi med

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

4 Fler deriveringsregler

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

1 Addition, subtraktion och multiplikation av (reella) tal

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: minuter beroende på variant Material: TI-82/83/84 samt tärningar

9-2 Grafer och kurvor Namn:.

6 Derivata och grafer

Talmängder. Målet med första föreläsningen:

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

y y 1 = k(x x 1 ) f(x) = 3 x

Allmänna Tredjegradsekvationen - version 1.4.0

Lösningar och kommentarer till uppgifter i 1.1

Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, linje, diagram, spridningsdiagram.

Sidor i boken V.L = 8 H.L. 2+6 = 8 V.L. = H.L.

Extramaterial till Matematik Y

Funktionsstudier med derivata

Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18

Avsnitt 5, introduktion.

Statistiska samband: regression och korrelation

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Innehåll. 1 Ställa in räknaren 4. 2 Mer om Inmatning av uttryck 7. 3 Bråkräkning Använda svarsknappen vid upprepade beräkningar 11

Linjära ekvationer med tillämpningar

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

8-6 Andragradsekvationer. Namn:..

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Moment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Sidor i boken , , 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Föreläsning 3: Ekvationer och olikheter

2 Derivator. 2.1 Dagens Teori. Figur 2.1: I figuren ser vi grafen till funktionen. f(x) = x

Bedömningsanvisningar

Kravgränser. Provet består av Del B, Del C, Del D samt en muntlig del och ger totalt 63 poäng varav 24 E-, 21 C- och 18 A-poäng.

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

Avsnitt 2, introduktion.

KOKBOKEN 1. Håkan Strömberg KTH STH

En vanlig uppgift är att bestämma max resp min för en trigonometrisk funktion och de x- värden för vilka dessa antas.

Planering för kurs C i Matematik

3-8 Proportionalitet Namn:

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Planering för Matematik kurs E

Utforska cirkelns ekvation

Sammanfattningar Matematikboken Y

Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b

Gamla tentemensuppgifter

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet april

Fråga 3: Räknaren är på men min skärm är blank. Allmänt Fråga 1: Jag vill avsluta/rensa/komma ut från det jag håller på med

Ekvationer och olikheter

Mönster och Algebra. NTA:s första matematiktema. Per Berggren

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Algebra, kvadreringsregler och konjugatregeln

Faktorisering av polynomuttryck har alltid utgjort en väsentlig del av algebran.

Övningar i ekvationer

Ekvationslösning genom substitution, rotekvationer

Kapitel Ekvationsräkning

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Stora talens lag eller det jämnar ut sig

Polynomekvationer. p 2 (x) = x x 3 +2x 10 = 0

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

vux GeoGebraexempel 1b/1c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

Övning log, algebra, potenser med mera

4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Polynomekvationer (Algebraiska ekvationer)

Konsten att lösa icke-linjära ekvationssystem

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

Lösningar och kommentarer till uppgifter i 3.1

Formelhantering Formeln v = s t

ANDREAS REJBRAND NV1A Matematik Linjära ekvationssystem

Lösningar och kommentarer till Övningstenta 1

ger rötterna till ekvationen x 2 + px + q = 0.

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

NpMa2b ht Kravgränser

Laboration: Brinntid hos ett stearinljus

f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100

Transkript:

Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder. I aktiviteten Hantera andragradskurvor del 3 gick vi igenom hur man kom fram till den s.k. pq-formeln p p x q Man använder då en metod som kallas kvadratkomplettering för att lösa ekvationer av andra graden exakt. Om du inte behöver lösa exakt kan du också använda ett verktyg som heter Lösare. Låt oss säga att du ska lösa ekvationen 3,x 7,5x,5 0 Du når lösaren i om du trycker på tangenten : Tryck nu på. Då ska du gissa ett värde på en av rötterna till ekvationen. Om du inte vet någonting om rötterna kan du gissa ett stort negativt värde. Vi gissa på -10 t.ex. På undre raden står det gräns = -1E99,1E99 som betyder att räknaren kan leta efter lösningar mellan 99 10 99 och 10. Placera markören på raden med gissningen och tryck på. Räknaren jobbar nu snabbt och du får ett resultat: Tryck på och du får upp följande fönster och dy skriver in enligt följande: Detta är den ena roten. E1=E betyder att vänstra och högra ledet i ekvationen är lika. Gissa nu en rot som. ligger klart över den första lösningen. Välj t.ex. 10. Gör nu likadant. Du får den andra roten. Du matar i fälten E1 och E in ekvationens vänster- och högerled. Texas Instruments 016 TI-84 Plus CE-T Version 5.1 1

Nu kommer vi till den stora finessen med detta verktyg. Skriv in ekvationen så här: Du kan alltså skriva in vilka koefficienter du vill, gissa värden på X och sedan beräkna rötterna, en i taget. Kontrollera nu att rötterna verkar riktiga genom att rita grafen y 5x 4x 3 och beräkna nollställena. En beräkning med grafräknarens storasyster TI-Nspire ger både exakta resultat och närmevärden. Tryck på. Ny skriver du in värden för koefficienterna A, B och C och ställer markören på raden för den variabel du ska lösa för. Gissa på -10. Tryck på. Vi kan nu gissa på en rot som är större än -1,7. Vi väljer 10 även denna gång. Ibland kan man h a ekvationer man inte kan lösa med algebraiska metoder. Då kan ekvationslösaren vara bra. Här är ett sådant exempel. Ekonomiska tillämpningar Om K kr sätts in i början av t på varandra följande år till p % ränta, kan det samlade kapitalet A beräknas med formeln p 1 1 100 A K p 100 t I denna formel kan man lösa ut och beräkna t och K för olika värden på de andra variablerna. Att lösa ut p kan man däremot inte göra. p förekommer på två ställen i formeln. Se på problemet nedan. Vi har investerat pengar i en fond. Till fonden har inbetalts 5000 kr i början av varje år. Efter 5 år (6 inbetalningar) är avkastningen på det inbetalade kapitalet 34 kr. Hur stor årlig ränta motsvarar det? Vi har totalt investerat 30 000 kr. Det samlade kapitalet efter 5 år är då 3 34 kr. Texas Instruments 016 TI-84 Plus CE-T Version 5.1

Vi går till ekvationslösaren och skriver in ekvationen med de symboler som finns i uttrycket ovan. at s v0 t Då kan vi skriva så här i ekvationslösaren Tryck på. Vi skriver sedan in det vi vet. På procentsatsen gissar vi värdet 4 och placerar markören där. Tryck på. Vi säger nu att vi vet att sträckan är 100 m, att man startade med begynnelsehastigheten 0 m/s och att tiden var 1 sekunder. Vi vet alltså allt utom accelerationen. Vi gissar ett värde på 3 m/s. Tryck på [SOLVE]. Räntesatsen beräknas direkt. Placera markören vid A och Tryck på [SOLVE]. Vi får värdet 3,00 %. Nu kan då gå in och ändra de värden du vill. Vi skriver in tre värden för att beräkna det fjärde. Exempel från fysiken Ett exempel på rörelse. För en kropp som med begynnelsehastigheten v 0 m/s accelererar med accelerationen a m/s under t sekunder kan man beräkna den tillryggalagda sträckan s som Accelerationen blir alltså ca 1,39 m/s. Texas Instruments 016 TI-84 Plus CE-T Version 5.1 3

Det här kan vi rita som en graf om vi vill: 100 meter om hastigheten från början är 0 m/s? Här har vi tiden på x-axeln och sträckan på y-axeln. Om vi spårar i kurvan ser man att vid 1 sekunder så har man sprungit nästan precis 100 m. Exemplet med den som sprang 100 m på 1 s är inte realistiskt för mänskliga löpare. Man accelererar kraftigt i början av loppet (man startar ju med hastigheten 0) men efter ett tag så accelererar man inte längre utan har konstant hastighet. I vårt orealistiska exempel skulle löparen få en sluthastighet på nästan 17 m/s. Löpare i världsklass uppnår som högst en hastighet på ca 1 m/s under loppet. De plottade punkterna i diagrammet nedan visar data från ett världsrekordlopp jämsides med löparen som sprang med konstant acceleration. Vi kan också tänka oss att man vet accelerationen. Vid fritt fall vet vi ju att accelerationen är ca 9,8 m/s. Hur lång tid tar det då att falla Vi får svaret,91 sekunder. Fördjupning om andragradsekvationer När man jobbar med algebra så använder man kanske inte räknaren så mycket. Det mesta arbetet görs med papper och penna. Det finns dock några saker där räknaren kan användas. Man kan nämligen kontrollera att man har räknat rätt. Det kan handla om algebraiska omskrivningar och faktorisering och ekvationslösning. Nedan ser du 3 exempel som handlar om kvadreringsreglerna och konjugatregeln. Det är alltså inga ekvationer utan s.k. identiteter; något som alltid gäller. 1 betyder att likheten stämmer och 0 att det inte gäller. Likhets- tecknet når du genom att trycka. När testfönstret öppnas väljer du 1:= genom att trycka på. Då kopieras likhetstecknet in i grundfönstret. Texas Instruments 016 TI-84 Plus CE-T Version 5.1 4

Bestäm rötterna till andragradsekvationen x 3x 4 0. Andragradsekvationen har lösningarna x px q 0 Skriv nu in exemplel nedan och tryck på enter efter varje inmatning. p p x q I exemplet ovan är då p = -3 och q = - 4. På räknaren kan du lagra talvärden i variabler som betecknas A, B,... Z som du såg tidigare. Vi lagrar nu koefficienterna i ekvationen i P och Q. I det andra exemplet fick vi resultatet 0, som visar att likheten inte stämmer. Det skulle naturligtvis ha stått (X-4) i högerledet. När det gäller lösning av andragradsekvationer kan man göra på liknande sätt. Först får man se till att spara sina lösningar i en variabel, t.ex. X. Anta att vi löst andragradsekvationen x 6x 40 0 och fått lösningarna 4 och 6. Vi vill kontrollera dessa lösningar och då gör vi så här: Spara först den första lösningen i variabeln X. Pilen som betyder lagra i får du genom att trycka på tangenten.skriv sedan in ekvationen och tryck på. Räknaren svarar 1 vilket säger att svaret är rätt. På samma sätt gör vi med den andra lösningen. Den första lösningen var alltså rätt och den andra fel. För att beräkna rötterna till andragradsekvationen matar du sedan in formlerna för rötterna, lagrar värdena i en ny variabel och trycker på. Du behöver inte skriva om uttrycket när du ska ändra ett plustecken till ett minustecken utan du flyttar dig upp med markören och markerar uttrycket och trycker på. Då kopieras uttrycket in på sista raden och du byter bara ut plustecknet mot ett minustecken. Rötterna R och S är x = 4 och x = 1. Texas Instruments 016 TI-84 Plus CE-T Version 5.1 5

Vi ändrar nu koefficienterna P och Q till 6 resp. 7 för att lösa ekvationen x 6x 7 0. För att se vilka formler som ligger gömda i u och v gör vi på följande sätt: Tryck på och skriv sedan u. RCL står för kalla fram. Vi ser att värdena för R och S inte ändras. Detta visar att det bara är talvärden som kan lagras i en variabel. Tryck därefter på. Då kommer formeln fram på skärmen. För att åstadkomma en uppdatering av variablernas värden ska vi titta lite på tangenterna u, v som finns som -funktion ovanför knap- parna,. Dessa bokstäver kan användas till att gömma formler. Uttrycken för rötterna till andragradsekvationen kan lagras i u och v. Glöm inte citationstecken omkring uttrycken. når du genom att trycka på och sedan på. Därefter kan vi skriva u och v, trycka på och få rötterna beräknade. Texas Instruments 016 TI-84 Plus CE-T Version 5.1 6