En gyllene pyramid. Fem trianglar och en pentagon

Relevanta dokument
MVE365, Geometriproblem

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri

Sidor i boken Figur 1:

Enklare uppgifter, avsedda för skolstadiet

2. 1 L ä n g d, o m k r e t s o c h a r e a

Explorativ övning Geometri

c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC.

y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32

Moment Viktiga exempel Övningsuppgifter

Sidor i boken 8-9, 90-93

Repetition inför kontrollskrivning 2

Explorativ övning Geometri

SF1620 Matematik och modeller

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Lösningar till udda övningsuppgifter

geometri ma B

Lathund, geometri, åk 9

7F Ma Planering v2-7: Geometri

8F Ma Planering v2-7 - Geometri

Undersökande arbetssätt i matematik 1 och 2

Arbeta vidare med Junior 2010

9E Ma Planering v2-7 - Geometri

Trigonometri. Sidor i boken 26-34

Explorativ övning 11 GEOMETRI

Lösningsförslag till problem 1

4-7 Pythagoras sats. Inledning. Namn:..

Explorativ övning Geometri

Finaltävling i Lund den 19 november 2016

Enklare matematiska uppgifter

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Enklare matematiska uppgifter

Finaltävling i Umeå den 18 november 2017

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

5B1134 Matematik och modeller

Geometri med fokus på nyanlända

Kängurutävlingen Matematikens hopp

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist

5B1134 Matematik och modeller

Enklare matematiska uppgifter

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Enklare matematiska uppgifter

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Bestäm den sida som är markerad med x.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x cosv = närliggande hypotenusan. cos40 = x 61.

Enklare matematiska uppgifter

Enklare matematiska uppgifter

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag

Arbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.

Kongruens och likformighet

Matematiska uppgifter

Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006

Svar och arbeta vidare med Student 2008

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

PRELIMINÄRPROV Kort matematik

Area och volym hos Euklides och Hilberts tredje problem

3. Trigonometri. A c. Inledning

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Geometriska konstruktioner

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.

Enklare matematiska uppgifter

Enklare matematiska uppgifter

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Mätning och geometri

Enklare matematiska uppgifter. Årgång 21, Första häftet

4-10 Rymdgeometri fördjupning Namn:..

Elevers kunskaper i geometri. Madeleine Löwing

Uppsalas Matematiska Cirkel. Geometriska konstruktioner

Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP

Kängurutävlingen Matematikens hopp

Enklare uppgifter, avsedda för skolstadiet.

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x.

Planering Geometri år 7

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT SVAR UPPGIFT SVAR

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Explorativ övning Vektorer

Delprov A Muntligt delprov

Repetition inför tentamen

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

4. I lagret finns 24, 23, 17 och 16 kg:s säckar. På vilket sätt kan man leverera en beställning på exakt 100 kg utan att öppna någon säck?

17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2

Matematik CD för TB = 5 +

Kompendium om. Mats Neymark

Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9

Enklare matematiska uppgifter

M0038M Differentialkalkyl, Lekt 8, H15

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Avdelning 1, trepoängsproblem

Transkript:

CHRISTER BERGSTEN En gyllene pyramid Fem trianglar och en pentagon Den regelbundna femhörningen, pentagonen, är ett enkelt geometriskt objekt som innehåller förvånansvärt mycket matematik. Från detta objekt kan man konstruera flera andra som trianglar och femuddiga stjärnor. Gemensamt för alla dessa figurer är att de har starka anknytningar till det gyllene snittet. Från pentagonen kan man även konstruera ett tredimensionellt objekt en gyllene pyramid. Matematikens historia och inflytande skär rakt igenom hela den mänskliga civilisationens historia och utveckling, såväl tekniskt som kulturellt i en mer humanistisk mening. Bland de matematiska objekt som syns mest, och inte bara i den västerländska kulturen, återfinns till exempel pentagrammet, den femuddiga stjärnan och penta gonen, den regelbundna femhörningen. Att pentagrammets historia sträcker sig så långt som 6000 år tillbaka i tiden kanske hänger samman med det enkla faktum att man kan rita det så enkelt: utan att lyfta pennan formar det nästan sig självt som en sluten figur. Dess koppling till mysticism är urgammal, ett fenomen som i dagens paravärld florerar kanske livligare än någonsin. Det gäller både mörkare fenomen som krig och ofärd då det är svartmålat och ljusare som lycka, harmoni Christer Bergsten är universitetslektor i matematik och matematikens didaktik vid Linköpings universitet etc då det är målat bara med konturer och är ljust inuti. De vanligaste uttrycken för pentagrammets och pentagonens mystik är klassiska bilder av de fem elementen och inskrivningen av en människa i en cirkel. På internet finns mängder av sidor kring dessa teman. (Se referenslistan.) I dagens svenska skola ser man däremot inte mycket av den matematiska guldgruva som den regelbundna femhörningen utgör. 1 Det Gyllene Snittet som trots sitt namn betecknar en proportion, något som framgår bättre till exempel av den engelska termen The Golden Ratio brukar ibland nämnas i samband med historiska utblickar, dock ofta utan att dess koppling till femhörningen tas upp. Kanske beror detta på att det anses för svårt att reda ut förhållandena matematiskt. 1 Tas upp i Ulin (1988, s 74-76; 1996, s 93-95) och Furness (001, s 1-14) 36 NÄMNAREN NR 003

Den klassiska framställningen i Euklides Elementa är heller inte helt enkel (se t ex Thompson, 1991, s. 37ff). Här ska ett angreppssätt presenteras som förhoppningsvis visar på en ingång till femhörningens mystik som kan locka även dagens skolelever till att fundera vidare och fascineras av den matematik som ligger gömd bakom några streck i en figur. Som lön för mödan kan han/hon som avslutning vika en egen gyllene pyramid. Geometrisk analys Vad kan man se om man har en pentagon med ett inritat pentagram framför sig? Det beror förstås på vad man letar efter. Det ser ut som om vinklarna ABF och BAF i figur 1 är lika, liksom vinklarna AFG och AGF, och att trianglarna ABF respektive FGA därmed är likbenta. Att dessa vinklar verkligen är parvis lika förstår man om man är bekant med vad som i dagens skolböcker brukar kallas randvinkelsatsen. Tänker man sig den regelbundna femhörningen ABCDE inskriven i en cirkel, kommer ju vinklarna ABE (och därmed ABF), BAC (och därmed BAF) och CAD (och därmed FAG) samtliga att stå på lika stora bågar. De är därför alla lika, tillsammans med vinklarna EAG och AEG (av samma skäl). Eftersom vinkeln BAE är en femtedel av femhörningens vinkelsumma, dvs 108, är dessa vinklar (ABF osv) alla en tredjedel av detta, dvs 36. Vinkeln BAG är då 7. Dessutom är trianglarna BAF och EAG kongruenta (en sida med intilliggande vinklar lika), vilket medför att triangeln FGA är likbent. Vinklarna AGF och AFG är då lika och vardera (180 36 )/, dvs 7. Pentagrammet är alltså uppbyggt av likbenta trianglar, där basvinkeln är dubbla toppvinkeln. I pentagonen ABCDE finns sådana trianglar i tre olika storlekar! Den minsta storleken kan representeras av triangeln AFG, den mellersta av triangeln BGA och den största av triangeln ACD. Trianglarna BAG och AGF är alltså likformiga, eftersom de har lika vinklar. Pentagrammets proportioner kan då bestämmas. Om sidan BF är a längdenheter (liksom AF och AG) och sidan FG är b längdenheter, så ger likformigheten att BG:AG = AF:FG, dvs a + b a = a b (1) Detta innebär att punkten F delar sträckan BG i gyllene snittet! Hur kan denna delning genomföras? Klarar man det kan man sedan konstruera en pentagon. B C F A Figur 1. En regelbunden femhörning (pentagon) med ett inskrivet pentagram. Gyllene trianglar En pentagon och ett pentagram byggs alltså upp av olika stora likformiga trianglar, som är likbenta och där de lika sidorna förhåller sig till basen i gyllene snittets proportioner, till exempel trianglarna AFG, BGA och ACD. En sådan triangel kallas en gyllene triangel! (Se Pappas 1987 s 188 189.) Basvinkeln i denna gyllene triangel är enligt ovan dubbelt så stor som dess toppvinkel. Kallas toppvinkeln v är varje basvinkel v och triangelns vinkelsumma 5v. Här ses talet 5, som åter vittnar om denna triangels koppling till femhörningen. Att mätetalen för de vinklar som finns i pentagrammet och pentagonen (dvs 36, 7 och 108 ) alla bara innehåller primtalen och 3 och att + 3 = 5 är kanske mer en slump beroende på valet av mätenhet för vinklar. G D E NÄMNAREN NR 003 37

Den likbenta triangel där basen förhåller sig till de lika sidorna i gyllene snittets proportioner kan också kallas en gyllene triangel. Även den finns med i pentagon/ pentagram-figuren ovan (t ex triangeln ABF men även CED och CEF). Det finns alltså två gyllene trianglar, som också enligt ovan har den egenskapen att om de placeras intill varandra (dvs som ABF och AFG ovan), så bildas en ny gyllene triangel (dvs triangeln ABG i figuren ovan)! Uttryckt på ett annat sätt bildas två gyllene trianglar om man drar en bisektris till en basvinkel (som är 7 ) i en gyllene triangel. Utgår man från en pentagon, regelbunden femhörning, får man ett inre pentagram om man drar diagonalerna i pentagonen. Men man får också ett yttre pentagram om man förlänger pentagonens sidor tills dessa förlängningar träffar varandra. Genom en rekursiv process kan man skapa en oändlig följd pentagoner och pentagram inom detta yttre pentagram. Längdskalan mellan en pentagon och nästa pentagon i denna rekursion är naturligtvis gyllene snittet. Genom denna konstruktion skapar man alltså oändliga följder av gyllene trianglar i gyllene proportioner (figur ). Algebraisk analys och konstruktion Genom att algebraiskt bearbeta likheten (1) kan det bli möjligt att bestämma relationen mellan sidorna på de likformiga trianglarna AFG, BGA och ACD som bygger upp pentagonen (pentagrammet). Med substitutionen x = (a/b) kan ekvation (1) skrivas 1 + 1 x = x <=> 1 + x = x <=> x = 1 ± 5 Då x är ett positivt tal är den enda lösningen x = (1 + 5 )/ (ett tal som brukar betecknas med den grekiska bokstaven Φ ( fi ), en matematisk konstant med en mystik som kan jämföras med talet π), som alltså är gyllene snittets proportioner: a b = 1 + 5 Det innebär att a = b(1 + 5 )/. Känner man sidan b kan alltså sidan a konstrueras utifrån denna likhet som a = b/ + 5 b/. Utgå från sidan b, skapa en rätvinklig triangel med b som ena kateten och b/ som den andra kateten. Då är hypotenusan i den triangeln (enligt Pythagoras sats) 5 b/. Genom att addera den lilla katetens längd till hypotenusan fås a! Konstruktionen av pentagrammet och pentagonen kan nu göras (med beteckningar som i figur 1): Konstruera först en gyllene triangel (t ex ACD i figur 1) 1. Utgå från sträckan CD, dvs den sida s man önskar för sin pentagon. Den sträcka som söks är då c = 1 s + 5 s så att förhållandet c : s är gyllene snittet. Bestäm CD:s mittpunkt M (klassisk konstruktion) Figur. Oändliga följder av pentagram och penta goner. Här visas detta i en av spetsarna.. Konstruera en normal N till CD genom D (klassisk konstruktion) 38 NÄMNAREN NR 003

C M Figur 3. Del i konstruktion av en gyllene triangel 3. Sätt passaren med spetsen i D och blyertsen i M och rita en cirkel som skär N i P och dra sträckan CP. Då är CP lika med D P Q En gyllene pyramid Klipper man ut ett pentagram i papper och viker upp de gyllene trianglar som sticker ut från pentagonen i mitten tills de möts i toppen, bildas en pyramid. Denna vackra pyramid bör naturligtvis få namnet den gyllene pyramiden. För att få en mer stabil gyllene pyramid är det dock bättre att utgå från en pentagon och vika längs de sträckor som det inre pentagrammet bildar. Resultatet kan då se ut som i figur 4a. 5 s 4. Sätt passaren med spetsen i P och blyertsen i D och rita en cirkel som skär CP:s förlängning i Q. Då är CQ lika med 1 s + 5 s = Φ s 5. Sätt passaren med spetsen i C och blyertsen i Q och markera en cirkelbåge mitt över CD. Behåll avståndet men sätt nu passarspetsen i D och markera en cirkelbåge. Skärningen mellan dessa cirkelbågar är punkten A och den gyllene triangeln ACD kan fullbordas. Figur 4a. Efter vikning av två diagonaler i en pentagon fås en gyllene triangel. Fullborda nu pentagonen (ABCDE i figur 1) 6. Ställ in passaren på avståndet CD och sätt passarspetsen i C respektive A och markera cirkelbågar mitt utanför AC. Skärningspunkten mellan dessa bågar punkten B. 7. Behåll passaren på avståndet CD och sätt passarspetsen i A respektive D och markera cirkelbågar mitt utanför AD. Skärningspunkten mellan dessa bågar är punkten E. 8. Nu är punkterna A, B, C, D och E bestämda och både pentagonen och/eller pentagrammet kan fullbordas genom att dra de sträckor som saknas. Figur 4b. Alla vikningar gjorda för att forma pyramiden. NÄMNAREN NR 003 39

Figur 4c. En gyllene pyramid vikt från en pentagon. Den stora pyramiden i Gizeh i Egypten brukar ofta kallas The Great Golden Pyramid, beroende på att det gyllene snittets proportioner går att hitta i konstruktionen. Med beteckningen Golden Pyramids saluförs också i olika sammanhang små pyramider med en kvadrat som bottenyta och fyra gyllene trianglar som sidoytor tillverkade i guld är dessa pyramider också gyllene i dubbel mening. En pyramid som i figur 4c, dvs med en pentagon som bottenyta och fem gyllene trianglar som sidoytor, har jag däremot aldrig sett tidigare, och inte heller lyckats hitta vid sökning på internet, men det är naturligtvis den som bäst berättigar till namnet den gyllene pyramiden! Några ytterligare figurer som lätt kan formas visas i figurerna nedan. En dubbelpyramid med tio gyllene trianglar som sidoytor fås om bottenytorna på två gyllene pyramider sätts ihop (figur 5). Fortsätter man med två pentagoner från läget i figur 4b ovan kan man sätta ihop dem spets mot spets och få figur 6. Tar man sin form i läget i figur 4b och vänder uppoch-ner fås en vacker 3-dimensionell stjärna som i figur 7. Man kan också sätta två sådana botten mot botten. Figur 5. En dubbel gyllene pyramid. Figur 6. En antiprisma av två pentagram. 40 NÄMNAREN NR 003

REFERENSER Furness, A. (001). Matematiken tar form. Solna: Ekelunds Förlag. Pappas, T. (1987). The joy of mathematics. San Carlos, CA: Math Aids. Ulin, B. (1988). Att finna ett spår. Stockholm: Utbildningsförlaget. Ulin, B. (1996). Engagerande matematik. Solna: Ekelunds Förlag. Thompson, J. (1991). Historiens matematik. Lund: Studentlitteratur. Figur 7. En gyllene stjärna. Mer matematik För den som vill fördjupa sig i geometrin kring figurerna som beskrivits här finns många storheter som kan beräknas. Några exempel är arean av en gyllene triangel och av en pentagon, volymen av den gyllene pyramiden ovan och arean av dess totala begränsningsyta (alla uttryckta i pentagonens sida s), samt exakta värden för sinus och cosinus av vinklarna 36 och 7. Beräknar man pyramidens höjd H, pentagonens radie R (dvs avståndet från dess mittpunkt till dess hörn) och avståndet d från pentagonens mittpunkt till mittpunkten på en av dess sidor, hittar man en del intressanta resultat som att H d = och H R = Φ. Dessa resultat innebär att för vinkeln v mellan pyramidens sidoyta och dess bottenyta är tan v = och för vinkeln u mellan pyramidens sidokant och dess bottenyta är tan u = Φ. Det gyllene snittet återfinns alltså på mer än ett sätt inom denna gyllene pyramid. Exempel på internetadresser om pentagram och pentagoner Matematiska beskrivningar mathworld.wolfram.com/pentagram.html mathworld.wolfram.com/pentagon.html www.georgehart.com/virtual-polyhedra/ mathworld.wolfram.com/goldentriangle.html alum.wpi.edu/~geezer/pentagram/pent.html Historiska beskrivningar www.angelfire.com/id/robpurvis/ www.cs.utk.edu/~mclennan/ba/pp.html skepdic.com/ www.symbols.com/encyclopedia/9/913.html www.flindersclubs.asn.au/pagan/paganism/ www.fabrisia.com/pentagram.htm freemasonry.bcy.ca/anti-masonry/ Mysticism www.i-am-a-i.org/read-only/xchapter_ 1.5.html wwws.irb.hr/~tust/penta/penta.html Den stora (gyllene) pyramiden www.innerx.net/personal/tsmith/gpyr.html NÄMNAREN NR 003 41