Matematiska uppgifter

Relevanta dokument
Matematiska uppgifter

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

Lösningar till udda övningsuppgifter

Matematiska uppgifter

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

Enklare uppgifter, avsedda för skolstadiet

Matematiska uppgifter

Enklare matematiska uppgifter

Matematiska uppgifter

Enklare matematiska uppgifter

Enklare uppgifter, avsedda för skolstadiet.

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

Instuderingsfrågor för Endimensionell analys kurs B1 2011

x b r + x 2 dx lim r a

Instuderingsfrågor för Endimensionell analys kurs B1

Enklare matematiska uppgifter

Enklare matematiska uppgifter

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Matematiska uppgifter

Tentamensuppgifter, Matematik 1 α

Matematiska uppgifter

Eftersom ON-koordinatsystem förutsätts så ges vektorernas volymprodukt av:

Enklare matematiska uppgifter

Enklare matematiska uppgifter

= ( 1) ( 1) = 4 0.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Enklare matematiska uppgifter

Enklare matematiska uppgifter

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Enklare matematiska uppgifter

Explorativ övning euklidisk geometri

Matematiska uppgifter

2. 1 L ä n g d, o m k r e t s o c h a r e a

MVE365, Geometriproblem

Enklare matematiska uppgifter

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x.

Explorativ övning euklidisk geometri

Sidor i boken Figur 1:

Enklare matematiska uppgifter

Enklare matematiska uppgifter

z = 4 + 3t P R = (5 + 2t, 4 + 2t, 4 + 3t) (1, 1, 3) = (4 + 2t, 3 + 2t, 1 + 3t)

Enklare matematiska uppgifter. Årgång 21, Första häftet

Matematiska uppgifter

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

Kvalificeringstävling den 26 september 2017

Enklare matematiska uppgifter

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

Matematik CD för TB = 5 +

Repetition inför tentamen

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005

Enklare matematiska uppgifter

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

Matematiska uppgifter

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

Finaltävling i Lund den 19 november 2016

Enklare uppgifter, avsedda för skolstadiet

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

Enklare matematiska uppgifter

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

Modul 1: Komplexa tal och Polynomekvationer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och

Lösningar till utvalda uppgifter i kapitel 1

Kvalificeringstävling den 30 september 2008

Matematiska uppgifter

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

Enklare matematiska uppgifter

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Enklare matematiska uppgifter

SF1625 Envariabelanalys Lösningsförslag till tentamen

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

MA2001 Envariabelanalys

Matematiska uppgifter

Repetitionsuppgifter. Geometri

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

Kurvlängd och geometri på en sfärisk yta

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006

Svar och arbeta vidare med Student 2008

Trigonometri. Sidor i boken 26-34

Tentamen i Envariabelanalys 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

Kap Globala extremvärden, extremproblem med bivillkor.

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

Institutionen för Matematik, KTH Torbjörn Kolsrud

Repetition inför kontrollskrivning 2

===================================================

Transkript:

Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna (1,, 0), (, 0, 1), ( 1, 3, 0) och (4,, 1) ligger i ett plan. (Parallellkoordinatsystem.) (Svar: Ja, punkterna ligger i ett plan) 85. Vektorn u 1 med koordinaterna 1 (1, 0, 1) är given. Bestäm två vektorer u och u 3 så att u 1, u, u 3 är en ortonormerad bas för vektorerna i rummet. (Ortonormerad bas.) (Svar: T ex u = (0, 1, 0) och u 3 = 1 (1, 0, 1)) ( ) a b 86. Matrisen A = är given. Visa att det finns tal c c d 0, c 1, c som ( inte alla ) är noll ( och som ) uppfyller c A + c 1 A + c 0 E = O, där E = 1 0 0 0 och O =. 0 1 0 0 87. I en äldre lärobok har vi hittat följande:»funktionen f är strängt växande och deriverbar. Då är differenskvoten f (x + h) f (x) > 0 (1) h för alla h 0, eftersom täljaren och nämnaren har samma tecken. Ur (1) får vi genom att låta h 0, att f (x) > 0» Är slutsatsen i den sista meningen riktig? Om inte, förklara var felet ligger, gärna genom att ge ett exempel. 88. Med en randpunkt till en icke-tom punktmängd M i planet menas en punkt a sådan att varje cirkel med medelpunkt i a innehåller en punkt som tillhör M och en punkt som inte tillhör M. Mängden av randpunkter till M betecknas med r (M). a) Visa att för godtyckliga icke-tomma mängder A och B i planet gäller att r (A B) r (A) r (B). 1

Årgång 54, 1971 Elementa b) Ge exempel på att r (A B) kan vara en äkta delmängd till r (A) r (B), dvs att r (A B) r (A) r (B). 89. De stokastiska variablerna X och Y är så beskaffade att P(X 0) = P(Y 0) < a. Visa att P(X + Y 0) < a. 830. Låt f vara en kontinuerlig icke-negativ funktion sådan att 0 f (x)dx är konvergent. Visa att det finns en talföljd (x k ) k=1 sådan att x k och f (x k ) 0 då k. (Svar: T ex (x k ) k=1 där f (x k ) = inf k 1 x k f (x)) 831. Att G, är en grupp innebär att 1) är en associativ kompositionsregel på G ) det finns ett element e G så att e g = g e = g för alla g G (kallas neutralt element) 3) till varje g G finns ett element g 1 G så att g g 1 = g 1 g = e (g 1 kallas invers till g med avseende på ) Antag nu att gruppen G, är ändlig, dvs G = {g 1, g,..., g n } är en ändlig mängd. Antag vidare att H, är en undergrupp till G,. Sätt H g j = {h g j : h H} för j = 1,,,..., n. (Observera att H g j inte behöver vara en grupp.) a) Visa att varje element i G tillhör H g j för något j = 1,,,..., n. b) Visa att om g jp g 1 H så är H g j ip = H g iq och om q g jp g 1 H så är H g j ip H g iq =. q Antag att H g j1, H g j,..., H g jk är de mängder ur H g 1, H g,..., H g n sådana att g jp g 1 H för j j q p j q. Av a) och b) följer att H g j1, H g j,..., H g jk är en klassindelning av G, dvs en uppsättning parvis disjunkta mängder vars union är G. c) Visa att H och H g jp har lika många element genom att visa att funktionen f : h h g jp är omvändbar och har hela H g jp som värdemängd. d) Visa Lagranges sats: Antag att H, är en undergrupp till den ändliga gruppen G, och att o(h) och o(g) betecknar antalet element i H respektive G. Då gäller att o(g) är delbart med o(h). e) Antag att G, är en grupp med o(g) = p, där p är ett primtal och att H, är en undergrupp till G,. Visa att H = {e} eller H = G. (e betecknar det neutrala elementet i G,.) f) Antag att G, är en ändlig grupp. Visa att om g G så finns ett minsta positivt heltal n så att g n = e, där g n = g g g... g. Visa att {e, g, g,..., g n }, är en undergrupp till G,, den cykliska undergruppen som alstras av g. Visa att o(g) är delbart med n.

g) Visa att varje grupp G, med o(g) = p, där p är primtal är cyklisk, dvs G = {e, g, g,..., g p 1 } för något g G. Andra häftet 83. Visa att om n är ett heltal så är 3n + aldrig kvadrat på ett heltal. (Latinlinjen, 1930.) a log(8x 3 + 7) 833. Lös ekvationen a = 3. (Latinlinjen, 193.) log(x + 1) (Svar: x = 1/) 834. Bestäm det exakta förhållandet mellan de båda periodiska decimalutvecklingarna 0, 0454545... och 0, 054054054... (Latinlinjen, 193.) (Svar: 37/44) 835. Lös ekvationen (z + 1) 5 = z 5 + 1. (Reallinjen, 1938.) (Svar: 0, 1, 1 (1 ± i 3)) 836. Man bildar alla möjliga bråk i vilka täjaren är mindre än nämnaren samt täljaren och nämnaren är några av talen 1,, 3,..., n. Beräkna summan av dessa bråk. (Reallinjen, 1934.) (Svar: n(n 1) 4 ) 837. I en given rätvinklig triangel, i vilken en vinkel är 30, har man inskrivit en likbent, rätvinklig triangel, så att den räta vinkelns spets faller på den givna triangelns hypotenusa. Vidare är de båda trianglarnas hypotenusor parallella. Beräkna förhållandet mellan trianglarnas areor. (Latinlinjen, 193.) (Svar: 7 3+1 6 ) 838. Sträckan AA 1 med längden a är given. A är mittpunkt på sträckan AA 1, A 3 är mittpunkt på sträckan A 1 A, A 4 är mittpunkt på sträckan A A 3 osv. Punkterna A 1, A, A 3,..., A n,... närmar sig obegränsat en viss punkt då n. Beräkna denna punkts avstånd från A. (Latinlinjen, 1939.) (Svar: a/3) 839. Man betraktar den rotationskropp som uppkommer, då en likbent parallelltrapets roterar kring den längsta av de båda parallella sidorna. Vilket är det största värde som, denna rotationskropps volym kan anta, om den sida, kring vilken rotationen sker, har konstant längd lika med a, samt de övriga sidorna väljes så att 3

Årgång 54, 1971 Elementa den likbenta parallelltrapetsens omkrets är konstant lika med 3a? (Reallinjen, 1934.) (Svar: πa3 3 ) 840. På ett horisontellt bord ligger fyra klot, vartdera med radien 8 cm, ordnade så att deras medelpunkter bildar en kvadrat med sidan 16 cm. Ovanpå dessa klot lägges ett femte som tangerar de övriga och vars radie är 5 cm. Hur högt över bordet ligger dess medelpunkt? (Reallinjen. 1935.) (Svar: 39 cm) 841. Visa att i varje triangel är a sin A b sinb = c sin(a B) om a, b och c beteckanr längderna till de sidor som står emot vinklarna A, B respektive C. (Reallinjen, 1936.) 84. Låt p(x) vara ett polynom av graden 3 med reella koefficienter som har lokalt minimum i (a, p(a)) och lokalt maximum i (b, p(b)). Bevisa attt inflexionspunkten till kurvan y = p(x) är mittpunkt på sammanbindningslinjen mellan (a, p(a)) och (b, p(b)). (Reallinjen, 1939.) 843. Ange i så enkel form som möjligt lösningarna till ekvationssystemet x ay + a z a 3 = 0 x by + b z b 3 = 0 x c y + c z c 3 = 0 där a, b och c är givna, sinsemellan olika, konstanter. (Latinlinjen. 1935.) (Svar: x = abc, y = ab + bc + ac, z = a + b + x) Tredje häftet 844. Tänk på ett tal. Addera därtill det tal som är en enhet större än det Du tänkte på. Addera 9 till det erhållna resultatet, dividera därefter med och subtrahera slutligen det ursprungliga talet. Du fick svaret 5, inte sant? Hur kan jag veta det? 845. Låt C 1 och C vara två cirklar vars radier har längderna r 1 resp r. Antag att C 1 och C skär varandra under rät vinkel samt att C 1 skär sammanbindningslinjen mellan cirklarnas medelpunkter i 4

mittpunkten av en radie till C. Bestäm förhållandet r 1 /r. (Svar: 4/3) 846. Låt x 1, x,..., x n+1 vara ett udda antal givna positiva hela tal och låt y 1, y,..., y n+1 vara samma heltal uppräknade i någon annan ordning. Visa att produkten (x 1 y 1 )(x y )...(x n+1 y n+1 ) alltid är jämn. 847. Vad är sannolikheten att i ett tresiffrigt slumptal siffran i mitten betecknar ett större tal än vad första och sista siffran betecknar? Exempel på sådana tal är 58 och 073. (Svar: (1 + +... + 9 )/10 3 = 0,85) 848. Bestäm heltalsdelen av lg(10 n + 1) lg(10 n 1) för varje heltal n. (Med heltalsdelen av x menas det heltal m som uppfyller m x < m + 1.) (Svar: n 1) 849. Funktionen f har kontinuerlig derivata för x 0. Vidare gäller att 0 f (x)dx och 0 f (x)dx båda är konvergenta. Visa att f (x) 0 då x. 850. Med x arcsin x menas inversa funktionen till x sin x, π x π. Således gäller att x = arcsin y ( 1 ) a) Beräkna arcsin ( b) Beräkna arcsin sin 3π ) c) Rita kurvan y = arcsin(sin x) { y = sin x π x π (Svar: a) π/4, b) π/) π dx 851. Integralen går inte att beräkna med gymnasiekunskaper. Ett av nedanstående alternativ är det rätta värdet. Avgör 0 5 + 3sin x vilket! π π 6 3π 10 π 3π 7π (Svar: π/) 85. a) Ange en följd av 10 konsekutiva positiva heltal som inte innehåller något primtal. 5

Årgång 54, 1971 Elementa b) Visa att för varje positivt heltal n finns en följd av n konsekutiva positiva heltal som inte innehåller något primtal. 853. Visa att varje kurva med längd 1 kan täckas av en rektangulär pappskiva med area 1/4. Fjärde häftet 854. Kaptenen är dubbelt så gammal som skeppet var när kaptenen var lika gammal som skeppet är nu. Kaptenens och skeppets totala ålder är 56 år. Hur gamla är skeppet och dess kapten? (Svar: Kaptenen är 3 år och skeppet är 4 år) 855. Bestäm alla heltal x och y som satisfierar ekvationen x 3 y 3 = 7. (Svar: x =, y = 1 och x = 1, y = ) 856. En urna innehåller 8 svarta och vita kulor. Man drar kulor på måfå och utan återläggning tills man får en vit kula. Vad är det mest sannolika antalet dragningar som erfordras? (Svar: 1 dragning) 857. Visa att det inte finns någon funktion som satisfierar x f (x) + f (x) = x för alla x R 858. Talföljden (a n ) n=1 är given genom att a 1 = 1 och a n+1 = a n + 1 a n för n 1. Visa att lnn a n n för alla n Z +. (Ledning: Visa den högra olikheten först.) 859. Per och Pål har i en botanisk trädgård plockat 7 frukter av aptitligt utseende. De är lyckligt ovetande om att tre av frukterna är giftiga. Per väljer på måfå fyra av frukterna och äter dessa. De återstående äter Pål. Hur stor är sannolikheten att både Per och Pål blir förgiftade? (Svar: 6/7) 860. Visa att det finns precis ett positivt tal a sådant att olikheten x 1 + a ln x är sann för alla x > 0. Bestäm detta värde på a. (Svar: a = 1/) 6

861. Bestäm en funktion f, definierad och deriverbar för x > 0, som uppfyller följande: 1) f (1) = ) alla trianglar med ett hörn på kurvan y = f (x), ett i motsvarande tangents skärningspunkt med y-axeln och ett hörn i origo har arean 1. (Svar: f (x) = x + 1 x eller f (x) = 3x 1 x ) 86. Funktionerna f, f 1, f, f 3,... är sådana att f n (x) f n+1 (x) för alla n och alla x. Vidare gäller att f n (x) f (x) då n för alla x. Visa att om {x : f n (x) > a} är öppen för alla n så är {x : f (x) > a} öppen. (En icke-tom mängd M av reella tal kallas öppen om till varje tal x 0 i M det finns ett öppet intervall I sådant att x 0 I och I M.) 7