14. Sambandet mellan C V och C P

Relevanta dokument
14. Sambandet mellan C V och C P

III. Klassisk termodynamik

III. Klassisk termodynamik

III. Klassisk termodynamik. Termofysik, Kai Nordlund

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

X. Repetitia mater studiorum

X. Repetitia mater studiorum. Termofysik, Kai Nordlund

X. Repetitia mater studiorum

IV. Faser. Termofysik, Kai Nordlund

Kapitel III. Klassisk Termodynamik in action

IV. Faser. IV.1. Partikeltalet som termodynamisk variabel

IV. Faser. Viktiga målsättningar med detta kapitel

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

9. Termodynamiska potentialer

där vi introducerat Nu förändras även de övriga termodynamiska potentialernas derivator:

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel I. Introduktion och första grundlagen

VI. Reella gaser. Viktiga målsättningar med detta kapitel. VI.1. Reella gaser

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn

VI. Reella gaser. Viktiga målsättningar med detta kapitel

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Termodynamik och inledande statistisk fysik

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

och/eller låga temperaturer bildar de vätskor, nåt som inte händer för Dieterici-modellen, och virialexpansionen.

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Kapitel II. Termodynamikens statistiska bas

Kapitel V. Praktiska exempel: Historien om en droppe. Baserat på material (Pisaran tarina) av Hanna Vehkamäki

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Termodynamik Föreläsning 7 Entropi

Kap 4 energianalys av slutna system

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

7. Inre energi, termodynamikens huvudsatser

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Studieanvisningar i statistisk fysik (SI1161) för F3

TERMOFYSIK Kai Nordlund, Kursens www-hemsida: knordlun/termo/

Viktiga målsättningar med detta kapitel. Förstå skillnaden mellan jämvikt och ojämvikt. Förstå idealgasens tillståndsekvation

TERMOFYSIK I. Introduktion och första grundlagen

Räkneövning 2 hösten 2014

Lösningar till tentamen i Kemisk termodynamik

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl

Viktiga målsättningar med detta delkapitel

TERMOFYSIK Andrea Sand, Kursens www-hemsida: ameinand/kurser/termo2018/

Arbetet beror på vägen

9. Magnetisk energi Magnetisk energi för en isolerad krets

Exempel på statistisk fysik Svagt växelverkande partiklar

Lösningar till tentamen i Kemisk termodynamik

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

10. Kinetisk gasteori

6. Värme, värmekapacitet, specifik värmekapacitet (s )

II. Termodynamikens statistiska bas. Termofysik, Kai Nordlund

Tentamen i Kemisk Termodynamik kl 14-19

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Tentamen i KFK080 Termodynamik kl 08-13

@

Repetition F9. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

TERMOFYSIK Kai Nordlund, 2005

Tentamen i Kemisk Termodynamik kl 14-19

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

7. Anharmoniska effekter

7. Anharmoniska effekter

7. Anharmoniska effekter

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

7. Anharmoniska effekter

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Räkneövning i termodynamik, hösten 2000

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

VIII. Fermi-Dirac-statistik

Mekanik FK2002m. Repetition

Tentamen i Kemisk Termodynamik kl 13-18

Gamla tentafrågor, FYS022:2, Statistisk Fysik, rörande statistisk fysik och statistisk kvantfysik. P i = 1 Z exp( βe i), Z = i.

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors

Övningstentamen i KFK080 för B

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

7. Anharmoniska effekter

Temperatur T 1K (Kelvin)

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

Termodynamiska potentialer Hösten Assistent: Frans Graeffe

Kemi och energi. Exoterma och endoterma reaktioner

Arbete är ingen tillståndsstorhet!

Applicera 1:a H.S. på det kombinerade systemet:

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) kl i V

Termodynamik FL7 ENTROPI. Inequalities

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lite kinetisk gasteori

Teknisk termodynamik repetition

Transkript:

14. Sambandet mellan C V och C P Vi skriver tillståndsekvationen i de alternativa formerna V = V (P, T ) och S = S(T, V ) (1) och beräknar ds och dv genom att dela upp dem i partiella derivator ds = ( S T ) V dt + ( S V ) T dv (2) dv = ( V P ) T dp + ( V T ) P dt. (3) Genom att skriva in resultatet för dv i ekvationen för ds fås j ds = ( S T ) V + ( S V ) T ( V ff T ) P dt + ( S V ) T ( V P ) T dp (4) Termofysik, Kai Nordlund 2004 1

För en isobarisk process gäller då där vi använt oss av ( S T ) P {z } 1 T C P = ( S T ) V +( S {z } V ) T ( V T ) P (5) 1 T C V de = T ds P dv = C V = ( E T ) V = T ( S T ) V (6) och för C P : dh = T ds + V dp = C P = ( H T ) P = T ( S T ) P (7) Alltså fås C P = C V + T ( S V ) T ( V T ) P (8) Termofysik, Kai Nordlund 2004 2

Vi eliminerar ( S V ) T med hjälp av en Maxwellrelation: df = SdT P dv = ( S V ) T = ( P T ) V, (9) och vi får C P = C V + T ( P T ) V ( V T ) P (10) Nu kan vi använda oss av kedjeregeln: ( P T ) V ( T V ) P ( V P ) T = 1, (11) varur fås och får ( P T ) V = 1 ( T V ) P ( V P ) T C P = C V T [( V T ) P ] 2 ( V P ) T = ( V T ) P ( V P ) T (12) (13) Termofysik, Kai Nordlund 2004 3

Volymutvidgningskoefficienten är Vi definierar vidare den isotermiska kompressibiliteten som α 1 V ( V T ) P : (14) κ T 1 V ( V P ) T. (15) Då gäller C P = C V + T α2 V 2 V κ T, (16) Då volymen minskar vid kompression är κ T > 0. Härav följer att C P > C V. C P = C V + T V α2 κ T (17) Termofysik, Kai Nordlund 2004 4

Vi tillämpar nu detta på en idealgas: P V = Nk B T = V = Nk BT P = ( V T ) P = Nk B P (18) Alltså Och andra sidan α = 1 V ( V T ) P = Nk B P V κ T = 1 V ( V P ) T = 1 V ( 1 P 2)Nk BT (20) = Nk BT P (P V ) = 1 P ; (21) Alltså med att kombinera ekv. 17, 19 och 21 fås = 1 T (19) C P = C V + T V P T 2 = C V + P V T = C V + Nk B (22) C P = C V + Nk B (23) Termofysik, Kai Nordlund 2004 5

För det specifika värmet per molekyl blir detta ännu enklare: c v = C V /N (24) c p = C P /N (25) c p = c v + k B (26) Termofysik, Kai Nordlund 2004 6

15. Joule & Joule-Thomson processerna Termofysik, Kai Nordlund 2004 7

15.1. Joule-effekten Joule-effekten: en gas kyls ned vid fri expansion. Vi härleder nu denna effekt. Nu gäller Vid fri utvidgning är E = konstant. Detta är en irreversibel process från ett jämviktstillstånd till ett annat. dt = ( T V ) EdV (27) Termofysik, Kai Nordlund 2004 8

och alltså T 2 T 1 = T = Z V2 V 1 dv ( T V ) E (28) Vi definierar α J = gasens Joule-koefficient ( T V ) E. och använder oss av kedjeregeln: ( T V ) E( V E ) T ( E T ) V = 1 (29) = ( T V ) 1 E = ( V E ) T ( E T ) V = ( E V ) T ( E T ) V (30) För idealgaser är E = E(T ) och ( E V ) T = 0! (31) Mao är α J = 0 för en idealgas och ingen temperaturförändring sker under Joule-expansionen. Allmänt gäller ( E T ) V = C V, (32) Termofysik, Kai Nordlund 2004 9

och därmed α J = 1 C V ( E V ) T (33) E(V ) är omöjlig att beräkna utan vidare kännedom om materialets egenskaper. I första approximation kan man säga att den är direkt beroende på potentialenergin V (r ij ) mellan två molekyler på avståndet r ij från varandra. Utgående från en sådan kan man åtminstone i princip räkna ut E(V ) genom att räkna ut totala energin i systemet som E tot = X i,j V (r ij ) (34) och sedan upprepa detta för olika volymer i systemet. Termofysik, Kai Nordlund 2004 10

V(r) molekylär växelverkningspotential I gas och vätskefasen är r ( E V ) T > 0 = kraften är attraktiv. (35) medan fast ämne gas och vätska ( E V ) T = 0 jämviktsvillkoret för ett fast ämne (36) Alltså är i varje fall α J 0 (37) och då T 2 T 1 = Z V2 V 1 dv α J (38) Termofysik, Kai Nordlund 2004 11

samt V 2 > V 1 ser vi alltså att oberoende av formen på V (r) gäller att Fri utvidgning leder för en realgas till nedkylning! T 2 T 1 (39) Detta känner alla givetvis till från vardagslivet, tänk bara på temperaturen av gasen som kommer ut från en aerosolflaska. Termofysik, Kai Nordlund 2004 12

15.2. Joule-Thomson processen Betrakta följande system där P 1 > P 2 P 1 P 2 porös membran eller tryckreduktionsventil Termofysik, Kai Nordlund 2004 13

Vi har alltså 2 delsystem i vilka trycket kan förändras med kolvar, och som har en tryckreduktionsventil mellan sig som möjliggör att trycket delvis överförs från del 1 till del 2. Systemet är adiabatiskt, alltså termiskt isolerat, alltså Q = 0. Vi betraktar nu en process där del 1 pressas ihop och del 2 därmed utvidgas. Arbetet utfört av en viss mängd gas som i (1) upptar volymen V 1 och i (2) volymen V 2 : P 2 V 2 {z } utvidgning P 1 V 1 {z } kompression (40) Alltså på vänster sida (1) görs arbete på gasen, på höger sida (2) av den expanderande gasen. W = P 2 V 2 P 1 V 1. (41) men och andra sidan också E = E 2 E 1 ; (42) och därmed med den I grundlagen E = W fås E 2 E 1 = P 2 V 2 + P 1 V 1 = E 2 + P 2 V 2 = E 1 + P 1 V 1 (43) Termofysik, Kai Nordlund 2004 14

vilket per entalpins definition H = E + P V ger Joule-Thomson processen är alltså isentalpisk. H 2 = H 1 (44) Temperaturförändringen i processen är T = T 2 T 1 = Vi definierar nu Joule-Thomson-koefficienten som: Z P2 P 1 dp ( T P ) H (45) α JT ( T P ) H (46) och använder igen kedjeregeln: ( T P ) H( P H ) T ( H T ) P = 1 (47) Termofysik, Kai Nordlund 2004 15

där vi använt oss av ekv. 7 för C P. P ) T ( H T ) P = ( T P ) H = ( H = 1 C P ( H P ) T, (48) Då för idealgaser H = H(T ) gäller α JT (idealgas) = 0. (49) En idealgas temperatur förändras mao inte vid en Joule-Thomson tryckreduktion. Vi skriver ännu om termen ( H/ P ) T : dh = T ds + V dp (50) = ( H P ) T = T ( S P ) T +V (51) {z } ( V T ) P där vi använt oss av Maxwell-relationen 4. Termofysik, Kai Nordlund 2004 16

Med volymutvidgningskoefficientens definition α 1 V ( V/ T ) P kan detta skrivas som α JT = 1 C P { T V α + V } (52) = V C P (αt 1) (53) Vi funderar nu på vad tecknet av α JT är. α Betrakta först volymutvidgningskoefficienten α. För en idealgas är realgas idealgas T α = 1 V ( T (Nk BT P )) P = Nk B V P = 1 T, (54) men vi konstaterade tidigare i kapitlet om III grundlagen att för reella gaser går α 0 då T 0. Termofysik, Kai Nordlund 2004 17

För att α JT = ( T P ) H = 1 C P ( H P ) T = V C P {T α 1} (55) och C P > 0, är för reella gaser α JT 0 beroende på om T α 1, eller om ( T P ) H 0, eller om ( H P ) T 0. Alltså om vi betraktar detta i ett (T, P )-diagram definierar T α(t, P ) = 1 T = T (P ) en kurva som skiljer mellan positiva och negativa α JT. Denna kurva kallas inversionskurvan. Formen på inversionskurvan för reella gaser kan man kvalitativt lista ut från kurvan för α ovan för reella gaser. Rör dig på en linje för konstant P : α har ett maximum vid något T men är 0 vid T = 0. Dvs. är det möjligt att αt > 1 vid något T -intervall. Det är vidare naturligt att anta att volymutvidgningen α minskar vid högre tryck. Detta innebär att vidden på området där α JT > 0 minskar med högre tryck. Termofysik, Kai Nordlund 2004 18

Τ α JT > 0 nedkylning H = konst inversionskurvan T = T(P) P En Joule-Thompson-process syns i bilden som en kurva där H = konstant. Inversionskurvan är: αt = 1 : α JT = 0, eller alternativt den kurva där derivatan på kurvan T (P ) vid konstant H är 0. Nerkylning är möjligt till vänster om inversionskurvan. Orsaken att Joule-Thompson-processer för positiva α JT leder till nerkylning är att och nu är ju P 2 < P 1 så α JT = ( T P ) H T P = T 2 T 1 P 2 P 1 (56) T 2 = T 1 + {z} α JT (P 2 P 1 ) {z } >0 <0 = T 1 + negativ storhet (57) Termofysik, Kai Nordlund 2004 19

Man kan alltså använda denna process för att kyla ner gasen. Den maximala nerkylningen kan uppnås om man startar från inversionskurvan Joule-Thomson processen kan användas till att kyla ned gaser till deras kokpunkt (vätskeform) förutsatt att minimi på inversionskurvan är högre än dess kokpunkt. Maximet i inversionkurvan (där den skär P = 0) ger högsta möjliga temperaturen för vilken denna process kan användas och ges här för några material: Här är en bild av data för N 2 : gas He H 2 N 2 Ar O 2 T i 23.6 K 195 K 621 K 713 K 839 K Termofysik, Kai Nordlund 2004 20

Termofysik, Kai Nordlund 2004 21

15.3. Lindes kylmaskin Lindes kylmaskin är en praktisk tillämpning av Joule-Thomson-processen som tillåter nerkylning av en gas till en vätska i en kontinuerling process. Dess principschema är: kompressor värmeväxlare tryckreduktionsventil Iden är alltså att det högre trycket P 1 åstadkoms i kompressorn, varifrån gasen far neråt till tryckreduktionsventilen som kyler ner gasen. En del av den kallare gasen åker uppåt och kyler gasen på väg neråt i en värmeväxlare. Samtidigt värms den givetvis själv upp. Termofysik, Kai Nordlund 2004 22

Joule-Thomson processen är irreversibel: ( S P ) H = ( H P ) S/( H S ) P (58) entropin ökar då trycket minskar = V/T < 0 (59) Orsaken till entropiökningen är friktionen i ventilen eller membranen. Denna friktion är inte en termodynamisk jämviktsprocess. Termofysik, Kai Nordlund 2004 23

16. Adiabatisk demagnetisering Adiabatisk demagnetisering är en metod med vilken man kan nå mycket låga temperaturer. Vi betraktar igen ett paramagnetiskt spinn- 1 2-system för vilken vi tidigare på denna kurs härlett följande entropi: Då blir S = Nk B j ln 2 cosh µb k B T µb k B T ff µb tanh k B T (60) T 0 (61) cosh µb k B T 1 2 eµb/k B T n 1 + e 2µB/k B T o (62) tanh µb k B T 1 e 2µB/kBT 1 + e 2µB/k B T 1 2e 2µB/k B T (63) Termofysik, Kai Nordlund 2004 24

och därmed S Nk j ln e µb/k B T (1 + e 2µB/k B T ) µb ff k B T (1 2e 2µB/k B T ) (64) j µb h i = Nk B k B T + ln 1 + e 2µB/k B T µb k B T + 2 µb ff k B T e 2µB/k B T ) j µb Nk B k B T + e 2µB/k B T µb k B T + 2 µb ff k B T e 2µB/k B T ) (65) (66) där vi för den andra termen använt oss av ln(1 + x) x. Detta är vidare j = Nk B e 2µB/k B T 1 + 2 µb ff k B T (67) Nerkylning av spinnsystemet i ett paramagnetisk salt kan nu åstadkommas med hjälp av en tvåstegsprocess: Termofysik, Kai Nordlund 2004 25

S Nk ln 2 B 0 vertikala stegen: B 1 > B 0 T 1) isotermisk magnetisering: B 0 B 1 Detta ökar på ordningen och alltså minskar på entropin i systemet. horisontella stegen: 2) adiabatisk demagnetisering (under termisk isolering) Den III grundlagen kräver att entropikurvorna går mot 0 då T går mot 0. Här ser vi också varför den III grundlagen leder till att T = 0 aldrig kan nås: det skulle ju kräva oändligt många steg i schemat ovan. Om III grundlagen inte skulle gälla vore det ju möjligt att kurvorna S(T ) är högre än noll vid T = 0, och då skulle ett ändligt antal steg räcka för att nå T = 0. För att åstadkomma detta i praktiken kan man använda en anordning av följande typ: Termofysik, Kai Nordlund 2004 26

pump paramagnetiskt salt 1 K He He-gas under magnetisering; vakuum under demagnetisering Nu kan vi ännu se på hur mycket nerkylning man kan åstadkomma i ett steg. Under adiabatisk demagnetisering S = konst. Vi härledde just j S = Nk B e 2µB/k B T 1 + 2 µb ff k B T (68) Termofysik, Kai Nordlund 2004 27

så för att S skall vara konstant bör argumentet i ekvationen ovan µb k B T = konstant = B T = konstant (69) Alltså fås stegenas längd på T -skalan att vara B 0 T 0 = B 1 T 1 = T 1 = T 0 B 0 B 1 (70) Om vi har t.ex. B 1 yttre fält 10kG och B 0 residualfält 100G fås att temperaturen kan sjunka med 2 storleksordningar under ett processsteg! För elektron-paramagnetism kan man komma till milli-kelvin-området medan med kärnmagnetisk demagnetisering kan man komma till temperaturer 10 10 K! Termofysik, Kai Nordlund 2004 28

16.1. Empirisk bestämning av en kropps absoluta temperatur Vi söker nu en metod för att bestämma den absoluta temperaturen för ett termodynamiskt system ( en kropp ) med hjälp av en godtyckligt kalibrerad kalorimeter. τ Må skalan på kalorimetern utvisa ett tal τ. Vi söker sambandet mellan τ och T = ( E S ) (71) (dvs den absoluta temperaturen) eller alltså funktionen T = T (τ) (72) Termofysik, Kai Nordlund 2004 29

T Då dq = T ds fås ( Q P ) T = ( Q P ) τ (73) τ = mängden värme som måste tillföras systemet per tryckenhet vid isotermisk expansion. och vidare ( Q P ) T = T ( S P ) T = T ( V T ) P (74) med hjälp av Maxwell-relation 4. Alltså vidare ( Q P ) T = T ( V T ) P = T ( V τ ) dτ dt (75) Här är( V τ ) P = volymförändring per τ-enhet vid isobarisk upphettning. Termofysik, Kai Nordlund 2004 30

Nu använder vi oss av ett matematiskt trick: T dτ dt = dτ d ln T ty d ln T = dt/t. Nu kan vi lösa detta ut ur ekv. 75 och får (76) d ln T dτ = ( V/ τ) P ( Q/ P ) τ (77) I högra membrum är principiellt mätbara storheter för vår termometer med skalan τ. Alltså är d ln T dτ = experimentellt bestämd funktion av τ. Vi betecknar detta med g(τ), och får Z τ dτ d ln T τ 0 dτ = ln T (τ) ln T (τ 0 ) = Z τ τ 0 dτg(τ) (78) Alltså är = ln T (τ) = konstant + Z τ dτg(τ) (79)»Z τ T = konstant exp dτg(τ) (80) Konstanten möjliggör fritt val av enhet för den absoluta temperaturen (t.ex. K). Termofysik, Kai Nordlund 2004 31

16.2. Magnetiseringens temperaturderivata Arbete utfört vid ökningen av ett systems magnetiska moment m m + dm (m = V M = magnetiseringen) Alltså systemets energi minskar och arbetet är negativt! dw = Bdm (81) Nu måste vi i I grundlagen ta med magnetiseringstermen för dw : dw = BV dm (82) de = dq dw = T ds P dv + BV dm (83) = T ds P dv + µ 0 HV dm (84) Här är pdv volymförändring och HV dm magnetiseringsförändring. På liknande sätt är Gibbs potential: dg = SdT + V dp + µ 0 HV dm (85) Termofysik, Kai Nordlund 2004 32

Vi kan också definiera en ny potential G M : G = G(T, P, M) (86) G M = G(T, P, H) G µ 0 HV M (87) dg M = dg µ 0 HV dm µ 0 dh MV (88) Genom att sätta in uttrycket för dg från ovan fås dg M = SdT + V dp µ 0 MV dh (89) Från detta uttryck kan vi härleda en ny Maxwell-relation: dvs. 2 G T H = 2 G H T (90) T ( µ 0MV ) = ( S) H (91) dvs. ( S H ) T,P = µ 0 V ( M T ) H,P (92) ( M T ) H = 1 µ o V ( S H ) T 0 då T 0 (93) Termofysik, Kai Nordlund 2004 33

p.g.a. den III grundlagen. Om vi istället använder Curie s (empiriska) lag M C T H; χ C T (94) χ reellt system Curie s lag skulle dm dt CH då T 0 (95) T 2 T vilket är inkonsekvent med det förra resultatet. Alltså kan Curie s lag omöjligtvis gälla nära den absoluta nollpunkten. Termofysik, Kai Nordlund 2004 34

17. Partikeltalet som termodynamisk variabel Hittills har vi alltid under kursen antagit att partikeltalet N bevaras. Nu frångår vi detta krav. Makroskopiskt system Litet delsystem (S,V,N) Vi betraktar ett delsystem karakteriserat av S, V, N i jämvikt med en värmereservoar med temperaturen T. N = antalet partiklar eller beståndsdelar i delsystemet Systemets energi kan förändras genom att förändra partikeltalet. Alltså bör vi få en tilläggsterm till II grundlagen som beror på dn. Om partiklarna är identiska måsta energiförändringen helt enkelt vara dn så vi kan skriva de = T ds P dv + µdn (96) Termofysik, Kai Nordlund 2004 35

där vi introducerat µ ( E N ) S,V (97) = systemets kemiska potential = energiökningen per tillförd partikel Nu förändras även de övriga termodynamiska potentialernas derivator: F = E T S (98) df = SdT P dv + µdn (99) G = E T S + P V (100) dg = SdT + V dp + µdn (101) F = F (T, V, N) (102) G = G(T, P, N) (103) Termofysik, Kai Nordlund 2004 36

Det är ofta bekvämt att definiera en ytterligare termodynamisk potential Ω som beror av T, V och µ: Ω F µn (104) = dω = SdT P dv Ndµ (105) Ω = Ω(T, V, µ) (106) N = ( Ω µ ) T,V (107) Potentialfunktionen Ω kallas systemets stora potential (grand potential) Termofysik, Kai Nordlund 2004 37

17.1. Gibbs potentials beroende av N G = G(T, P ) (108) Här är T och P intensiva variabler medan G är en extensiv funktion (potential) är 1 2 Vi betraktar ett system med två delsystem G 1+2 = G 1 (T, P ) + G 2 (T, P ) (109) G 1+2+...+N = NX G i (T, P ) (110) i=1 Dvs. G(T, P, N) = Ng(T, P ) (111) där vi definierat g som Gibbs potential per partikel. Ur ekvation 101 ser vi att ( G N ) T,P = µ (112) Termofysik, Kai Nordlund 2004 38

men samtidigt bör ju ur G = Ng(T, P ) gälla att ( G N ) T,P = g (113) Alltså µ = g = G N (114) Den kemiska potentialen är helt enkelt Gibbs potential per partikel Därmed fås vidare G = Nµ(T, P ) (115) Ω = F µn = F G (116) = F (F + P V ) = P V (117) och alltså Ω = P V (118) dvs. den stora potentialen ger direkt tillståndsekvationen! Termofysik, Kai Nordlund 2004 39

Mao. gäller för en idealgas att Ω = NkT (119) Allmänt gäller ur ekvationen för dω: S = ( Ω T ) V,µ (120) N = ( Ω µ ) T,V = V ( P µ ) T,V (121) Termofysik, Kai Nordlund 2004 40

17.2. Den makrokanoniska fördelningsfunktionen Makroskopiskt system E r, N r Vi betraktar ett litetdelsystem i jämvikt med sin omgivning vid temperaturen T. Om delsystemets energinivåer är {E r } och dess möjliga partikeltal {N r } är det naturligt att antaga att sannolikheten för att dess partikeltal är N r och dess energi E r vid en observation är proportionell mot antalet mikrotillstånd i det omgivande systemet som har energin E 0 E r och partikeltalet N 0 N r : P (E r, N r ) Ω(E 0 E r, N 0 N r ) (122) = e S(E 0 E r,n 0 Nr)/k B (123) Termofysik, Kai Nordlund 2004 41

Vi använder oss nu av Taylor-expansionens linjära termer: och får då S(E o E r, N o N r ) S(E 0, N 0 ) E r ( S E ) E 0 N r ( S N ) N 0 (124) Den första termen är lätt aytt behandla: men p(e r, N r ) = konstant e [ E r( S E ) E 0 Nr( S N ) N 0 ]/k B (125) ( S E ) E 0 = 1 T = ( S E ) N,V (126) ( S N ) V,E =? (127) För att få ett uttryck för denna term använder vi de = T ds P dv + µdn (128) V = konst. E = konst. ff = T ds = µdn (129) Termofysik, Kai Nordlund 2004 42

och får nu Med kan vi skriva detta litet vackrare som = ( S N ) E,V = µ T ; (130) p(e r, N r ) konst e E r/k B T +Nrµ/k B T ; (131) β 1 k B T, (132) p(e r, N r ) = konstant e βe r+µβnr. (133) Standardbeteckning: Z N kallas den stora partitionsfunktionen p(e r, N r ) = 1 e β[µnr Er], (134) Z N Z N = X e β(µn r Er) (135) Nr,Er Genom att betrakta en ensemble av identiska system kan man på samma sätt som för system med Termofysik, Kai Nordlund 2004 43

fast partikeltal visa att X S = k B P N,n ln P N,n (136) N,n P N,n = sannolikheten för att delsystemet har N partiklar och finns i det n:te energitillståndet för ett N-partikelsystem. Termofysik, Kai Nordlund 2004 44