Välkomna till TSRT03/19 Reglerteknik Föreläsning 1

Relevanta dokument
Välkomna till TSRT19 Reglerteknik M Föreläsning 1

Välkomna till TSRT15 Reglerteknik Föreläsning 1

Välkomna till TSRT19 Reglerteknik Föreläsning 1

Reglerteknik är konsten att få saker att uppföra sig som man vill

TSIU61: Reglerteknik. Kursinformation Bakgrund. Gustaf Hendeby.

Välkomna till Reglerteknik 2015!!

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 1!

TSRT91 Reglerteknik: Föreläsning 1

TSRT91 Reglerteknik: Föreläsning 1

Kort introduktion till Reglerteknik I

TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby.

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är

Välkomna till TSRT15 Reglerteknik Föreläsning 2

Välkomna till Reglerteknik Föreläsning 2

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula

Kort introduktion till Reglerteknik I

Formalia. Reglerteknik, TSRT12. Föreläsning 1. Första föreläsningen. Vad är reglerteknik?

Industriella styrsystem, TSIU06. Föreläsning 1

TENTAMEN REGLERTEKNIK TSRT15

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Industriella styrsystem, TSIU06. Föreläsning 1

TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3.

TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby.

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

INTRODUKTION TILL SYSTEM- OCH REGLERTEKNIK (3 sp) TIDIGARE: GRUNDKURS I REGLERING OCH INSTRUMENTERING 3072 (2sv) Hannu Toivonen

Föreläsning 1 Reglerteknik AK

EL1000/1120/1110 Reglerteknik AK

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK Y/D

1. Inledning. 1. Inledning

TENTAMEN I REGLERTEKNIK Y/D

EL1000/1120/1110 Reglerteknik AK

TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19

Laplacetransform, poler och nollställen

Försättsblad till skriftlig tentamen vid Linköpings universitet

TENTAMEN I REGLERTEKNIK

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Reglerteknik II 7sp (för sista gången) Jari Böling

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

Försättsblad till skriftlig tentamen vid Linköpings universitet

REGLERTEKNIK Inledande laboration (obligatorisk)

TSRT91 Reglerteknik: Föreläsning 9

Reglerteknik Z2. Kurskod: SSY 050 och ERE080. Tentamen

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Välkomna till TSRT19 Reglerteknik M Föreläsning 7. Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet

Reglerteknik, TSIU61. Föreläsning 1

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN

Regulator. G (s) Figur 1: Blockdiagram för ett typiskt reglersystem

Reglerteknik AK, FRTF05

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!

TENTAMEN I TSRT91 REGLERTEKNIK

Försättsblad till skriftlig tentamen vid Linköpings universitet

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!

Försättsblad till skriftlig tentamen vid Linköpings universitet

TENTAMEN I REGLERTEKNIK I

TSIU61: Reglerteknik

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

EL1000/1120 Reglerteknik AK

TSRT91 Reglerteknik: Föreläsning 2

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING

Industriell reglerteknik: Föreläsning 6

Försättsblad till skriftlig tentamen vid Linköpings universitet

EL1000/1120/1110 Reglerteknik AK

Reglerteknik Z / Bt/I/Kf/F

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120

Försättsblad till skriftlig tentamen vid Linköpings universitet

TENTAMEN I TSRT91 REGLERTEKNIK

Industriella styrsystem, TSIU04. Föreläsning 1

Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13

TENTAMEN I TSRT22 REGLERTEKNIK

Reglerteori. Föreläsning 11. Torkel Glad

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.

Industriella styrsystem, TSIU06. Föreläsning 2

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13

Välkomna till TSRT15 Reglerteknik Föreläsning 12

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4

Välkomna till TSRT19 Reglerteknik Föreläsning 10

TSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby.

TSRT09 Reglerteori. Reglerteknik. Vilka är systemen som man styr? Vilka är systemen som man styr? Föreläsning 1: Inledning, reglerproblemet

Kretsformning och känslighet

Transkript:

Välkomna till TSRT03/19 Reglerteknik Föreläsning 1 Johan Löfberg Avdelningen för reglerteknik Institutionen för systemteknik johanl@isy.liu.se Tel: 281304 Kontor: B-huset ingång 23-25 www.control.isy.liu.se/student/tsrt19

Formalia 2 Föreläsningsanteckningar på nätet (kan uppdateras någon dag innan föreläsningen) 12 föreläsningar 13 lektioner 3 laborationer (material på kurshemsida) Lab 1: PID-reglering (förberedelseuppgifter i PM) Lab 2: Modellbaserad reglering (förberedelser tar tid!) Lab 3: Reglering av inverterad pendel (datorlab) Anmälan kommer (Lisam) Tenta: Kursbok, tabeller, formelsamlingar tillåtna Anteckningssamlingar och lösningsmallar ej tillåtna Anteckningar i boken tillåtet

Dagens föreläsning 3 Reglerteknik i praktiken Definition av basbegrepp Styrsignal, mätsignal, referenssignal, system, modell Återkoppling Dynamiska system Design av en farthållare Öppen vs sluten styrning, P-reglering

Reglerteknik 4 Möjliggör lösningar på omöjliga problem Kallas ofta the hidden technology Centralt område för många av Sveriges teknikföretag. Tacksamt område med massor av roliga tillämpningar! Praktisk tillämpning av diffar, linjär algebra (och transformer) Grunden för mekatronik

Reglertekniska exempel 5 Moderna bilar De flesta förkortningarna i försäljningsbrochyren döljer ett reglersystem! ABS (anti-lock braking system, reglering av bromskraft) ESC (electronic stability control, reglering av spårstabilitet) ACE (active cornering enhancement, reglering av stötdämpare i kurvor) TCS (traction control system, reglering av vägfäste) ACC (adaptive cruise control, reglering av fart/avstånd) ANC (active noise control, reglering av ljud)

Reglertekniska exempel 6

Reglertekniska exempel 7 Vindkraftverk Ett flertal reglerproblem Exempel: Varje gång masten passeras skapas farliga krafter på bladen som kan minskas genom att man reglerar bladens vinkel vid passage

Reglertekniska exempel 8 Moderna stridsflygplan Ibland medvetet designade så att de inte går att flyga manuellt (men i gengäld får bättre prestanda och flygegenskaper) Kräver ett reglersystem Om reglersystemet har designfel kan det gå illa, och det är precis detta som var orsaken till krascherna 89 och 93

Reglertekniska exempel 9 Kitepower Pågående forskning på flertal universitet

Reglertekniska exempel 10 Drönare, typiskt autonoma n-coptrar Dåligt rykte, massvis med spännande tillämpningar

Reglertekniska exempel 11 Moderna motorcyklar Traction control nu även på produktionsmotorcyklar Används på MotoGP, och anses av många ha skadat sporten The electronics is so important now and this makes the rider less important. I would like that the rider controlled more the motorcycle but maybe with so powerful bikes now it would not be possible to ride these bikes without the electronics. For sure it is easier to ride them. Valentino Rossi

Reglertekniska exempel 12 Motorcyklar Traction control nu även på produktionsmotorcyklar Används på MotoGP, och anses av många ha skadat sporten The electronics is so important now and this makes the rider less important. I would like that the rider controlled more the motorcycle but maybe with so powerful bikes now it would not be possible to ride these bikes without the electronics. For sure it is easier to ride them. Valentino Rossi

Reglertekniska exempel 13 Motorcyklar Reglertekniska lösningar kommer i varje fall inte användas på cross/enduro-hojar för det skulle ju vara fusk Johan Löfberg 2008

Reglertekniska exempel 14 2017 release

Reglertekniska exempel 15 Extremt stora teleskop Vi har nått gränsen för hur stora speglarna kan göras Stora teleskop byggs med massvis små speglar som sedan kontinuerligt styrs så att bilden blir skarp (kallas adaptiv optik)

Reglertekniska exempel 16 Mobiltelefoner Reglerteknik används för att reglera signalstyrka i kommunikationen mellan mobiltelefon och basstation

Reglertekniska exempel 17 Hårddiskar Läsarmen måste positioneras på exakt rätt plats så snabbt som möjligt, samtidigt som skivan roterar med rätt hastighet. Utan aktiv reglering svänger armen vid förflyttningar, och man måste vänta länge tills armen är still och man kan läsa data.

Reglertekniska exempel 18 Industrirobotar Precis samma problem som hårddisken. En robotarm är relativt vek, och oscillerar kraftigt efter förflyttningar.

Reglertekniska exempel 19 Hallsta använder 1,9 TWh per år. Det är lika mycket som Malmö stad inklusive alla industrier Många gånger är det reglersystemen och transmissionssystemen som är ineffektiva, inte motorerna i sig.

Reglertekniska exempel 20 Någon som känner igen kurvorna?

Reglertekniska exempel 21 Inflation och ränta Riksbanken försöker reglera (styra) inflation via reporänta (styrränta) (med diskutabel framgång...)

Reglertekniska exempel 22 Automatiserad narkos Ett reglersystem ersätter/hjälper narkossköterskan Systemet reglerar medvetandegraden (BIS)

Reglertekniska exempel 23 Segway En av de mest uppenbara reglertekniska konsumentprodukterna som finns Fungerar inte utan ett reglersystem

Reglertekniska exempel 24 Klätter- och balansrullstol (ibot) Reglertekniskt sett ett ekvivalent problem, balansera en instabil tvåhjuling

Reglertekniska exempel 25 Patent pending? A device for stabilization of open liquid containers placed on a 6-DOF table connected to free agents in enviroments with severe disturbances.

Det reglertekniska problemet 26 Välj styrsignalen u(t) så att systemet (enligt mätsignalen y(t)) beter sig som önskat (referenssignalen r(t)) trots störningar w(t) (ofta använder vi ordet insignal istället för styrsignal, och utsignal istället för mätsignal)

Det reglertekniska problemet 27 System u(t) y(t) r(t) w(t) Farthållare Narkos Sveriges ekonomi Gaspådrag broms Hastighet Inställd hastighet Väglutning, Vind Droginjicering Medvetande Högre än död Drogtolerans, patientvikt Styrränta Inflation Inflationsmål 2% Politik, konjunktur

Det reglertekniska problemet 28 Vi illustrerar system ( saken vi reglerar) konceptuellt med blockscheman w(t) u(t) System y(t) I denna kurs antar vi att systemen är dynamiska och linjära

Återkoppling 29 En fundamental princip i reglerteknik är återkoppling, här illustrerat på destillationskolonn 1. Formulera ett önskemål (referenssignal) Vi vill ha en vätsketemperatur på 80º 2. Mät den nuvarande temperaturen (mätsignal) Nu är det 60º 3. Genomför åtgärd (ingrepp med styrsignalen) Öka värmetillförsel! 4. Mät den nuvarande temperaturen 5. Åtgärd Återkoppling!

Återkoppling 30 Återkopplade systemet w(t) r(t) Regulator ( Styrlag ) u(t) System y(t) Återkoppling!

Återkoppling 31 Återkopplade systemet gas hastighet

Återkoppling 32 Återkopplade systemet Droger Medvetande

Återkoppling 33 Återkopplade systemet 2% ränta System inflation

Det reglertekniska problemet 34 I kursen frågar vi oss Hur kan vi beskriva systemet vi skall reglera (skapa en modell) Hur kan vi analysera systemet vi skall reglera Hur gör vi för att designa en regulator Hur analyserar vi det återkopplade systemet (vad kan gå fel?)

Design av farthållare 35 φ u(t): Drivande/bromsande kraft genererad av motor och broms [N] y(t): Bilens hastighet [m/s] φ: Vägbanans lutning [rad] m: Bilens vikt [kg] α: Luftmotståndskoefficient [Ns/m], luftmotstånd = αy(t) [N]

Design av farthållare 36 Newton Modell: m=1000kg, α=200ns/m, φ=0 Öppen styrning: Vårt mål är att nå en referenshastighet på r(t) = 25m/s. Vi testar följande styrlag Lösning: Vi når referenshastigheten asymptotiskt

Design av farthållare 37 w(t)=mgsin(φ) r(t)=25 200 u(t) y(t)

Design av farthållare 38 Icke nominell modell: Vindtunneltest har gått fel, egentligen är α=150ns/m Vi använder samma styrlag och får Bilen uppnår för hög hastighet Orsak: Vi har inte återkopplat den verkliga hastigheten!

Design av farthållare 39

Design av farthållare 40 Sluten styrning: Återkoppla hastigheten! En rimlig strategi är att gasa mer när man kör för sakta och bromsa när vi kör för snabbt Detta kallas propertionalreglering, P-reglering, och konstanten K är den enda designvariablen i regulatorn Slutna systemet

Design av farthållare 41 w(t)=mgsin(φ) r(t)=25 Σ e(t) K u(t) y(t) -1

Design av farthållare 42

Design av farthållare 43 Orealistiskt mycket motoreffekt krävs! (och den här bilen vill man inte åka i till vardags)

Vad är en regulator, egentligen? 44 Regulatorn är en dator i bilen, som mäter hastigheten och önskad fart, och skickar styrsignaler (önskat moment) till motorn y u r program CruiseControl K = 200; % Control engineer told us! repeat r = getdesiredspeed y = getspeedmeasurement u = K*(r-y); TorqueRequest(u) wait(0.01 sec) end

Sammanfattning 45 Sammanfattning av dagens föreläsning Reglerteknik finns nästan överallt Vi använder differentialekvationer för att skapa modeller över system Öppen styrning väldigt känslig för modellparametrar och störningar Återkoppling kan reducera känsligheten markant Återkoppling u(t) = K(r(t)-y(t)) kallas P-reglering Vi har fortfarande inte bra reglering, bättre regulatordesign krävs!

Sammanfattning 46 Viktiga begrepp Reglerteknik: Konsten att få system att uppföra sig som vi vill. Signaler: Funktioner av tiden som innehåller information. System: Ett objekt som drivs av insignaler och som respons på dessa producerar utsignaler. Modell: Förenklad beskrivning av verkligheten. I denna kurs, en matematisk beskrivning av det system vi studerar. Dynamiska system: System där utsignalen just nu inte enbart beror av nuvarande insignaler utan även av tidigare insignaler. Återkoppling: För tillbaka information om systemets nuvarande tillstånd till regulatorn. Reglerteknik är läran om återkopplade system.

Dynamiska system 47 System med minne, dvs nuvarande tillstånd beror på vad som hänt tidigare Hastighet och läge på bil (beror på tidigare motorpådrag) Rumstemperatur (beror på tidigare uppvärmning och yttertemperatur) Konjunktur (beror på politik, investeringar etc de senaste åren) Matematiskt: Systemet beskrivs av en differentialekvation En beskrivning (oftast approximativ) av ett system kallas en modell Motsats: Statiskt system

Linjära system 48 u(t) System y(t) Linjärt system innebär att superpositionsprincipen håller

Linjära system 49 Linjära ordinära differentialekvationer uppfyller detta Vi arbetar enbart med system som kan beskrivas av linjära ordinära differentialekvationer Mer (mycket mer) om detta nästa föreläsning