Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket enkelt fall av experimentell problemlösning. Rapporten är därför kortare än den rapport du ska skriva. Rapportdelen ska ha omfattningen 10 16 sidor. Tänk också på att inte plagiera några formuleringar i texten. En pendels svängningstid En rapport i kursen Fysik (TFYA14) Rapportförfattare: Linnea Lins (123456-7890) linli999@student.liu.se Teknisk fysik och elektroteknik (Y) Linköpings universitet, Linköping 2015-02-14 (Version 1) Uppdatera datum och version vid varje inlämning. Ge rapporten ett filnamn på formen [Linnea_Lins_version_1] Ange dina medlaboranter här. De ska dock inte delta i rapportskrivandet. Medlaboranter: Limone Lifouz (234567-8901) limli777@@student.liu.se Linus Lindeman (345678-9012) linli888@student.liu.se
Sammanfattning En modell för svängningstiden hos en enkel pendel togs fram genom experiment... Rapporten skall inledas med en kort sammanfattning. Sammanfattningen skall ge en snabb inblick i vad rapporten handlar om så att en läsare kan avgöra om rapporten innehåller det som läsaren söker. Resultatet skall finnas kortfattat presenterat här. I den här laborationen krävs att den framtagna modellen med numeriska värden på konstanten skall presenteras.
Innehållsförteckning 1. INLEDNING... 1 2. EXPERIMENTUPPSTÄLLNING... 1 3. UTFÖRANDE... 2 3.1 HYPOTES... 2 3.2 DIMENSIONSANALYS... 2 3.3 BESTÄMNING AV KONSTANTEN... 3 4. FELANALYS... 4 5. MODELLPRÖVNING... 4 6. DISKUSSION OCH SLUTSATSER... 5 7. BILAGOR... 6 7.1 MÄTNINGAR FÖR ATT BESTÄMMA KONSTANTEN... 6
1. Inledning Denna rapport beskriver ett experiment med en enkel pendel. Syftet med experimentet är att öva på experimentell problemlösning. Kapitel 2 innehåller en beskrivning av den experimentella uppställningen och definitioner av de variabler som används. I kapitel 3 beskrivs själva utförandet dvs. den grundhypotes som ställdes upp, en dimensionsanalys samt de experimentella försök som gjordes. Kapitel 4 innehåller en verifiering av modellen med oberoende mätdata samt felanalys. 2. Experimentuppställning I experimentet användes, - Ett snöre där längden l kunde varieras från 0,8 till 1,4 m. - En liten massa m som kunde varieras mellan 0,10 och 0,90 kg.. Skalära variabler kursiveras, vektorer skrivs med fet stil. Försöksuppställnigen skall vara så tydligt beskriven att även de som inte har sett den förstår den och skulle kunna reproducera experimentet. Det gäller även de ingående resonemangen som förs i rapporten. Samtliga variabler skall vara entydigt definierade. Vid försöken fästes massan i snöret. Snöret och massan och fick sedan pendla enligt figur 1. Periodtiden Tp uppmättes med ett stoppur Figurer numreras löpande och har en förklarande text under figuren. Figurer skall refereras till i den löpande texten. etc.. Figur 1. Försöksuppställning Börja numrering från sidan med inledningskapitlet. 1
3. Utförande De variabler som skulle kunna påverka svängningstiden listas i tabell 1. Ett inledande experiment visade att svängningstiden ökade med snörets längd Tabell 1. Ingående variabler Storhet Beteckning Enhet Fysikalisk dimension Periodtiden Tp s T Snörets längd L m L Massan m kg M Tyngdaccelerationen g m/s 2 LT -2 Startvinkeln θ max 1 3.1 Hypotes Tabeller numreras löpande och har en förklarande text över tabellen. Tabeller skall refereras till i den löpande texten. Proportionaliteten mellan Tp och θ max är oklar. Däremot kan Tp anses vara oberoende av små startvinklar θ max vilket visades med ett enkelt inledande experiment. 3.2 Dimensionsanalys En hypotes formulerades där periodtiden är en funktion av l, m och g och en produkt ansattes T p = Cl x m y g z (1) Där C är en dimensionslös konstant. Ekv (1) ger dimensionsekvationen Ekvationer som hänvisas till i den löpande texten numreras löpande. T = L x M y L z T 2z (2) Exponenterna i ekv (2) ger upphov till ekvationssystemet: T: 1 = 2z z = 1 2 M: 0 = y y = 0 etc L: 0 = x + z x = z = 1 2 2
Som en konsekvens fås modellen T p = Cl 1 2 m 0 g 1 2 = C l g (3) 3.3 Bestämning av konstanten För att beräkna C skrevs ekv (3) om till C = T p g l (4) För att bestämma konstanten C varierades l och tiden för 10 svängningar mättes. C beräknades med hjälp av ekv (4). Detta upprepades tre gånger och ett medelvärde togs. Konstanten C mättes för 7 olika snörlängder, mätningarna återfinns i tabell 2, bilaga 7.1. etc... Är det en mindre mängd data kan den finnas med i den löpande texten, vilket med fördel hade fungerat i detta fall utan att förstöra överblicken. Blir det väldigt mycket rådata kan den placeras i en bilaga. Bilagorna skall vara refererade till i texten. All rådata skall finnas redovisad. 3
4. Felanalys För att göra en uppskattning av onoggrannheten på konstanten beräknades ett standardfel.. Konstanten är med standardfel Avrunda onoggrannhetsintervallet och mätvärdet med samma antal decimaler. C = 6,25 ± 0,09 5. Modellprövning För att prova modellen gjordes oberoende mätningar på fem nya snörlängder och modellen användes för att göra förutsägelser av svängningstiden. Mätningarna och en jämförelse med modellen återfinns i figur 2. Svängningstid med oberoende mätningar Diagram skall ha rubrik T(s) 1,75 1,55 1,35 1,15 0,95 Modell Mätningar Diagram skall ha en legend. Variabler och enheter skall vara utsatta på axlarna 0,75 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 l (m) Figur 2: Prövning av modellen med oberoende mätningar. Även diagram benämns figurer och numreras löpande med övriga figurer. 4
6. Diskussion och slutsatser Den framtagna modellen begränsningar är I diskussionsdelen behandlas modellens giltighet, begränsningar, idealiseringar och eventuella behov av kommande undersökningar och vad som kunde ha förbättrats etc.. 5
7. Bilagor 7.1 Mätningar för att bestämma konstanten Tabell 2. Mätningar för att bestämma konstanten C. Enheter skall finnas med i tabellhuvudet. l (m) T1(s) T2(s) T3(s) Tmedel (s) C 0,10 0,62 0,63 0,64 0,63 6,2430 0,20 0,89 0,89 0,90 0,89 6,2597 0,30 1,08 1,09 1,09 1,09 6,2172 0,40 1,28 1,28 1,28 1,28 6,3421 0,50 1,38 1,39 1,40 1,39 6,1601 0,60 1,52 1,53 1,56 1,54 6,2167 0,70 1,66 1,70 1,71 1,69 6,3299 0,80 1,79 1,78 1,79 1,79 6,2697 6