1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera med ett tal mindre än 1, ger alltid ett mindre svar än den andra termen i additionen.. = 0,012 Svar 0,012 d) Alternativ 1. Att dividera med ett tal mindre än 1 ger alltid ett större svar än täljarens värde. 0,2 =.Division med ett bråk innebär att du kan multiplicera med inversen av. Alternativ 2. Förläng täljare och nämnare med 10. Då får du divisionen = 125 2. Räkna ut kastrullens volym. Sätt 3. Svara i liter. 3,14 = 3140cm 2 = 3,14 dm 2 = 3,14 liter 3. Linjerna visar färdkostnaden för två olika taxibolag TA och XI. a) Hur stor är prisskillnaden mellan TA och XI om man åker 3 km? Titta på x-axeln vid 3 km och gå uppåt tills du möter respektive linje. Läs av, 30 kr 25 kr = 5 Kr b) Vilken är kostnaden per kilometer för bolaget TA? Linjen är en proportionalitet och därför kan vi gå in och läsa av vid varje km och få rätt svar, eller = 10 kr/km c) Skriv kostnaden K som en funktion av körsträckan x i kilometer för bolag TA
Linjen är en proportionalitet och då finns inget m-värde. K-värdet, lutningen är då kostnaden per km ds 10 kr/km. y = 10x d) Skriv kostnaden K som en funktion av körsträckan x i kilometer för bolag XI Jag använder linjens ekvation även här, y = kx +m. m-värdet är det värde somlinjen skär y-axeln på, 20. K-värdet är kostnaden per km efter att jag subtraherat 20 kr. 1 km kostar 25 kr. k- värdet är då 25-20 = 5. Det ger funktionen y= 5x +20 4. Beräkna: a) Det finns flera olika sätt att lösa uppgiften på. Här ger jag ett förslag. 1% = Svar 440 kg b) Svar 300 liter 5. Förenkla uttrycken och lös sedan ekvationerna a) b) = 13 Svar x = 13
6. Bestäm vinkeln x i figuren. Redovisa dina beräkningar Vinkelsumman i en triangel är alltid. En rät vinkel är =. Då är vinkeln utan benämning i triangeln = = Vinkelsumman i triangeln kan då skrivas: Vinkelsumma = Detta blir en ekvation där x= ( = 40 X = 7. Joels bil är av årsmodell 2005. Gulbhars bil är 50% äldre än Joels bil. Emil har en svart bil. Den är hälften så gammal som Gulbhars bil. a) Hur många år är Gulbhars bil? Använd förändringsfaktor i dina beräkningar om du kan. b) Min (Helenas) bil är nyare än Joels bil, men äldre än Emils bil. Resonera dig fram till hur många år min bil kan vara och vilka årsmodeller det kan vara. Motivera dina svar! Resonemang: Större än 7,5 år och mindre än 10 år kan matematiskt skrivas Detta innebär att årsmodellerna som var för 10 år sedan och 7-8 år sedan är svaret på vilken årsmodell det kan vara. För 10 år sedan var det år 2005 och för 7-8 år sedan var det 2007-2008. Årsmodell 220 Svar: och Årsmodell 2005 till 2007/2008
8. I en klass undersökte man hur många syskon eleverna hade. Resultatet av undersökningen ser du i diagrammet. Bestäm medelvärde och median för antal syskon. Medelärde = = 9. Helena har 0,9 liter 10% saltlösning. Joel har en stor dunk med 5 liter 2% koksaltlösning. Helena vill låna saltlösning av Joel så att hon kan späda sin till 5%. Räcker Joels lösning för att späda Helenas lösning till 2%? Visa noga hur du gör. Utgå från att 1ml väger 1g. Uppgiften löser du enklast med att först göra en tabell och sedan en ekvation: Beräkning av antal gram salt i Helenas ursprungliga lösning Beräkning av mängd saltlösning som behövs av Joels lösning Beräkning av antal gram i den slutliga 5% lösningen Joels lösning räcker eftersom det går åt 1500 ml och det fanns 5 liter ( = 5000ml)