Supporting Information. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis

Relevanta dokument
Supporting Information

Hydroxyquinone O-Methylation in Mitomycin. Biosynthesis

Supplementary Data. Figure S1: EIMS spectrum for (E)-1-(3-(3,7-dimethylocta-2,6-dienyl)-2,4,6-trihydroxyphenyl)butan-1-one (3d) 6'' 7'' 3' 2' 1' 6

Labokha AA et al. xlnup214 FG-like-1 xlnup214 FG-like-2 xlnup214 FG FGFG FGFG FGFG FGFG xtnup153 FG FGFG xtnup153 FG xlnup62 FG xlnup54 FG FGFG

Time (min)

SUPPLEMENTARY FIGURE LEGENDS

On the possible biological relevance of HSNO isomers: A computational investigation. Supplementary Information

Exam Molecular Bioinformatics X3 (1MB330) - 1 March, Page 1 of 6. Skriv svar på varje uppgift på separata blad. Lycka till!!

SUPPLEMENTARY INFORMATION

Biochemistry 201 Advanced Molecular Biology (

Room E3607 Protein bioinformatics Protein Bioinformatics. Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

Documentation SN 3102

Supplementary information for. MATE-Seq: Microfluidic Antigen-TCR Engagement Sequencing

Supplementary Materials: Ribosome Inactivating Proteins from Rosaceae

Supplemental Data. Antony et al. (2010). Plant Cell /tpc

Centrala Dogmat. DNA RNA Protein

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

7.5 Experiment with a single factor having more than two levels

SUPPLEMENTARY INFORMATION

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Measuring child participation in immunization registries: two national surveys, 2001

Table S1: Oligonucleotides and PCR primers used in this study.

California, 94720, United States. States. California, 94720, United States. Kogle, Allé, DK2970-Hørsholm, Denmark

Antihyperlipoproteinemics and Inhibitors of Cholesterol Biosynthesis

MÄTNING AV VÄGT REDUKTIONSTAL MEASUREMENT OF THE WEIGHTED SOUND TRANSMISSION LOSS

SUPPORTING INFORMATION

) / (c l) -A R ) = (A L. -ε R. Δε = (ε L. Tentamen i Biomätteknik (TFKE37), 9 januari Uppgift 1 (10p)

* 2 0 * 4 0 * 6 0 * 8 0 * * * * * * * * * 2 6 0

8.1 General factorial experiments

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Gradientbaserad Optimering,

Preschool Kindergarten

Tentamen i Biomätteknik SVENSK VERSION. UPPGIFT 1 (10p)

Calculate check digits according to the modulus-11 method

Omtentamen Biomätteknik, TFKE augusti 2014

Adding active and blended learning to an introductory mechanics course

for Selective Microtubule Polyglutamylation Juliette van Dijk, Krzysztof Rogowski, Julie Miro, Benjamin Lacroix, Bernard Eddé, and Carsten Janke

PID1 GSYTAADMQGLSFTLTNLGTKQLEIREQEFYRQGVLAVAVRKQILQPGEITDVFIISRPGG 244

CELL PLANNING. 1 Definitions

Tentamen Molekylärbiologi X3 (1MB608) 10 March, 2008 Page 1 of 5. Skriv svaren på varje fråga på SEPARATA blad.

Module 6: Integrals and applications


Isolda Purchase - EDI

SUPPLEMENTARY DATA Data in the Relational Database

Fossilförbannelse? Filip Johnsson Institutionen för Energi och Miljö Pathways to Sustainable European Energy Systems

TN LR TT mg/l N b) 2,6-Dimethylphenole

Design Service Goal. Hantering av demonterbara delar som ingår i Fatigue Critical Baseline Structure List. Presentatör

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Grundämnesföroreningar

Oförstörande provning (NDT) i Del M Subpart F/Del 145-organisationer

DE TRE UTMANINGARNA..

Kursplan. MT1051 3D CAD Grundläggande. 7,5 högskolepoäng, Grundnivå 1. 3D-CAD Basic Course

District Application for Partnership

PEC: European Science Teacher: Scientific Knowledge, Linguistic Skills and Digital Media

NORDIC GRID DISTURBANCE STATISTICS 2012

Styrteknik: Binära tal, talsystem och koder D3:1

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Botnia-Atlantica Information Meeting

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Chapter 2: Random Variables

Supplementary Material for: The generation of thermostable fungal laccase chimeras. by SCHEMA-RASPP structure-guided recombination in

Corrosion of Copper in oxygen free water

INSTALLATION INSTRUCTIONS

Grafisk teknik. Sasan Gooran (HT 2006)

Exempel 1 på multipelregression

Application Note SW

EMIR-European Market Infrastructure Regulation

Modeling of pore pressure in a railway embankment

SVENSK STANDARD SS-ISO :2010/Amd 1:2010

Hållbarhetskriterier för bioenergi. Maria Gustafsson150423

Antihyperlipoproteinemics and Inhibitors of Cholesterol Biosynthesis

Molecular marker application in breeding of self- and cross- compatible sweet cherry ( (P. P. avium L.) varieties. Silvija Ruisa, Irita Kota

Supplemental Figure S1.

SAMMANFATTNING AV SUMMARY OF

12.6 Heat equation, Wave equation

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Supplementary Information

Processimulering --- I teori och i praktik

Kursplan. FÖ1038 Ledarskap och organisationsbeteende. 7,5 högskolepoäng, Grundnivå 1. Leadership and Organisational Behaviour

School of Management and Economics Reg. No. EHV 2008/245/514 COURSE SYLLABUS. Business and Market I. Business Administration.

Writing Laboratory Reports

Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

SVENSK STANDARD SS-EN ISO

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

SVENSK STANDARD SS

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Figure S1. The molecular weight of proteins encoded by genes in each sub-region of Chr.20

Swedish framework for qualification

Retail Academics/ Research Institute o Origin from Center for Retailing

HANTERING AV UPS CX

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Studieteknik för universitetet 2. Books in English and annat på svenska

Fade to Green. stegen mot grönare hudvårdsprodukter. Tomas Byström Produktutvecklare. Grönt ljus för Grön kemi?

Transkript:

Supporting Information Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis Xinqiang Xie, Ashish Garg, Chaitan Khosla, and David E. Cane*, Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108 Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University, Stanford, California 94305 *To whom correspondence should be addressed: david_cane@brown.edu S1

Table of Contents Figure S1. Sequence alignment of NADPH-binding motifs Figure S2. KR 0 homology models Figure S3. Domain boundaries of nanchangmycin synthase module 1 Figure S4. Domain boundaries of salinomycin synthase module 7 Figure S5. Synthetic gene for SalKR7 0 Figure S6. SDS-PAGE and LC-QTOF-MS analysis of recombinant Nan[KS1][AT1] Figure S7. SDS-PAGE and LC-QTOF-MS analysis of recombinant holo-nanacp1 Figure S8. SDS-PAGE analysis of recombinant ketoreductases and mutants Figure S9. Alignment of epimerase-active and epimerase-inactive KR domains Figure S10. Ketoreductase activity of wild-type and mutant KR proteins Figure S11. Chiral GC-MS analysis of reductions catalyzed by AmpKR2 and mutant Figure S12. Chiral GC-MS analysis of reductions catalyzed by TylKR1 and mutant Figure S13. Chiral GC-MS analysis of reductions catalyzed by EryKR6 and mutant Figure S14. Chiral GC-MS analysis of coupled Nan[KS1][AT1] plus KR incubations Figure S15. Kinetics of incubation of rec. KR domains with Ery[KS6][AT6] and EryACP6 or Nan[KS1][AT1] and NanACP1 Figure S16. Fluorescence enhancement analysis of NADPH binding Figure S17. Absence of reductase activity of KR 0 domains p S3 p S4 p S5 p S6 p S7 p S8 p S9 p S10 p S10 p S11 p S12 p S13 p S14 p S15 p S16 p S17 p S18 Table S1. Rare Codons in Nan[KS1][AT1] Table S2. Mutagenic Primers for Generation of KR Mutants Table S3. Mutagenic Primers for Generation of SalKR7 0 Mutants Table S4. Predicted MW and observed ESI-MS M D of wt and mutant KR domains Table S5. Steady-state kinetic parameters for wild-type and mutant KR domains Table S6. Stereospecificity of the reduction of 5 by wild-type and mutant KR domains Table S7. Kinetics of incubation of rec. KR domains with Ery[KS6][AT6] and EryACP6 or Nan[KS1][AT1] and NanACP1 Table S8. Substrate binding affinity of wild type SalKR7 0 and mutants Table S9. Tandem EIX Assay of Redox-Inactive NanKR1 0 and NanKR5 0 Domains Table S10. Tandem EIX Assay of Redox-Inactive SalKR7 0 and Mutant Domains Table S11. Tandem EIX data analysis p S19 p S19 p S19 p S20 p S20 p S21 p S21 p S22 p S22 p S22 p S23 Supplemental Reference p S23 S2

Figure S1. Mega3.0 (http://www.megasoftware.net) sequence alignment of NADPH binding site motifs, GxGxxG, WGxW, and the intervening linker region, for redox-active, epimerase-active KR domains (rows 1-4) and redox-inactive, epimerase-active KR 0 domains (rows 9-12) with presumptive redox-inactive, epimerase-active KR 0 domains from polyether synthases (rows 5-8). PKS source: Ery, erythromycin; Lan, lankamycin; Mon, monensin; Nan, nanchangmycin; Nys, nystatin; Pic, picromycin; Sal, salinomycin; Tyl, tylosin. S3

Figure S2. SWISS-MODEL1 (https://swissmodel.expasy.org/) protein structure homology-models of KR0 domains from polyether synthases, generated using the PicKR3 structure (PDB number: 3QP9) as template. A. Predicted active site of MonKR10 protein structure model based on PicKR30 structure; B. Protein structure overlap of MonKR10 with PicKR30; C. Predicted active site of NanKR10 protein structure model based on PicKR30 structure; D. Protein structure overlap of NanKR10 with PicKR30; E. Predicted active site of NanKR50 protein structure model based on PicKR30 structure; F. Protein structure overlap of NanKR50 with PicKR30; G. Predicted active site of SalKR70 protein structure model based on PicKR30 structure; H. Protein structure overlap of SalKR70 with PicKR30. S4

LOCUS AAP42855 2902 aa linear BCT 23-MAY-2003 DEFINITION NanA1 [Streptomyces nanchangensis]. ACCESSION AAP42855 VERSION AAP42855.1 GI:31044143 DBSOURCE accession AF521085.1 1MRFRYGGVMAGSSPSHAQQATSPVAIVGLACRLPGAPDPEAFWRLLRAGENAVVPVPDSR (...Nanchangmycin PKS loading module...) 1021AAWLRAAHEGQPTAAPTAATGPSMAEDPVAVVAVSCRYPGGVESGEALWRLVDEGVDAVG 1081EFPGDRGWDLAELFGRAPDGSGGSATGRGGFLYGAGDFDAEFFGISPREALAMDPQQRIL 1141LELSWELLERAGIPPASLAGSATGVYVGATAVDYGPRLHEATAELDGHLLTGSTPSVASG 1201RVAYALGLEGPALTVDTACSSSLVAMHLAAQALRQGECDLALAGGVTVMATPGMFTSFSR 1261QRGLAPDGRCKPFAAAADGTGWSEGAGLVLLERLSDARRNGHQVLAVIRGSAVNQDGASN 1321GLSAPNGPSQQRVIRQALANARLEPADVDAVEAHGTGTTLGDPIEAQALLATYGGQRTDD 1381RPLWLGSIKSNIGHTQAAAGVAGVIKMVMALRHGRLPASLHIDAPSPHIDWSDGTVRLLS 1441EPVDWPGTDWPGSDRPRRAAVSSFGISGTNAHLILEQAPDHPEPEPTTSGGVVPWVLSAR 1501TADALRAQAGRLAEWVTAGAPRSPASPTSPASPADVGWSLATTRSADRHRAVVSGTDRDE 1561LLSGLRAVADGLAPAAVSAGAAPGPVMVFPGQGSQWRGMGVELLDSSPVFAARMAACEAA 1621LGEFVDWSLTAVLRGAPGAPEPSRVDVLQPCLWAVMVSLAAVWESYGVTPTAVVGHSQGE 1681IAAACVAGGLSLRDGARVVALRSQALRALAGHGTMASLALSGAEAERFLADLGAAAARVT 1741VAVFNGPYSTVVSGPTDQVAAVVAACEAAGHRARTIDVDYASHGPQVDRLADTIRTDLAD 1801LSPGASDAVFYSAVTGARQPTEELDADYWFTNLRQPVRFASAIDALLAAGYRVFIEVSPH 1861PVLIPALRECFEEAEVAAATVPTLRRDQGGPDQVARALGDGFVAGLAVDWSRWFVGDGRE 1921AGDEGHRPRTVELPTYPFQRRRYWLAPDHGRREGRTAGVGTRPAGHALLSSAVELADGGL 1981VLSGRLPGDAAWVGAHTVAGVQLVPGAVLVDWALLAADEAGGASLEELLLRAPLELSGPS 2041GLSEPSAGVLAQVAVGAPDESGRRELRISSRPADAGAGEGWTCHAVGSLAPGGPPAPADT 2101GTATVPWPPAGAEALDPAGLYERAERRGYGYGPALRGVVALWRDGADLVADVALPEEAGG 2161GGEGGADGDGTAGFGLHPVLLDAALQPALLAEPDGTGGEGAGPEARLWLPFAWSGVRLWA 2221TGARAARVRLSPLDGGGGDVADERELRIEVSDPTGAPVLSVASVVLRPRTVRQVREASGA 2281AAGGLFALDWTPVAPQEPSGAEDDAGCVAVLGEAPTEPGVDGCRDTYTDLPALLAALDAG 2341APLPSVVMWRPPAADPGAAPEDAALSAVRGVAAALRAWVAEPRLTVSRLAVVTRGAVAAG 2401GAEGEPVDLAAAAAWGCARGVQAEHPDRIVLVDVDDDVDMGADTDTDIGAAAGLAAALGE Nan[KS1][AT1] NanDH1 2461PQVALRGDTLLAPRLARSAATPGGVAFDPNGTVLVTDSGGPLAGSVAEHLVRAEGVRHLL NanKR1 0 2521LVRFEGADGAYDTYDRQDAQVHMVTVDPRDTAALERVVAQVDPAHPLTGVVHVAGLSADI 2581ETSGAARGWAVAAGVVRALHQATAALPSVRFVTLSDAATAWDGPAAPERAAAGAFCAAVT 2641DVRRRAGLHGLDVAFGPWAAADDDGGADSGGRWTGVLGADRGLALLRAACRADRPRLVAA 2701DIRTRALTAHPAHELPAALRTLGASASASAGGRAPVRRVAAAAPGRTTDWASRLVGLGPA 2761ERRRAVLELVRDHAAAVLGQPDPKAVRADASFKELGFDSVTAVELRDRLVAVGGLRLPAA 2821VVFRHPTPEALAHRIEQQLAPDDTNNAAITDNADNAAKSNGNSNGTALDAADKLASATAD 2881EILDFIDNELGVLSEARPRPSN NanACP1 Figure S3. Domain boundaries of nanchangmycin synthase module 1 and design of recombinant Nan[KS1][AT1], NanACP1 and NanKR1 0 S5

LOCUS CCD31893 1642 aa linear BCT 03-FEB-2012 DEFINITION type I modular polyketide synthase [Streptomyces albus subsp. albus]. ACCESSION CCD31893 VERSION CCD31893.1 GI:373248780 DBSOURCE embl accession HE586118.1 1 MDNEKKLLDHLKWVTAELRQARQKLREAEADEPEPIAIVSMACRYPGGVRSPEDLWQLVR 61 EGRDAITGFPTGRGWDLASLYDADPDRLGTSYVREGGFVHDAGDFDAEFFGISPREALAM 121 DPQQRLLLETSWEAFERAGVDPAAVAGSRTGVFVGTTYTGYGSDREGAEENVEGHLMTGI 181 ATAVASGRLSYTYGFEGPAVSLDTMCSSSLVALHLAVQALRQKECTLALAGGSQIMSTPD 241 VYVEFSRQRGLSPDGRCKPFAAAADGTGWSEGVGVLLLERLSDARRNGHRVLAVVRGSAI 301 NQDGASNGLTAPNGPSQQRVIEQALANARLSPHQVDLIEAHGTGTTLGDPIEAQALLATY 361 GGSRPEGRPLWLGSVKSNIGHAAAAAGVAGVIKAVMAVREGVLPKSLHIDAPTPEVDWSS 421 GAVALLTEEREWSVPGEEPRTAAISSFGASGTNAHVLVQYAPEPDPEPAAEAPAAVFTGA Sal[KS7][AT7] 481 ALPWLLSGRTAEGLRGQARSLHTYASTTATALPGAALGLATTRAALERRGAVLTSGTPGT 541 PDKDALLTGLDALAEGTPAAGILEGTTVSGADRPVFVFPGQGSQWAGMAVELLDSSSVFA 601 ARLGECAEALDPFVDWSLVDVLRQTEGAPGFDRVDVVQPALWAVMVSLAEVWRAAGVAPA 661 AVIGHSQGEIAAAAVSGALSLSDAAKVSALRARALLALAGKGGMVSVADAADSVRERISA 721 WGERLALASVNGPQSTVVSGDPEALDELMAGCEAEGVRARRINVDYASHGPQVEKIRTEV 781 LGALSGIEPRTAEVPFLSTVTGEFVTGTELDAEYWYRNLRNTVRFEDAVRQLLDRGHGAF 841 VEASAHPVLTVGVQETIDAAGAPAFVQGTLRREDGDAARFLASLAEAWTRGVPVNWAIVT 901 DSSAPPAEDLPTYAFQRRTYWLHGARTGSVQAPVDAVEAEFWDSVENGDIDSLSGSLALE 961 DSAPLAELLPALSSWRRRRRERGEVDSWRYRIDWQPLAESAPPALEGTWLLVTGDGVEAE 1021 ILKTGESALSAHGATVHPLTLTGEGEREALVRQLLGAEVEHGPFAGVLSLLATAEPERGP 1081 ATTLALVQALADAECEAPLWVATRGAVGTGPEEAPAHPAQAGAWGLGLVAALERPGGWGG 1141 LVDLPAEPDENLAGRLAAALAGQEDQLALRATGTYVRRLARAPLPGSEVRPWEPADTVLV SalKR7 0 1201 TGATAPVGARTALLLAASGAKRLLLTVPGGEEQPAALVGELEEAGVQVTLAEWDGRDVTA 1261 LRSLAEAAAADGAPVRGVFHAATRADLAPLDETTAADLAAATAAKTVPARALDEAFGEEV 1321 EAFVLFSSVTSYWGGGEHAAFAAASAELDALAARRRSRGLAATSVAWGVWDLFDAEQNPA 1381 EAAELQARSADRGLPLLDPETAWQALRLSLGRQETAIAVADVDWERFWPLFTSARPAPLL 1441 SDLPEVRGLGRGLAEDTGTGADPGAAEALRSKLAGLSPAEQDRALTDLVCAHAAAVLGHS 1501 SAGAVDAERAFKDLGFDSLTAVGLRNGLGAATGLSLPATLVFDYPTPAAMAGYVRDHLLA SalACP7 1561 GARQEATAAGVQSGLDQLEADLLSVALDKDERKNLTRRLEGLLSRFKDAQAAADEESVSG 1621 KLDSASDEEIFAFIREEFGRPE Figure S4. Domain boundaries of salinomycin synthase module 7 and design of recombinant SalKR7 0 S6

RGEVDSWRYRIDWQPLAESAPPALEGTWLLVTGDGVEAEILKTGESALSAHGATVHPLTLTGEGEREALVRQLLGAEVEHGPFAGV LSLLATAEPERGPATTLALVQALADAECEAPLWVATRGAVGTGPEEAPAHPAQAGAWGLGLVAALERPGGWGGLVDLPAEPDENLA GRLAAALAGQEDQLALRATGTYVRRLARAPLPGSEVRPWEPADTVLVTGATAPVGARTALLLAASGAKRLLLTVPGGEEQPAALVG ELEEAGVQVTLAEWDGRDVTALRSLAEAAAADGAPVRGVFHAATRADLAPLDETTAADLAAATAAKTVPARALDEAFGEEVEAFVL FSSVTSYWGGGEHAAFAAASAELDALAARRRSRGLAATSVAWGVWDLFDAEQNPAEAAELQARSADRGLPLLDPETAWQALRLSLG RQETAIAVADVDWERFWPLFTSARPAPLLSDLPEVRGLGRGLAEDTGTGADPG (N terminal NdeI site) CATATGCGCGGTGAAGTGGATAGCTGGCGTTACCGTATTGACTGGCAACCGCTGGCGGAGAGCGCCCCTCCAGCCTTGGAAGGCAC GTGGCTGCTGGTCACCGGCGATGGCGTCGAGGCTGAGATCCTGAAAACGGGCGAGAGCGCGCTGTCGGCACATGGCGCGACGGTTC ACCCGCTGACCCTGACGGGTGAGGGTGAGCGTGAGGCACTGGTTCGCCAGCTGCTGGGTGCTGAAGTTGAACACGGCCCGTTTGCG GGCGTGCTCTCTTTATTGGCGACCGCAGAGCCAGAGCGTGGTCCGGCGACGACGCTGGCACTGGTCCAAGCGCTGGCGGATGCGGA GTGCGAGGCCCCGCTGTGGGTCGCGACCCGTGGTGCGGTGGGCACCGGTCCGGAAGAAGCGCCGGCGCATCCGGCGCAGGCTGGTG CGTGGGGTCTGGGCCTGGTCGCAGCGCTTGAACGCCCGGGTGGCTGGGGTGGCCTGGTCGATCTGCCGGCGGAACCGGACGAGAAC TTGGCGGGTCGTCTGGCCGCGGCGCTGGCCGGCCAGGAAGATCAGTTGGCGCTGCGTGCCACCGGCACGTACGTTCGCAGACTGGC ACGCGCACCGCTGCCGGGTTCCGAAGTCCGTCCGTGGGAGCCTGCGGACACCGTTCTGGTGACTGGTGCGACCGCTCCGGTTGGTG CTCGTACGGCCCTGCTGCTGGCTGCGTCTGGCGCAAAGCGTTTGCTGCTGACGGTTCCGGGTGGCGAGGAACAACCGGCGGCGCTG GTTGGTGAACTGGAAGAGGCCGGTGTGCAAGTGACCTTGGCCGAGTGGGACGGCCGTGACGTTACCGCGCTGCGTAGCCTGGCAGA GGCTGCCGCTGCGGACGGTGCGCCGGTCCGCGGTGTGTTTCACGCGGCGACGCGTGCCGATCTGGCCCCGCTGGACGAAACCACGG CAGCGGACCTGGCTGCAGCGACCGCAGCCAAGACCGTGCCAGCGCGCGCGTTAGATGAAGCATTTGGTGAGGAAGTTGAGGCATTC GTCCTGTTCAGCAGCGTTACCAGCTATTGGGGTGGCGGCGAGCACGCGGCGTTTGCAGCCGCAAGCGCAGAGCTGGACGCGCTGGC AGCGCGTCGTCGTAGCCGTGGTTTGGCGGCAACCAGCGTAGCGTGGGGCGTCTGGGACCTGTTCGACGCTGAGCAGAATCCGGCAG AGGCCGCAGAACTGCAGGCGCGTAGCGCTGACCGTGGTCTGCCGCTGCTGGATCCTGAAACCGCATGGCAGGCTTTGCGTCTGAGC CTGGGTCGCCAAGAAACCGCGATCGCAGTTGCAGATGTGGATTGGGAACGCTTCTGGCCGTTGTTCACCTCCGCACGCCCGGCGCC ACTGCTGAGCGATCTGCCTGAAGTGCGCGGTCTGGGCCGTGGTCTGGCCGAGGATACCGGTACTGGTGCGGATCCGGGTTAACTCG AG (Stop codon and C-terminal XhoI site) Figure S5. SalKR7 0 amino acid sequence. The synthetic gene encoding SalKR7 0 domain was subcloned into the corresponding NdeI and XhoI digested pet-28a vector and the recombinant protein was expressed with N-terminal His6-tag in E.coli BL21 (DE3). Protein expression and purification procedures are described below. S7

Figure S6. SDS-PAGE and LC-QTOF-MS analysis of recombinant Nan[KS1][AT1]. S8

Figure S7. SDS-PAGE and LC-QTOF-MS analysis of recombinant holo-nanacp1. S9

Figure S8. SDS-PAGE analysis of recombinant ketoreductases and mutants. Figure S9. Alignment of epimerase-active KR domains (rows 1-3) with epimerase-inactive KR domains from polyketide synthases (rows 4-6). The conserved amino acids of Thr and His in epimerase-active KR domains are in broken red rectangles. (Pim, Pimaricin) S10

Figure S10. Ketoreductase activity of wild-type and mutant KR proteins for reduction of (±)-2-methyl-3-ketopentanoyl-SNAC (5). See Table S5 for summary of steady-state kinetic parameters. S11

Figure S11. Chiral GC-MS analysis of the stereochemistry of diketide methyl esters derived from incubation of AmpKR2 and AmpKR2-G355T/Q364H with 2-methyl-3-ketopentanoyl-SNAC (5) and NADPH for 2 h at room temperature. S12

Figure S12. Chiral GC-MS analysis of the stereochemistry of diketide methyl esters derived from incubation of TylKR1 and TylKR1-Q377H with 2-methyl-3-ketopentanoyl-SNAC (5) as substrate and NADPH for 2 h at room temperature. S13

Figure S13. Chiral GC-MS analysis of the stereochemistry of diketide methyl esters derived from incubation of EryKR6 and EryKR6-G324T/L333Hwith 2-methyl-3-ketopentanoyl-SNAC (5) and NADPH for 2 h at room temperature. S14

Figure S14. Chiral GC-MS analysis of methyl 2-methyl-3-hydroxypentanoates produced by KR-catalyzed reductions of 2-methyl-3-ketopentanoyl-NanACP1 (7a) generated in situ by incubation of Nan[KS1][AT1], propionyl-snac, holo-nanacp1, methylmalonyl-coa and NADPH for 1 h. S15

Figure S15. Kinetic analysis of recombinant KR domains incubated with reconstituted Ery[KS6][AT6] and EryACP6 or Nan[KS1][AT1] and NanACP1, based on GC-MS quantitation of derived diketide methyl esters. See Table S7 for summary of calculated rates of product formation for each KR domain. S16

Figure S16. Fluorescence enhancement analysis of NADPH binding by NanKR1 0. The ketoreductase-active EryKR1 was used as a control in these experiments. NanKR5 0 and SalKR7 0. Proteins at 10 µm were titrated with increasing concentrations of NADPH. Cofactor fluorescence enhancement was determined as described in the Methods section. S17

Figure S17. Absence of reductase activity of KR 0 domains. KR-catalyzed reduction of 8 mm (±)-2-methyl-3-ketopentanoyl-SNAC (5) by 5 µm NanKR1 0, NanKR5 0 and SalKR7 0, with monitoring of the consumption of NADPH by the absorbance at 340 nm. The ketoreductase-active EryKR1 was used as a positive control in these experiments, with redox-inactive EryKR3 0 serving as the negative control. S18

Table S1. Rare Codons in Nan[KS1][AT1] Rare codons/total codons for one amino acid Arg Leu Pro Nan[KS1][AT1] 3/71 1/84 28/65 Table S2. Mutagenic Primers Utilized to Generate KR Mutants Mutation F or R Primer Sequence; 5ʹ-3ʹ EryKR6 outside primers F R ATCGTAATCCATATGGCCGACAGCCGCTACCGCGTCGACTGGCGACCGC TGATTCGATGAATTCACGTCATCTCCCGCGCCGGGGCCGCCTGCACCGCGGGG EryKR6-G324T F R CGCCGAGACCTTCGTCCTGTTCTCGTCCACAGCGGGGGTGTGGGGCAGTGCG CGCACTGCCCCACACCCCCGCTGTGGACGAGAACAGGACGAAGGTCTCGGCG EryKR6-L333H F GCGGGGGTGTGGGGCAGTGCGAACCACGGCGCCTACTCCGCGGCCAACGCC TylKR1 outside primers R F R GGCGTTGGCCGCGGAGTAGGCGCCGTGGTTCGCACTGCCCCACACCCCCGC GCAGATATACATATGAGCCCCACCGATGCCTGGCGC GTGGTGCTCGAGTCATCAGGCTGCCGTCAGGGCCTCCCG TylKR1-Q377H F CCGGCACATGGGGCAACGCCGGCCACGGTGCGTACGCCGCCGCCAACGCCG R CGGCGTTGGCGGCGGCGTACGCACCGTGGCCGGCGTTGCCCCATGTGCCGG F, forward primer; R, reverse primer. Bold letters represent the introduced mutant codons. restriction site underlined, stop codon colored. Table S3. Mutagenic Primers for Generation of SalKR7 0 Mutants Mutation F or R Primer Sequence; 5ʹ-3ʹ SalKR7-F362Y F GGCGGCGAGCACGCGGCGTATGCAGCCGCAAGCGC R GCGCTTGCGGCTGCATACGCCGCGTGCTCGCCGCC SalKR7-S349A F GGCATTCGTCCTGTTCAGCGCCGTTACCAGCTATTGGGG R CCCCAATAGCTGGTAACGGCGCTGAACAGGACGAATGCC F, forward primer; R, reverse primer. Bold letters represent the introduced mutant codons. S19

Table S4. Predicted MW and observed ESI-MS M D of recombinant KR domains and their mutants. Protein MW (cal, Da) LC-QTOF (M D, Da ) EryKR6-G324T 49299.66 49301.42 EryKR6- L333H 49298.64 49299.97 EryKR6-G324T/L333H 49342.69 49344.25 TylKR1-Q377H 53124.17 53125.92 NanKR1 0 48632.58 48633.0 NanKR5 0 47224.7 47225.7 SalKR7 0 52102.3 52103.4 SalKR7 0 -F362Y 52118.3 52119.0 SalKR7 0 -S349A 52086.3 52087.4 SalKR7 0 -F362Y/ S349A 52102.3 52103.39 Table S5. Steady-state kinetic parameters for reduction of (±)-2-methyl-3-ketopentanoyl-SNAC (5) by wild-type and mutant KR proteins. See Figure S10 for plots of V vs [S] for each KR domain. KR k cat (s -1 ) K m (mm) k cat /K m (mm -1 s -1 ) EryKR6 0.086±0.001 23±8 0.0037 EryKR6-G324T/L333H 0.11±0.002 32±10 0.0034 TylKR1 0.44±0.04 10.9±2.8 0.040 TylKR1-Q377H 0.094±0.016 37±13 0.0025 AmpKR2 0.29±0.03 169.0±25 0.0017 AmpKR2-G355T/Q364H 0.18±0.01 18±3 0.0098 S20

Table S6. Stereospecificity of the reduction of (±)-2-methyl-3-ketopentanoyl-SNAC (5) by wild-type and mutant ketoreductases and NADPH. protein 2R,3S (%) 2S,3R (%) diketide 2R,3R (%) TylKR1 0 0 91.3 8.7 TylKR1-Q377H 0 0 1.7 98.3 AmpKR2 100 0 0 0 AmpKR2-G355T/Q364H 2.3 0 0 97.7 EryKR6 35.2 12.2 0 52.6 EryKR6-G324T 6.9 6.2 0 86.9 EryKR6- L333H 25.9 0 0 74.1 EryKR6-G324T/L333H 0 0 0 100 2S,3S (%) Table S7. Kinetics of KR-catalyzed reduction of 2-methyl-3-ketopentanoyl-ACP generated in situ with Nan[KS1][AT1] plus NanACP1 or Ery[KS6][AT6] plus EryACP6. Relative values of k app, derived from least-squares fits of GC-MS peak area of methyl 2-methyl-3-hydroxylpentanoate to A t = k app *t for wild-type and mutant KR domains. See Figure S15 for plots of GC-MS peak area vs. time for each KS/KR combination. Ery[KS6][AT6] system Nan[KS1][AT1] system KR k app (peak area min -1 ) k app-mut / k app-wt KR k app (peak area min -1 ) k app-mut / k app-wt AmpKR2 1070±200 AmpKR2 880±40 AmpKR2-G355T/Q364H 9.4±3.6 0.009 AmpKR2-G355T/Q364H 35±13 0.04 EryKR6 800±190 EryKR6 650±75 EryKR6-G324T/L333H 49±17 0.06 EryKR6-G324T/L333H 50±10 0.07 TylKR1 700±190 TylKR1 610±330 TylKR1-Q377H 14±6 0.02 TylKR1-Q377H 0.5±3 0.0007 EryKR1 355±125 EryKR1 745±70 NysKR1 1540±160 NysKR1 640±220 S21

Table S8. Binding affinity of wild type SalKR7 0 and mutants for (±)-2-methyl-3-ketopentanoyl-SNAC (5). Protein K d (mm) K d (mut)/ K d (wt) SalKR7 0 1.2 SalKR7 0 -F362Y 1.8 1.5 SalKR7 0 -S349A 1.2 1.0 SalKR7 0 -F362Y/ S349A 2.1 1.8 Table S9. Tandem EIX Assay of Redox-Inactive NanKR1 0 and NanKR5 0 Domains. time (min) 0 10 20 30 45 60 KR 0 Deuterium exchange of [2-2 H]-2 (%) a EryKR6 0 0 4 4 5 5 NanKR1 0 0 3 7 11 14 17 Nan KR5 0 0 7 11 13 15 19 a Average of two or more measurements (±2%) Table S10. Tandem EIX Assay of Redox-Inactive SalKR7 0 and Mutant Domains. time (min) 0 10 20 30 40 50 60 KR 0 Deuterium exchange of [2-2 H]-2 (%) a EryKR6 0 0 4 4 5 7 7 SalKR7 0 0 4 9 20 24 26 29 SalKR7 0 -F362Y 0 4 11 20 22 27 33 SalKR7 0 -S349A 0 0 3 6 9 11 13 SalKR7 0 -S349A/F362Y 0 4 9 13 15 17 17 a Average of two or more measurements (±2%) S22

Table S11. Tandem EIX data analysis. Relative values of k app were calculated from least-squares fits of isotope exchange data to ln(a t /A 0 ) = -k app *t for wild-type and for mutant KR 0 domains, corrected for the rate of background exchange measured using EryKR6 alone (negative control). KR k app (min -1 ) k app (min -1 ) (corr) k rel (%) SalKR7 0 0.0062 0.0049 100 SalKR7 0 -F362Y 0.0067 0.0054 110 SalKR7 0 -S349A 0.0026 0.0013 26 SalKR7 0 -S349A/F362Y 0.0033 0.0020 41 EryKR6 0.0013 0 0 Supplemental Reference. (1) Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T. G.; Bertoni, M.; Bordoli, L.; Schwede, T. Nucleic Acids Res 2014, 42, W252-W258. S23