Project: Vibration Damping

Relevanta dokument
Mekanik FMEA30 Project Vibration Damping

Mekanik FMEA30 Project Vibration Damping

Sammanfattning hydraulik

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

12.6 Heat equation, Wave equation

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

Module 6: Integrals and applications

Beijer Electronics AB 2000, MA00336A,

Rep MEK föreläsning 2

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Mekanik HI Andreas Lindblad

KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs kl

Workplan Food. Spring term 2016 Year 7. Name:

2.1 Installation of driver using Internet Installation of driver from disk... 3

Webbregistrering pa kurs och termin

EXAM IN MODELING AND SIMULATION (TSRT62)

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Pre-Test 1: M0030M - Linear Algebra.

Isometries of the plane

Problem som kan uppkomma vid registrering av ansökan

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Support Manual HoistLocatel Electronic Locks

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:


1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

TEXTURED EASY LOCK BLOCK INSTALLATION GUIDE. australianpaving.com.au

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05


Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Installation av F13 Bråvalla

Webbreg öppen: 26/ /

Solutions to exam in SF1811 Optimization, June 3, 2014

Undergraduate research:

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Manhour analys EASA STI #17214

Mekanik FK2002m. Kraft och rörelse II

Tentamen i Matematik 2: M0030M.

Chapter 1 : Who do you think you are?

Tentamen i Matematik 2: M0030M.

Styrteknik: Binära tal, talsystem och koder D3:1

Resultat av den utökade första planeringsövningen inför RRC september 2005

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Windlass Control Panel v1.0.1

Collaborative Product Development:

Support for Artist Residencies

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Module 1: Functions, Limits, Continuity

FYTA11-ma1, ht13. Respondents: 11 Answer Count: 9 Answer Frequency: 81,82 %

Preschool Kindergarten

Mekanik FK2002m. Kraft och rörelse I

Boiler with heatpump / Värmepumpsberedare

Grafisk teknik. Sasan Gooran (HT 2006)

Kvalitativ rörelseanalys. Kvantitativ rörelseanalys Kinematik Kinetik. Biomekanik. Idrottsmedicin ur ett tvärprofessionellt perspektiv

Flervariabel Analys för Civilingenjörsutbildning i datateknik

Ringmaster RM3 - RM 5 RM3 RM 4 RM 5

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

1. Unpack content of zip-file to temporary folder and double click Setup

Installation Instructions

SVENSK STANDARD SS :2010

DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Att planera bort störningar

Module 4 Applications of differentiation

The Finite Element Method, FHL064

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

4. Nonlinear problems with What s Best!

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45

Isolda Purchase - EDI

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Registrerade / Registered 14/05/2009. No Ordförande / The President. Wubbo de Boer REGISTRERINGSBEVIS CERTIFICATE OF REGISTRATION


Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation

Arctic. Design by Rolf Fransson

Styrteknik : Funktioner och funktionsblock

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

PRESS FÄLLKONSTRUKTION FOLDING INSTRUCTIONS

A study of the performance

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Annonsformat desktop. Startsida / områdesstartsidor. Artikel/nyhets-sidor. 1. Toppbanner, format 1050x180 pxl. Format 1060x180 px + 250x240 pxl.

Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.

In Bloom CAL # 8, sista varv och ihopsättning / last rows and assemble

Pedagogisk planering. Ron Chlebek. Centralt Innehåll. Svenska/Engelska. Lego Mindstorms. Syfte: Matematik

Unit course plan English class 8C

Transkript:

Mekanik - Grundkurs för I (FMEA10) 2014 Project: Vibration Damping Project team: Name: Personal id-number: Mekanik www.mek.lth.se. 1

Project: Vibration damping Project Specification 1. Introduction In this project we will study the vibrations of a simple mechanical system by using our knowledge in mechanics and the Multi Body Simulation package ADAMS. We will investigate the motion of a machine-housing due to an internal rotating mass unbalance. The machine housing is mounted on a foundation via an elastic spring system. The motion of the housing creates a force on the foundation. This force is unwanted and we will try to reduce the motion by adding a specific mass-spring-damper system to the machine housing. The purpose of this project will be to investigate some of the properties of this vibration damping concept. 2. Problem formulation A machine-housing contains a rotor with a mass unbalance according to Figure 1 below. The unbalance is given by the offset of the centre of mass for the rotor relative to the rotor axle. The rotor is spinning with a constant angular velocity and this produces an acceleration on the housing which is transmitted to the foundation via the supporting spring system. By adding a specific mass-spring-damper system on top of the machine housing the motion of the housing and the forces exerted on the foundation may be reduced. We want to find out how this damping mechanism works and how it could be designed. See Figure 2. 3. Theoretical model In our theoretical model we assume that the machine housing is a rigid body with mass m h and with the possibility of a translational motion in the vertical direction x= xt () (1) where x is a coordinate measuring the vertical position of the housing relative to the foundation (see Figure 1). The rotor unbalance is modelled as a particle with mass m r performing a circular motion with radius e and constant angular velocity ω relative to the housing. The total mass of the machine is denoted by m and m= m + m (2) h r The housing is supported by a spring-damper system connected to the foundation (ground). This system is modelled by using a linear spring and linear viscous damper. The force on the housing from the spring-damper system may then be written F = k( x x0 ) cx (3) where k is the spring constant, x 0 is the position of the housing when the spring is unloaded. and c is the viscous damping coefficient. The machine model is visualized in Figure 1 and will be referred to as the un-damped machine. 2

m r ϕ Motion: ϕ = ωt+ϕ 0 m h e x k c Figure 1: Un-damped machine The damping device ( vibration absorber ) mounted on top of the housing is modelled as a particle with mass m a connected to the housing with a spring-damper system according to Figure 2. The elastic spring constant is denoted κ and the viscous damping coefficient η. If the position of the damping mass relative to the machine housing is given by y= yt () (4) the damping force D, acting on the housing from the damping device, may be written D= κ( y y ) ηy (5) 0 where y 0 is the position of the absorber mass (relative to the housing) when the spring is unloaded. The machine model is visualized in Figure 2 and will be referred to as the damped machine. m a κ η y Figure 2: The damped machine. 3

4. Basic data The following basic data should be used: Table 1: Basic data Parameter Symbol Unit Numerical value Machine mass m = m h +m r kg 100 Foundation spring constant k N/m -- (Team specific)* Foundation damping constant c Ns/m 3000 Rotor mass m r kg 10 Rotor mass eccentricity e m 0.2 Rotor velocity N Rpm** -- (Team specific)* Absorber mass m a kg - Absorber spring constant κ N/m - Absorber damping constant η Ns/m - *See Appendix 2 at the back of this specification. ** Revolutions per minute. 5. Theoretical investigations and damper design We want to examine the motion of the un-damped machine and then design a vibration absorber which reduces the motion of the machine housing as much as possible. The design problem may be formulated as follows: Choose the mass m a, the elastic stiffness κ and the viscous damping η of the vibration absorber so that the amplitude of the housing motion becomes as small as possible. We call this the optimal design. 5.1 The motion of the un-damped machine Tasks and questions: 1. Calculate analytically the amplitude of the steady state motion of the un-damped machine housing. Draw a free-body diagram including external forces. Formulate the force equation. Use data in table 1. Consult chapter 12 in Mekanik, Grundkurs, C. Nyberg for the theory. 2. Construct a model of the problem using the ADAMS software. Simulate the motion of the machine. Plot a diagram of the vertical position of the machine housing as a function of time. Compare the ADAMS results of the machine housing motion with the analytical solution. 5.2 The motion of the damped machine The damping mechanism cannot be allowed to be too heavy. We will design a damper with a mass of maximum 10% of the total machine mass, i.e. we have the design restriction: ma 0.10m (6) 4

where m is the total machine mass, according to (2). Tasks and questions: 3. Construct a model of the damped machine using the ADAMS software. 4. Simulate the motion of the damped machine for different values of mass, stiffness and damping coefficients (m a, κ and η) of the vibration absorber. Do you find any damping of the housing motion? If not change the values and try again! Compare the amplitudes of the damped machine for different values of absorber mass m a, absorber spring constant κ and absorber damping constant η. Include plots of these simulations in the report. 5. What mechanical effect may be causing the damping of the housing motion? Try to formulate, in words, a simple explanation (a theory )! 5.3 The optimal design Tasks and questions: 6. Formulate a strategy for the selection of mass and stiffness coefficients (m a, κ) for the vibration absorber in order to obtain an optimal design. 7. Try to find mass, stiffness and damping coefficients (m a, κ and η) for an optimal design. Use the strategy and your simulation model! 8. Compare the motions of the optimally damped and the un-damped housings by plotting a diagram of the vertical position of the machine housing as a function of time. What is the amplitude reduction ratio R, defined by: amplitude of damped machine housing R = amplitude of undamped machine housing 9. Can you think of any practical problems with the design of a vibration absorber of this type? 10. Produce a written report on your findings! See Appendix 3! 5

Appendix 1 Short ADAMS manual for Project: Vibration Damping 5.1 The motion of the un-damped machine See Computer Exercise 2 ( Datorlabben ). If we choose to build a machine housing as a cube with side 100cm then choose the following Working Grid X Y Size (2m) (2m) Spacing (10cm) (10cm) Zoom in the entire grid of the working area. We will not need the gravity in this problem so: Select No Gavity. As the machine housing choose for instance Rigid body: Box. Select Length = Height = Depth = 100cm! Place the box on the Working Space. Change the mass properties of the box! Connect the Box to Ground with a Translational Spring-damper. Make the Spring-Damper as long as possible! Use a Rigid body: Link (Length = 20cm) to create the eccentricity. Connect the Link to the Box. Use a Joint: Revolute. Change the mass properties of the Link. Set mass = 0. Use a Rigid body: Sphere to create the rotor mass. Connect the Sphere to the Link Change the mass properties of the Sphere. Create a Rotational Joint Motion for the Link+Sphere. Create a Measure of the y-displacement of the centre of mass of the Box. Test the model by running a simulation. Select an appropriate End Time so that steady state of the housing motion is obtained. Calculate (by hand) an estimate of the amplitude of the machine housing. Did the model work as expected? 5.2 The motion of the damped machine Create the vibration absorber, in the same way as you built the machine housing, and place it on top of the machine housing. Assign specific values to the Design Variables m a, κ and η. Test the model by running a simulation. 5.3 The optimal design How should the mass of the vibration absorber be selected? How should the natural frequency of the vibration absorber be designed? 6

Appendix 2 Team specific parameters Set up Spring constant, k (N/m) Rotor velocity, N (rpm) 8400000 2850 8650000 2900 8700000 2900 8950000 3000 9100000 3000 9200000 3000 9350000 3000 9500000 3000 Project Team A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 Set up Project Team B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 Set up Project Team A23 A24 A25 A26 A27 A28 A29 A30 Set up Project Team B23 B24 B25 B26 B27 B28 B29 B30 Set up 7

Appendix 3: Anvisningar för skriftlig rapport Rapport ska skrivas på ett sådant sätt att en kurskamrat som inte har utfört samma projektuppgift har möjlighet att sätta sig in i frågeställningen, utförandet och resultatet för att därefter själv kunna bilda sig en uppfattning om projektuppgiftens utfall. Rapporten kan skrivas på svenska eller engelska. Den skriftliga rapporten ska granskas av en lärare vid avdelningen för Mekanik. För att underlätta diskussion av rapporten ska både ekvationerna och sidorna numreras. Följande rubriker skall ingå i rapporten: 1. The motion of the un-damped machine. 2. The motion of the damped machine. 3. The optimal design. 4. Conclusions and discussion. Utformningen av rapporten i detalj bestäms av projektgruppen men där skall ingå Problembeskrivning Beskrivning av vad uppgiften gick ut på. Metod Beskriv kortfattat vilka hjälpmedel som använts vid analysen. Vilka antaganden och vilka approximationer har gjorts? Vilken teori har använts? Utförande Berätta hur undersökningen har genomförts. Organisera eventuellt resultatet i tabellform. Diagram ritas med hjälp av dator. Varje diagram ska numreras och förses med beskrivande text. Diagram placeras sist i redogörelsen och refereras till med hjälp av diagramnumret. Inga orefererade diagram får infogas i rapporten. Resultat Ange vilka resultat som erhölls i form av beräknade värden och kvalitativa resultat. Resultatpresentation i form av tabeller och diagram. Diskussion Stämmer resultatet med den teori som har antagits? Hur kan eventuella avvikelser förklaras? Finns det skäl att tro att den verkliga problemställningen inte är så idealiserad som teorin förutsätter? 8