:w ~; n_. bi -3f,fr. 'Jkm= \&5 ~75/t!4ttlh. Problemlösning. i/()6,~ Xx h. h = 5 h1 '3o = 5' h. uj, s=' f7-3~ X = 't(jo' EXEMPEL X :=3T.
|
|
- Astrid Nyström
- för 8 år sedan
- Visningar:
Transkript
1 Probemösning EXEMPEL Surnrtanav två taär~ Det ena taetä{~ Vike~~~et andrå? S X + ::f) S>'Y '' f~ := i ' 5" bi f fr X :=T ~H urångt h inn er manp?h 0 rriimec \&5 ~5/t!tth ' to: h 0 er ( 'J/th= ' ' '" ~5 { /uno 'kr ') ;''5 Sarn:Jari~E\nmenan sträcka (s) tid (t) pcp' hastighet (v) gesenkef niedtriangen " 'Jkm= "S "" "' :gir 5' " : vrn uj s=' gt:rv h Xx h r~ X = 't(jo' f:jl 00 tm 06 spj _ {) = ;L K/yrt i/()6~ 5km/h t =00h = 55 H~ 5 "' :=! ' " 0 mi) ;: ~5h/ ~ 5; 5 '5 hzo'' ha samma enhemi som 00 km Tiden får vi genomattci~idera sträckan J;edhastig;hettm t ' U 5vu; Det tv 5 h 0 min ~:i " v Observera att vi inte utför divisionen 00 / 5 utan skriver det i' bandad form och omvandar därefter ti tiinar och minuter =5J:~ /J = S L h = 5 h 'o = 5' h Eftersoni'viinåste" 'terskriverviom0 :w ~; n_
2 OVNNGAR 0 Summan av två ta är ~ Det ena taet är ~ Viket är det andra? 0 Hur ångt hinner man på h 0 min om man åker med en medehastighet av 0 km/h? 0 Hur hög medehastighet håer man om man kör 0 km på h 0 min? Differensen av två ta är ~ Det mindre taet är ~ Viket är det andra? Hur ång tid tar det att köra mi med en medehastighet av 0 km/h? Göran åker iväg ti sitt arbete k 0655 varje morgon Han är som rege framme k 00 Göran har räknat ut att han kör med en medehastighet av 60 kmh Hur ångt har Göran ti sitt arbete? ngegerd har kokat 0 iter saft Saften ska häas på faskor som rymmer % iter Hur många faskor går åt? 5 Erik Sven och Kurt vann 00 kr på tips Av vinsten skue Erik ha ~ Sven ~ 5 och Kurt resten a) Hur mycket fick var och en? Hur stor de av vinsten fick Kurt? 6 En LPskiva gör varv per minut Hur många varv bir det under en meodi som tar min 5 s? Eje startar hemifrån k 0 för att köra ti sin sommarstuga som igger mi bort Eje kör med en medehastighet av 5 kmh När är han framme? kass B fums 6 pojkar och fickor Av pojkarna åker : skoskjuts Av fickorna är det : som åker skoskjuts Hur stor de av kassens eever åker skoskjuts? Om % iter oja väger 50 g hur mycket väger då a) iter % iter 0 En miiiter kvicksiver väger 6 g en faska finns V iter kvicksiver Hur mycket väger faskan med sitt innehå om faskan sjäv väger / hg? Svara i kg Av Görans ön går! i skatt Av återstoden betaar han!s i hyra Hur stor de av önen finns sedan kvar ti mat och övriga utgifter?
3 ~/ '65!/ 'i c) /~! c) 5 6 a) /% 6 a) ' 6 a) 00 a) 0 a) 0 a) OVNNGAR + 5~/(5~+~) ( + ) ' O Summan av två ta är 5 ~ Det ena taet är ~ Viket är det andra? 6 0 en back finns 0 faskor Varje faska innehåer / iter 5 5/ 6 Hur många iter innehåer faskorna tisammans? 05 Eva och Sofia vann kr på penningotteriet Eva sku ~ av vinsten och Sofia resten Hur mycket fick var och en? 06 en kass med eever finns det 5 pojkar Hur stor de av kassen är fickor? 0 Differensen f»roblemlösnng av två ta är ~ Det mindre taet är Viket är det stöte? % EXEMPEL Aven tipsvinst på kr skue Boha /5 Sven / och Lena resten a) Hur mycket fick var och en? Hur stor de av vinsten fick Lena? = o) Bo får: 5 av kr 000 = ~ kr= ~f)q kr= kr ' Sven får: av 5000 kr = 5000 kr = 50 kr Lena får: kr ( ) kr = 550 kr Lenas ande = 5 =0 0 Svor: o) Bo får 6000 kr Sven 50 kr och Lena 550 kr Lenas ande av vinsten ör ~O 0 Ett arv ska deas så att Emi ska få / av pengarna Martin 'och Matida resten Arvet är på 000 kr a) Hur mycket får Emi? Hur mycket får Martin? c) Hur mycket får Matida?
4 BRÅK 0 Erika Tove och Danie har vunnit 00 kr på Lotto Av vinsten ska Erika ha /5 Tove / och Danie resten a) Hur mycket får var och en? Hur stor de av vinsten får Danie? nnan CDskivorna kom fanns LPskivor av vinypast När man speade dem snurrade de med en hastighet av ' varv per minut Hur många varv bev det då under en meodi som varade i minuter 5 sekunder? kass B finns 6 fickor och pojkar Av pojkarna åker / skoskjuts Av fickorna åker / skoskjuts Hur stor de av kassens eever åker skoskjuts? Om /5 iter oja väger 50 g Hur mycket väger då a) iter? /iter? En miiiter kvicksiver väger 6 g en faska finns / iter kvicksiver Hur mycket väger faskan med innehå om sjäva faskan väger två och ett havt hektogram? Svara i kiogram 5 Av Görans ön går / i skatt Av återstoden betaar han /5 i hyra Hur stor de av önen återstår sedan ti mat och övriga utgifter?
5 0 a) e) 0 d) ~ 0 a) 0 e) 0 min 5 km st 5 a) Erik: 0 kr Sven: 00 kr Kurt: 00 kr varv K 5 a) 00 g 65 g 0 65 kg ~ 5 d) ~ 0 a) 6 0 % FACT e) d) ~ 05 a) e) 5 d) 06 a) e) 6 d) 00 0 a) e) ' d) km 0 0 kmh 6~ 0 6~ iter 05 Eva: 6000 kr Sofia: 000 kr 06 i 0 6~ 0 st 0 a) 000 kr 6000 kr e) kr d) ~ 0 a) Erika: 0 kr Tove: 00 kr Danie: 00 kr 0 5 varv a) 00 g 65 g 65 kg 5 5
Läxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger.
ledtrådar LäxOr Läxa Rita en bild med de lyktstolparna. Hur många mellanrum är det? Läxa 8 På nedre halvan ska talen adderas tv å och två och på den övre halvan ska talen subtraheras. Läxa 6 7 Rita en
Tankenötter. från a till e
Tankenötter från a till e H O L M S T R Ö M S M E D H A M R E Matematikserier av Holmström och smedhamre Kära Läsare Det här är den 4:e boken med tankenötter. Vissa nötter är enkla att knäcka, medan andra
Från WebMatte Stockholms stad
Från WebMatte Stockholms stad Vanliga ord vid addition och subtraktion Använder Tim har 10 kg ris hemma och använder 2 kg till matlagning. Hur mycket har han kvar? Svar: 10-2 = 8 kg Dra av Mary köpte en
Övning 7 Diffraktion och upplösning
Övning 7 Diffraktion och uppösning Diffraktionsbegränsade system Om man tittar på ett objekt genom ett perfekt (aberrationsfritt) optiskt system avgörs hur små saker man kan se av diffraktionen i insen.
1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) 1000 0,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g
1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar 2 Beräkna a) 0,7 50 d) 45110 b) 1000 0,04 e) 78,2/100 c) 0,08 0,5 f) 555511000 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g 4
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 1
Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs A som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
c) a) b) c) tre och en halv miljon
REPETITION 1 A 1 Hur många procent av figurerna är gula a) b) c) 2 Hur mycket är a) 10 % av 7 kr b) 30 % av 600 kr c) 7 % av 20 000 kr 3 Skriv bråken i enklaste form. a) 4 28 b) 1 2 c) 16 40 4 Skriv i
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
b) kg c) 900 g 1071 a) g b) kg c) 800 g 1072 a) 500 g b) kg 1073 a) 5 kg b) 4,5 kg c) 1,1 kg
BASHÄFTE X Kapitel a) b) c) a) 9 b) 9 c) 9 a) b) c) d) a), b),8 c), d) 9, a) b) 9 a) 9 b) a), b), 8 a), b), 9 Störst: 8 Minst: 88 Störst: 8, Minst:,8 a) 89 a) b) 8 kr kr a) 8 9 kr a) b) 8 kr 9 9 kr kr
Transportplan för postnummer 97345 LULEÅ
100 12 STOCKHOLM ON TO FR MÅ TI F TO FR MÅ TI ON Stockholm 100 26 STOCKHOLM ON TO FR MÅ TI F TO FR MÅ TI ON Stockholm 100 27 STOCKHOLM ON TO FR MÅ TI F TO FR MÅ TI ON Stockholm 100 28 STOCKHOLM ON TO FR
Transportplan för postnummer 39239 KALMAR
100 12 STOCKHOLM TI ON TO FR MÅ F FR MÅ TI ON TO Stockholm 100 26 STOCKHOLM TI ON TO FR MÅ F FR MÅ TI ON TO Stockholm 100 27 STOCKHOLM TI ON TO FR MÅ F FR MÅ TI ON TO Stockholm 100 28 STOCKHOLM TI ON TO
Instuderingsfrågor Krafter och Rörelser
1. Hur stor tyngd har ett föremål med massan: a) 4 kg b) 200 g Instuderingsfrågor Krafter och Rörelser 2. Hur stor massa har ett föremål om tyngden är: a) 8 N b) 450 N 3. Hur stor är jorden dragningskraft
PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.
Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.
5 Beräkna med huvudräkning
2 Beräkna a) Hur mycket får man tillbaka på en hundralapp, om man handlar för 65 kr? b) Kristina är 13 år. Morfar är 63 år äldre. Hur gammal är morfar? c) Benny köper tio kolor. De kostar 50 öre styck.
a. b a. b. 7.
1. Mattias och hans vänner badar vid ett hopptorn som är 10,3 m högt. Hur lång tid tar det innan man slår i vattnet om man hoppar rakt ner från tornet? 2. En boll träffar ribban på ett handbollsmål och
sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =
Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3
Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ
8 Facit till Bashäfte X
Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din
Facit till Mattespanarna 6B Lärarboken. Facit till Mattespanarna 6B Lärarboken best.nr Får kopieras Författarna och Liber AB 1/9
Facit till Mattespanarna 6B Lärarboken 1/9 KOPIERINGSBLAD 1.1 Övningar med stora tal Skriv följande tal med siffror. 2 000 000 2 400 000 2 490 000 490 000 5 050 000 50 000 1 a) 2 miljoner b) 2,4 miljoner
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
Högskoleverket. Delprov NOG 2003-04-05
Högskoleverket Delprov NOG 2003-04-05 2 1. Sven använder 40 procent av sin nettolön, d.v.s. lön efter skatt, till att betala hyran. Hur stor är Svens nettolön? (1) Efter att Sven betalat hyran har han
information förs in i prissystemets informationsmekanismer.
mokratins underskott budgetunderskott är en föjd av sätt att fungera, hävdar M Buchanan och Richard E i sin bok Democracy in Deficit. Rof Engund diskuterar sutsatser och betydese för förhåanden. Hur kommer
Matematiktävling för Skånes högstadieelever
Matematiktävling för Skånes högstadieelever Kvalificeringstest Tid : 60minuter Antal uppgifter: 15st Max poäng: 15poäng. Hjälpmedel : Papper, penna och radergummi (ej miniräknare). 1. Du ska ordna en fotbollsturnering
SÅ HÄR JOBBAR DU HEMMA INFÖR PROVET I MATEMATIK, åk 6, 8/11
SÅ HÄR JOBBAR DU HEMMA INFÖR PROVET I MATEMATIK, åk 6, 8/11 Börja med detta 22/10-18 Lektionen före matteprovet (7/11) kommer vi att ha ett litet, frivilligt, prov på området som bara kan ge E. Klarar
lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4
LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200
Verksamhetsberättelse 2010 Uppsökande Verksamhet med Munhälsobedömning
Verksamhetsberättese 2010 Uppsökande Verksamhet med Munhäsobedömning Det ska vara skönt att eva Aa som har bestående och omfattande behov av vård och omsorg, har rätt ti gratis munhäso bedömning och tandvård
1 25 % = 4 1 % = 0,01 10 % = 0,10 40 % = 0,40 7 % = 0,07 3,5 % = 0,035
% = 00 0 % = 0 20 % = 5 25 % = 4 50 % = 2 % = 0,0 0 % = 0,0 40 % = 0,40 7 % = 0,07 3,5 % = 0,035 -----------------------------------------------------------------------------------------------------------------
e l h a ll byb o 4-6 januari Cupen för hela föreningen +
1995 2020 m e n m o t k i ä V h a n e byb o 4-6 januari 2020 - Cupen för hea föreningen + Väkommen ti 2020 års jubieumsuppaga av Habyboen! För 25:e året i rad bjuder IF Haby HK in ti handbosfest i Jönköping
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 2
Kapitel 2.1 2101, 2102, 2103, 2104 Exempel som löses i boken. 2105 Hela cirkeln är 100 %. Den ofärgade delen är 100 % - 45 % = 55 % 2106 a) Antalet färgade rutor 3 = b) 3 = 0, 6 c) 0,6 = 60 % Totala antalet
KW ht-17. Övningsuppgifter
Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal
GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)
GRUPP 1 JETLINE a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) b) Var under turen känner du dig tyngst? Lättast? Spelar det någon roll var i tåget
Formula 9 facit. 1 Beräkningar med positiva tal 1
Beräkningar med positiva tal Formula 9 facit a) 5,5 (5,50) b) 5,59 c) 5,99 d) 5,54 2 a) 3 (3,00) b) 3,09 c) 3,49 d) 3,04 3 a) 6, (6,0) b) 6,0 c) 5,6 d) 6,06 4 a) 9,04 b) 8,95 c) 8,55 d) 9 (9,00) 5 a) 25
Motion 1982/83: 697. Thorbjörn Fälldin m. fl. Ökat sparande
7 Motion 1982/83: 697 Thorbjörn Fädin m. f. Ökat sparande Ett omfattande sparande inom den privata sektorn är av avgörande betydese för samhäets kapitabidning och därmed för den ekonomiska tiväxten. Genom
Maria Österlund. Ut i rymden. Mattecirkeln Tid 2
Maria Österlund Ut i rymden Mattecirkeln Tid 2 NAMN: Hur mycket är klockan? fem i åtta 10 över 11 5 över halv 7 20 över 5 10 över 12 kvart i 2 5 över 3 20 i 5 5 i 11 kvart i 6 5 i halv 8 5 över halv 9
Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.
Block 4 2007-03-31 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGd Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss
Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9
Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50
Vektorn w definieras som. 3. Lös ekvationssystemet algebraiskt: (2p) 4. Förenkla uttrycket så långt det går. (2p)
1. Linjerna y=2x+4, y=4 och x=3 innesluter tillsammans en triangel. Linjen y=5,5 skär triangeln i två punkter. Beräkna sträckan mellan dessa två punkter. 2. Vektorn w definieras som w = 2u v där u = (7,1)
Inga vanliga medelvärden
Inga vanliga medelvärden Vanligtvis när vi pratar om medelvärden så menar vi det aritmetiska medelvärdet. I en del sammanhang så kan man dock inte räkna med det. Vi går här igenom olika sätt att tänka
Problem 1 I en familj fanns fem barn. När barnen väger sig flera åt gången får de följande resultat:
EXTRA PROBLEM TILL ALMA Problem 1 I en familj fanns fem barn. När barnen väger sig flera åt gången får de följande resultat: Ann + Carolina = 65 kg Erik + David = 75 kg David + Ann = 85 kg Ann + Magnus
= + = ,82 = 3,05 s
Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når
4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.
Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar
Frågor - Högstadiet. Grupp 1. Jetline
Grupp 1 Jetline Mät och räkna: Före eller efter: Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet.) Var under turen känner du dig tyngst? Lättast? Spelar
1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010. 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7
1 Ordna talen i storleksordning med det minsta först 1000,l 999,8 998,9 1001 989,9 1010 2 Skriv i kilogram a) 4hg 3 Beräkna a) 72 0,1-0,5 9 + 0,7 b) 7500 g c) 0,7 ton b) 33-6,5. (10,8-7) 4 En bil drog
4. En aktie ökade med 60 % ett år. Hur mycket var den värd då om den från början hade värdet 80kr?
D. Beräkna och svara i enklaste form. 7 a) b) c) d) 7 e) f). Pedro, Lina och Amir spelar på lotto. Pedro har betalat % av insatsen. Lina har satsat 0 % och Amir har betalat resten, dvs. 0 kr.. I Sverige
Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
3-8 Proportionalitet Namn:
3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt
Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)
Grupp 1 Jetline Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) Var under turen känner du dig tyngst? Lättast? Spelar det någon roll var i tåget du sitter
Östbergsskolans loggbok!
Östbergsskolans loggbok! Dag 1 det första vi gjorde var att gå varvet runt och lärde oss varandras namn. Det gick ganska snabbt,gruppen var ganska blandad,vissa gick i 6:an vissa i 7:an och några från
myran 35 mm lång. a) Hur lång är myran i verldigheten? b) Hur lång skulle myran vara om den avbildades i skala 4 : l?
LÄXA 5 1 Lös ekvationerna a) 2x+ll=14 b) 12+2y=13-y 2 Skriv utan tiopotens a) 3,4.10 3 b) 7,1. 10-4 3z c) 8=1 c) 5,6 10-1 3 I en biologibok är en myra avbildad i skala 5 : l. På bilden är myran 35 mm lång.
NMCC Semifinal
Semifinal Sigma 8 2016/2017 Uppgift 1 Hur många procent Material: Inget Medelvärdet av ett matematiktest med 80 deltagare var 80 poäng. Medelvärdet för flickorna var 83 poäng och medelvärdet för pojkarna
Handläggare. Lena Henlöv 08-523 022 02. Svar på motion från folkpartiet "utvärdering av södertälje skol modell"
södertäje
Allas rättighet. Ett arbete för likabehandling och mot diskriminering
Att behandas ika Aas rättighet Ett arbete för ikabehanding och mot diskriminering Kontaktpersoner Terese Andersson terese.andersson@stockhom.se Teefon: 08-50808206/200 Mobi: 0709-244 533 Livia Ramírez-Nisen
Lektion på Gröna Lund, Grupp 1
Lektion på Gröna Lund, Grupp 1 Jetline Tåget är 9,2m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Om du har
Vannaktiviteter. Torsby och Sunne
Vannaktiviteter Torsby och Sunne KANOT- OCH FLOTTFÄRD Kanottur Njut av en kanottur på Karäven - en fridfu uppevese för små och stora. Karäven är det perfekta vattendraget för turer på några timmar upp
Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem.
Detta tänker jag att man redan vet: sin α= b c och cosα=a c och alltså också att för vinkeln. b=c sin α och a=c cos α Hypotenusan gånger antingen sinus eller cosinus Del 1 Tänk nu att c är en flaggstång
Extrablad 1. Vägen till 21. Uppgiften består av två delar. Du ska först finna vägen till 21 och därefter utföra en räkneoperation.
Extrablad 1 Vägen till 21 Uppgiften består av två delar. Du ska först finna vägen till 21 och därefter utföra en räkneoperation. A I rutnätet finns alla tal från 1 till 21 inskrivna. Alla tal utom 1, 2
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2
Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
x kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)
REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna
Repetitionsuppgifter 1
Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv
Tid (s)
1. Atlanten vidgas med cm/år. Hur lång tid tar det innan avståndet mellan Europa och Nordamerika har ökat med en mil?. Det tar 8 minuter för solens ljus att komma fram till oss här på jorden. a. Hur många
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
LEKTION PÅ GRÖNA LUND, GRUPP 1
LEKTION PÅ GRÖNA LUND, GRUPP 1 JETLINE Tåget är 9,2 m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Två gånger
PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning
2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är
Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.
Block 1 2009-03-28 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGg Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss
ROCKJET GRUPP A (GY) FRITT FALL
GRUPP A (GY) FRITT FALL a) Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man sitter högst upp. b) Titta
INFÖR BESÖK PÅ GRÖNA LUND
1. Insane 1. I Insane upplever man som mest en G-kraft på 3,5 G. Hur många kilo skulle en våg visa om man väger 50 kilo i vanliga fall? 2. Under en timme hinner 600 personer åka Insane om alla fyra vagnarna
KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer!
vardag KLIMAT INGEN KAN GÖRA ALLT MEN ALLA KAN GÖRA NÅGOT! Transporterna släpper ut allt mer! Vi reser idag mer och mer och ofta längre och längre. Redan för 40 år sedan var vägtrafiken det dominerande
PYTHAGORAS Q U E S T
PYTHAGORAS Q U E S T Distriktsfinal 2018 Del 1. Tid: 60 min 6 frågor Max poäng: 18 poäng (3p/uppgift). Hjälpmedel: Papper, penna och radergummi (ej miniräknare). Skriv varje uppgift på ett separat blad.
Repetitionsuppgifter D5
Repetitionsuppgifter D5 1. Skriv koordinaterna för punkterna A-D 2. Rita ett liknande koordinatsystem och markera punkterna E = (1,0), F = (6,1), G = (5,6) H = (0,5) 3. Diagrammet visar hur mycket bensin
3:1 Tal i bråkform och i blandad form
3 Arbetsblad 3:1 Tal i bråkform och i blandad form Vilket bråk visar bilden? Svara i bråkform och i blandad form. 1 a) = 5 4 1 1 4 b) = 14 9 1 5 9 c) = 17 6 2 5 6 2 a) = 7 5 1 2 5 b) = 12 8 1 1 2 c) =
150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
Skriv med siffror 0 0 0 0 0 0 0 0 0 00 0 00 0 00 0 000 00 000 0 000 00 00 0 000 0 000 000 0 00 000 00 Addition med uppställning 0 0 0 0 0 0 0 0 Subtraktion med uppställning 0 0 0 0 0 Multiplikation med
Hårdhet & Avhärdning -Luftning & Oxidation
Hårdhet & Avhärdning -Luftning & Oxidation Hårdhet Ca & Mg Hårdheten på ett vatten mäts som bekant med Tyska hårdhetsgrader. Det är summan av Magnesium och Kaciumjoner i vattnet där Kacium är den dominerande
LÅc)CA. .~,'.,~c... _...
LÅc)CA.~,'.,~c... _... 1 Beräkna med huvudräkning a) Hur mycket får man tillbaka på en femtiokronorssedel, om man handlar för 44,50 kr? b) Hur mycket är 1/4 av 800 kr? c) Ett frimärke kostar 3,85 kr. Vad
------------------------- -------------------- ---------------------------------
A.RaVBXBMPLAR Sida: 1 Anm.upptagande p -mynd : STOCKHOLMS LÄN Dnr: Bnhet: 80NC/H Myndighetskod: 0201 Dnr annan p-mynd: AnmAningsdatum: 2010-09-02 k: 20.30 Amnäningssitt: se fritext upptagen av: Pa Thomas
!TIE - 1,5 10,8 LÄXA a) omkrets b) area. 7,5 a) 0,6 700 b) 200. c) 0,05. c) (-7) + (-3) f) (-7)'3. a) 181 b) 12, 16,01-1,6
LÄXA. 1 1 En fönsterruta har måtten 0,8 m x 1,5 m. Vilken är rutans a) omkrets b) area 2 Räkna utan miniräknare 62000 7,5 a) 0,6 700 b) 200 c) 0,05 3 Beräkna a) 7 + (-3) d) (-7) (-3) b) 7 (-3) e) (-7)
SAMMANTRÄDESPROTOKOLL Kommunala pensionärsrådet
1/12 Villan, samlingssalen, 2015-03-02 kl. 14-16 1-9 Beslutande Christer Johansson (ord.sn), Anna-Karin Skatt (KS), Göran Blom (PRO), Majken Nielsen (PRO), Arne Nyman (PRO), Lars Hjertén (SPF), Kerstin
Version A i TANKENÖTTER 4 4 = = 100 FACIT
Version 2017-12-01 4A i t r o v a F TANKENÖTTER 4 4 = 16 10 10 = 100 = 3 61 FACIT 1. Talet är 5 789. 2. a. 91 + 9 = 100 91 9 = 82 b. 502 + 498 = 1 000 502 498 = 4 c. 5 021 + 4 979 = 10 000 5 021 4 979
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2008 En för alla yrkesutbildande skolor på andra stadiet gemensam MATEMATIKTÄVLING
Tillsammans kan vi göra skillnad. Här är en guide som hjälper dig att komma igång!
Tisammans kan vi göra skinad. Här är en guide som hjäper dig att komma igång! VAD ÄR NICKELODEONS TOGETHER FOR GOOD? VAD ÄR PLAN INTERNATIONAL? Nickeodeon tror att vi kan göra gott tisammans. Nickeodeons
LEKTION PÅ GRÖNA LUND GRUPP A (GY)
LEKTION PÅ GRÖNA LUND GRUPP A (GY) t(s) FRITT FALL Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när man
Synnöve Carlsson Gunilla Liljegren Margareta Picetti. Matte. Borgen. Direkt. Facit BONNIERS
Synnöve Carlsson Gunilla Liljegren Margareta Picetti Matte Direkt Borgen Facit 6B BONNIERS Innehåll Kapitel 6 3 Kapitel 7 6 Kapitel 8 9 Kapitel 10 14 Läxor 15 Repetition 18 Kapitel 9 11 BONNIER UTBILDNING
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning. Julpromenaden (2) Vi antar först att sträckan på slät mark är km och att backen är y km lång. Från det kända sambandet får vi t = s/v och kan nu teckna
REPETITION 1 A. a) naturligt tal b) rationellt tal c) reellt tal. 0, p. a) b) 0,09 c) 0, x + 11 b) 16 3z = 1 c) 7y 6 = 14 3y
REPETITION A Vilket eller vilka av talen nedan är ett a) naturligt tal b) rationellt tal c) reellt tal 7 0,67 9 p Skriv talen i grundpotensform. a) 0 000 b) 0,09 c) 0,000 Lös ekvationerna. a) 5 = 5 x +
Räta linjens ekvation.
Räta linjens ekvation joakim.magnusson@gu.se Ur centralt innehåll år 4-6 Samband och förändring Proportionalitet och procent samt deras samband. Grafer för att uttrycka olika typer av proportionella samband
27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2
Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen
Edutainmentdag på Gröna Lund, Grupp A (Gy)
Edutainmentdag på Gröna Lund, Grupp A (Gy) Fritt Fall Hur långt är det till horisonten om man är 80 m.ö.h.? Titta på en karta i förväg och försök räkna ut hur långt man borde kunna se åt olika håll när
Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
Ge bara ett svar på varje fråga. Välj det svar som passar in bäst. Det är viktigt att du svarar på samtliga frågor.
[Q159] Förskoeenkät Väkommen ti enkäten! Här kan du svara på frågor om hur du tycker att förskoan fungerar. Kicka på pien för att starta enkäten. Du kan också kicka dig tibaka med piarna om du vi kontroera
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Dagens frågor. kontlikterna. Konflikter som leder till arbetsnedläggelse. äventyrar och undergräver vårt förhandlingssvstem."
Dagens frågor Front mot vida strejker Det goda förhåandet mean parterna på den svenska arbetsmarknaden har varit en nästan egendarisk företeese. Respekten för givna utfästeser har gjort det möjigt att
5. Roger Nordén, Ä:.' I
ÖVERKLAGAT BESLUT Kommunfuírnäktigo i Timrå kommuns besut den 24 augusti 2015, 112 _.í»-i,,0_. D0k.d 99749 Postadress Besöksadress Teeïon Teefax Expeditionstid Box 314 Backgränd 9 0611-46 06 00 0611-51
Facit Träningshäfte 9:2
Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12
LEVI MAURITZSSON: Utrikeskrönika
LEVI MAURITZSSON: Utrikeskrönika Utrikeskrönikan granskar i dag den brittiska tidningsbranschen, närmare bestämt utveckingen på och kring Londons ärevördiga tidningsgata Feet Street. Den nya tekniken gör
Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21
1 Tal Arbetsblad 1:1 1 0,1 0,5 0,8 1, 0,3 0,8 1,1 1,5 3 1,1 1,6,1,4 4 0,01 0,05 0,11 0,14 5 0,1 0,5 0,31 0,34 6 0,5 0,56 0,61 0,65 7 0,94 0,98 1,01 1,05 8 1,91 1,95 1,99,0 Arbetsblad 1: 1 0,3 0,6 0,9 1,1
Läxa nummer 1 klass 3
Läxa nummer 1 klass 3 Skriv ditt namn i triangeln som ett konstverk! Det här är din läxbok för klass 3. Du kommer att få en läxa i veckan. Där det står X skriver du vilket tal X är under eller över X:et.
SAMMANTRÄDESPROTOKOLL Kommunala pensionärsrådet
1/3 Villan, samlingssalen, 2018-04-23 14:00 10-18 Beslutande Christer Johansson (ordf. SON), Göran Blom (PRO), Majken Nielsen (PRO), Arne Nyman (PRO), Lars Hjertén (SPR Seniorerna), Kerstin Thuvesson (SPF