Tentamen TMA946/MAN280 tillämpad optimeringslära
|
|
- Ingrid Åström
- för 8 år sedan
- Visningar:
Transkript
1 Tentamen TMA946/MAN80 tillämpad optimeringslära Uppgift: min z 3x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Skriv på standardform m.h.aṡlackvariabler min z 3x 1 + x Då x 1 + x s 1 6 x 1 x + s x 1, x, s, s 0 Vi ser ingen uppenbar bas skapa FAS I problem min w a Då x 1 + x s 1 + a 6 x 1 x + s Välj a, s som bas B Titta på reducerad kostnad: c T N C T BB 1 N välj x 1 som inkommande. Vi gör min-ratio test för att hitta utgående Y B 1 A ink 1 b B 1 b
2 argmin Utgående i, Y i > 0 Ny bas blir a, x 1 1 B B 1 c T B N b Y i bas variabel utgår B 1 b Hitta reducerad kostnad CN T CT B B 1 N icke basvar 1, d.v.s. x blir inkommande. Gör min ratio. utgående Y B 1 Aink argmin i, Y i > 0 Ny bas blir x, x 1. bi Y i basvar 1 utgår. c T N Vi har ej länge någon artificiell variabel i basen Fas I är klar. Starta fas II. Vi har bas x 1, x 1 B B B 1 b c T B 3 1c T N 0 0N 1 1 Hitta reducerad kostnad. c c T N ct B ct B B 1 N /3 1/3 4/3 1/3 icke basvar s är inkommen. 1 1 Vi gör min ratio test. Y B 1 Aink argmin bi Utgående i, y i > 0 y i basvar 1 är utgående. Ny bas x, s /3 /3 3 1
3 Hitta reducerad kostnad: B B c c T N CT B B 1 N i vi har en optimal bas, x 1, s 6 6 med värden B 1 b Vi har x 1 0, x 6, s 1 0, s 8. Kolla! x 1 + x 6 6 OK x 1 + x 6 OK 1 c T N 3 0cT B N 1 Z 3x 1 + x 6 1b För att avgöra för vilka c mängden påverkar bildar vi problemet. min z x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Antag att det optimala värdet på detta problem är z. Då påverkas mängden för c > z. a) Ett exakt straff för g i (x) 0 är min{0, g i (x)}. En straffunktionsmetod baserad på denna är följande: 0. Välj µ 0 0. Sätt t Lös min x n f(x) µ t min{0, g i (x)} x t.. Sätt µ t+1 > µ t (så att lim t µ t + ), t : t + 1, gå till 1. b) Låt x : {x R n a T i x b i, i 1,..., m}. Frank-Wolfe algoritmens iteration är följande: 0. Välj x 0 X. Sätt t Lös min y X f(x t ) T y y t.. Om f(x t ) T (b t x t ) 0 Stopp! x t är en KKT-punkt. 3. Lös min l 0,1 f(x t + l(y t t t )) l t. 3
4 4. Sätt x t+1 x t + l t (y t x t ), t : t + 1, gå till 1. För att en iteration skall kunna genomföras krävs att stegen 1 och 3 (de två optimeringsproblemen) är genomförbara. Steg 1 är genomförbart om LP-problemet har en lösning, d.v.s. om f(x t ) T y är nedåt begränsad på X. Steg är genomförbart om f har ett minimum på linjesegmentet x t, y t. För detta räcker det med att f är kontinuerligt differentiarbar eftersom den då är kontinuerlig och x t, y t är en kompakt mängd (Weierstrass). For steg 1 fordras i allmänhet att x är begränsad. c) Eftersom f bara är differentierbar en gång har vi inte tillgång till rena Newtonmetoder. Problemet är konvext och inte särdeles stort (n 500 är att betrakta som ganska litet för ett konvext obegräansat problem). Om f(x) är någorlunda lätt att beräkna rekommenderas Qvari-Neewton/konjugerade gradientmetoder. (se kurslitteraturen för beskrivningar.) 3 a) Modell: Variabler: x ij andel av rxxxx j:s efterfrågan som tillgodoses av central i i, j. { 1, om central i byggs, i. y i 0, annars. Ny konstant: a ij Minimera Då 10 i jci b i { 1 om dij D 0 annars i, j (uppnåelighetsmatris) 30 j1 10 x i j a ij y i, i 1,..., 10; j 1,..., 30 e j x ij k i y i, i 1,..., 10 k ij 1, j 1,..., 30 (tillgång) (efterfrågan) x ij 0, i 1,..., 10, j 1,..., 30 y i {0, 1}, i 1,..., 10. (uppnåelighet) b) tillägg: x ij {0, 1}, i 1,..., 10; j 1,..., a) x är ett lokalt minimum f(x ) f(x), x B(x ), där B(x ) {x R n x x ɛ} för ett tillräckligt litet ɛ > 0. x är ett lokalt minimum f(x ) 0 n. 4
5 b) x är ett lokalt minimum f(x ) f(x), x B(x )ns. x är ett lokalt minimum λ 0 m så att f(x ) A T λ. λ T (Ax b) 0 Ax b. 5 a) Sätt φ(x) log( g i )(x)), β(x, µ) f(x) + µφ(x). Låt µ 1, µ e,... vara en positiv och monotont avtagande följd om tal med gränsvärde 0. Sekvensen x 1, x,..., ges av x k arg min x nβ(x, µ k ). b) (Iterationsindex k struket här.) Från optimalitetsvillkoret x β(x, µ) o n fås att f(x) µ g i (x) g i(x) 0 n. Eftersom g i (x) > 0, i. kan vi skriva detta som: (λ i µ/g i (x), i 1,..., m) f(x) λ i g i (x) o n, λ i g i (x) µ, i 1,..., m g i (x) 0, i 1,..., m. Skillnaden mellan detta och KKT för problemet (1)-() är att högerledet 0 i komplementariteten ersatts av µ > 0. Multiplikator estimat: λ i µ/g i (x), i 1,..., m.. c) Låt I(x ) {i g i (x ) 0}. x är reguljär betyder att g i (x ), i I(x ) är linjärt oberoende. Pga att f och g i är kontinuerligt differentierbara så följer att {x k } x { f(x k )} f(x ); { g i (x k )} g i (x ), i. Multiplikator estimatet ger att för i / I(x ) : {λ ik } {µ k /g i (x k )} 0/g i (x ) 0. För i I(x ), notera att systemet f(x ) i I(x ) λ i g i (x ) 0 n har en unik lösning λ i, i I(x ), vilken måste vara gränsvärdet för {λ ik }, i I(x ). Ty antag att {λ ik }, i (x ), konvergerar mot λ, där λ i λ i för 5
6 något i I(x ). Då följer att 0 f(x k ) λ ik g i (x k ) i/ j(x ) f(x ) 0 i I(x ) i j(x ) λ i λ i g i(x ). i I(x ) λ i g i (x ) λ i g i(x k ) i j(x ) i I(x ) λ i λ i g i (x ) λ ik λ i g i(x m ) Denna summa är 0 endast om λ i λ i i I(x ), ty g i (x ) är linjärt oberoende. Alltså är {λ k } konvergent, och vi kan sammanfatta läget så här: eftersom g i (x k ) > 0 för alla i och k kommer g i (x ) 0 att gälla. Dessutom för (x, λ ) gäller att f(x ) λ i g i (x ) 0 n λ i g i (x ) 0, i 1,..., m λ i 0, i 1,..., m I limes fås vektorer (x, λ ) som tillsammans uppfyller KKT-villkoren för ursprungs problemet! 6 a) KKT: L(x, λ, µ) 1 xt Qx q T x + λ T (Ax b) µ T x ger Qx + λ T λ Iµ q λ, µ 0 (dual till.) λ T (Ax b) 0 µ T x 0 (kompl.) Ax b (primal till.) x 0 KKT beskrives mängden av globalt optimala lösningar om Q är positivt semidefinit. b) Inför en slackvariabel i Ax b. Då fås ur KKT: Qx + A T λ I n q Ax + Is b samt x, A, µ, s 0 { λ T s 0 µ T x 0 6
7 x Vi indentifierar v s q b. µ ; w λ Q 0 ; T A I A T I ; U 0 0 ; p Fas-1-metodP: Inför artificiella variabler z 1 R n och z i R m och betrakta problemet (multipliera först rader så att q, b 0!) minimera då n zj 1 + j1 z i Qx + A T λ I m u + z 1 q Ax + Is + z b, λ, m, s, z 1, z 0 λ T s 0, µ T x 0 Enda skillnaden mot ett Fas-1-problem i LP är kraven att λ T s 0 och µ T x 0. Det betyder i själva verket att λ i s i 0 i och µ j x j 0 j. Att säkerställa att detta är uppfyllt är inte svårt: vi inför ett tillägg till inkommande kriteriet: Om λ i (s i ) redan finns i basen, får inte s i (λ i ) vara inkommande, såvida det inte inträffar att s i (λ i ) blir den utgående variabeln. Motsvarande för paret (µ j, x j ). 7 a) f(x) x x + 1x 1x 4x 1 0x f(x) (6x 1 + 1x 4; 6x + 1x 1 0) T 1x1 1 x1 1 f(x) 1 1 1x 1 x x1 1 x1 λ 1 Egenvärden hos : det x 1 x λ Egenvärden: λ 1 (x 1 + x )/ + ( 1x 1 1x ) + 1 λ (x 1 + x )/ ( 1 x 1 1 x λ 1 λ 1! ) + 1 λ 0 om och endast om x 1, x 0 och x 1 x 1. f är konvex då x 1, x 0, x 1 x 1 λ 1 0 om och endast om x 1, x 0 och x 1 x 1. f är konkav då x 1, x 0, x 1 x 1 f är följaktligen varken konvex eller konkav då x 1 x < 1. b) x (1, 1) T. Newtons metod utnyttjar sökriktningen p från f( x)p 1 1 f( x). I x (1, 1) T är f( x) ( 6, ); f( x). Det 1 1 7
8 existerar inte något p som uppfyller f( x)p f( x)! Modifiering à lá Levenberg-Marquardt: addera en lämpligt skalad enhetsmatris till f( x). Lös t.ex. f( x) + σip f( x) för σ p Vi använder Armijos steglägdsregel: p (0.3, 0.08) f( x + lp) f( x) + αl f( x) T p, α (0, 1). Med α 0.1 och l 1 som startsteglägd fås: f( x) T p 1.74 < 0 f( x) 8; x + lp (1.3, 0.9); f( x + lp) 9.35 f( x) + αl f( x) T p , d.v.s. steglägd 1 accepteras av Armijos steglägdsregel. Nästa iterationspunkt är x (1.3, 0.9). 8
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
Lösningar till SF1852 Optimeringslära för E, 16/1 08
Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017
Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
1 Ickelinjär optimering under bivillkor
Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller
Extrempunkt. Polyeder
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den. Dvs. finna en optimal lösning, x, till modellen. Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan bättre. Upprepa, tills
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016
Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =
Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Tentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
Tentamensinstruktioner
Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta s Matematiska Institutionen Lösning till tentamen Optimeringslära 2014-01-15 Kaj Holmberg Lösningar/svar Uppgift 1 1a: (Detta problem
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:
2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering
1 Konvexa optimeringsproblem grundläggande egenskaper
Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska
5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts.
5B1817 Tillämpad ickelinjär optimering Föreläsning 5 Metoder för problem utan bivillkor, forts. A. Forsgren, KTH 1 Föreläsning 5 5B1817 2006/2007 Lösningar För en given metod blir en lösning den bästa
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Lösningsförslag Tentamen i Optimering och Simulering MIO /5 2006
Lösningsförslag Tentamen i Optimering och Simulering MIO /5 Uppgift a) svar: 9 8 b) Svar: Δ b < c) Svar : 5 Δ c < d) Svar: ma st 8 8 Uppgift a) Dualen (D) till det primala problemet (P) är: Ma y 5y y y
1 Positivt definita och positivt semidefinita matriser
Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida
2.5 Partiella derivator av högre ordning.
2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =
SF625 Envariabelanalys Lösningsförslag till tentamen 22-2- DEL A. Bestäm värdemängden till funktionen f(x) = xe x2 /4. Lösningsförslag. Standardgränsvärdet xe x, då x ger att lim f(x) = lim x x ± x ± e
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
5B1817 Tillämpad ickelinjär optimering. Optimalitetsvillkor för problem med linjära bivillkor.
5B1817 Tillämpad ickelinjär optimering Föreläsning 2 Optimalitetsvillkor för problem med linjära bivillkor. A. Forsgren, KTH 1 Föreläsning 2 5B1817 2006/2007 Optimalitetsvillkor för ickelinjära programmeringsproblem
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C
MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
Laboration 1: Optimalt sparande
Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem
De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.
UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
5 Lokala och globala extremvärden
Nr 5, mars -5, Amelia 5 Lokala och globala extremvärden Ienvariabelinträffar lokala extremvärden i punkter där f (x) =, om f är deriverbar och det inte är en randpunkt. Vilken typ av extremvärde det är
Numerisk Analys, MMG410. Lecture 10. 1/17
Numerisk Analys, MMG410. Lecture 10. 1/17 Ickelinjära ekvationer (Konvergensordning) Hur skall vi karakterisera de olika konvergenshastigheterna för halvering, sekant och Newton? Om f(x x k+1 x ) = 0 och
Konvergens och Kontinuitet
Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R
Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor
Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta
TNK049 Optimeringslära
TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Uppgift 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Uppgift a) Här ses direkt att kan ökas obegränsat utan att bryta mot några bivillkor vilket i sin tur betyder att problemet har obegränsad lösning. b) Lös med Simple-algoritmen (t.e. med matris-metoden).
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
SF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
Kontinuitet och gränsvärden
Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika
SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Linjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 01 17, f V Telefon: Christoffer Cromvik, 0762 721860 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
BEGREPPSMÄSSIGA PROBLEM
BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med
Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet
Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna
Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Tentamen i Linjär algebra , 8 13.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
1 Kvadratisk optimering under linjära likhetsbivillkor
Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax
Linjärisering, Jacobimatris och Newtons metod.
Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system
Stokastiska vektorer och multivariat normalfördelning
Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 15 januari 2014 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Norm och QR-faktorisering
Norm och QR-faktorisering Skalärprodukten på C n (R n ) hänger ihop med några viktiga klasser av matriser. För en komplex matris A betecknar vi med A H det Hermitiska konjugatet till A, dvs A H = A T.
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
Kovarians och kriging
Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)