Språket vår mentala tumme
|
|
- Klara Öberg
- för 8 år sedan
- Visningar:
Transkript
1 Språket vår mentala tumme Bengt Bratt och Jan Wyndhamn, metodiklärare i svenska respektive matematik vid universitetet i Linköping, samtalar här kring ett centralt undervisningsmetodiskt problem: Kopplingen mellan språket och matematikundervisningen. Efter samtalet ger Jan några exempel på arbetsuppgifter som man kan pröva i egen klass. Jan: Du påstår att språket är vår mentala tumme. Då måste jag fråga dig vad du menar med det. Vad har tummen med språket att göra och vad har språket med matematiken att göra? Bengt: Som bekant är det med hjälp av handens tumme som vi kan fatta, gripa tag i något, t ex ett verktyg. Vi kan utgå ifrån att det är med hjälp av språket vi kan fatta saker och ting på det abstrakta planet, t ex i ämnet matematik. Det är tveksamt huruvida kunskaper av teoretisk eller abstrakt natur kan sägas existera annat än i eller genom individens språk eller språkförmåga. Jan: Vad har då språket med matematiken att göra? Bengt: Mycket! Men det beror på vad man menar med språk. Jag ser det så här. Språket är något mycket mer än ett kommunikationsmedel mellan människor. Språket är djupt integrerat i vårt medvetna jag. Det är ett livsinstrument av största betydelse för allt vad vi är och företar oss. Det är tämligen likgiltigt om det vi till vardags menar med språk är svenska, polska eller turkiska. De är alla synonymer i förhållande till varandra och kan bytas ut mot varandra i den språksyn jag här antyder. Till dessa synonyma uttrycksmedel kan vi också räkna en mängd partikulära språk. Sådana partikulära språk äger varje individ på flera områden i sitt verksamma liv. En forskare utvecklar ett partikulärt språk för sin vetenskap, en hantverkare ett för sitt yrke, en familjemedlem ett för sin familjs särskilda samvaro. I skolan utgör undervisningsämnena partikulära språk och skulle kunna kallas "matematiska", "kemiska", "historiska" osv. Jan: Ur undervisningsmetodisk synpunkt borde det då vara av största betydelse att eleven utvecklar så många språk som möjligt till så stort djup och så stor vidd som möjligt. Bengt: Riktigt. Man kan säga att den språkliga amplitud och den språkliga vidd man sammantaget besitter i ett visst ögonblick anger basen eller ramen för den intellektuella kapaciteten. Den utgör också plattformen för nya erövringar i fråga om språkförmåga och inlärning. Jan: Menar du alltså att en kunnig person har ett mer utvecklat språk än en mindre kunnig person? Bengt: Ja, just det. Vi erövrar vårt språk, våra språk, genom att tillägna oss kunskaper. Den abstrakta kunskapen är i huvudsak språkburen. Språket (uttrycket) bär begreppet. Språkhandlingen som kommunikation eller tanke är vårt förnämsta medium i undervisningen. Språkhandlingen utgör länken mellan kunskapen och uttrycket för denna kunskap. Vi kan se det hela så här: Jan: Teoretiska studier kräver alltså ett språk, att den studerande behärskar eller lär sig det system av ord, tecken och symboler som uttrycker studiernas innehåll. Den som inte nått en viss bestämd språklig nivå kan inte tillägna sig den information eller de kunskaper som står till förfogande på denna nivå. Vi har här alltså ur en annorlunda vinkel belyst några läroplansord om matematikundervisningen: "En elev får inte börja med ett nytt moment utan tillräcklig grund från tidigare moment." Jag skulle gärna vilja fortsätta på din liknelse om språket och tummen. Tummen gör det möjligt att gripa, fatta t ex en skiftnyckel och använda den för att dra åt en mutter. Kan man säga att språket hjälper mig att fatta och utnyttja t ex matematiken med sina begrepp, samband och operationer som ett verktyg för att undersöka och bemästra vår omgivande verklighet?
2 Din term språkhandlingen motsvaras då av själva handhavandet (bl a finjusteringen) av skiftnyckeln, dvs samspelet tumme verktyg. Är det rätt uppfattat? Bengt: Ja. Och enligt detta sätt att se blir den allmänna undervisningsmetodiken läran om hur kommunikation och språkhandlingar kan utnyttjas för att utveckla kunskaper och språk. En studerande som är beredd att tränga in på ett nytt kunskapsområde måste samtidigt vara beredd att införliva nya språkliga element, nya ord och formuleringar, nya tecken osv med sitt språk eller med sin språkförmåga. Det är när han flyttat in de nya språkliga elementen i sitt tidigare språk och är fullt klar över deras innebörd, som han har erövrat den kunskap han var ute efter. Det är då han kan minnas, aktualisera, tillämpa och bygga vidare på vad han lärt. Eleven utvecklar sin kunskap och sitt språk under alla dygnets timmar i skolan, i alla ämnen, under alla lektioner. Varje lärare bör ta fasta på detta och se alla ämnen som bas för språkuppbyggnaden. Svenskämnet bör betraktas som ett orienteringsämne bland andra orienteringsämnen. Färdigheterna och språket utvecklas i alla ämnen. Jan: Du talar hela tiden om att utveckla. Det måste innebära att det finns något att starta med. Eller hur? Bengt: Vi måste se språket som en fortsättning på vår rent "biologiska kod" den som gör det möjligt för vår kropp att gå, cykla och tala i form av automatiserade processer. Det är viktigt att språkhandlingarna efter hand kan utvecklas till sådana automatiserade processer. Dessa färdigheter lägger kontinuerligt grunden för ny inlärning, där den nya kunskapen ger nya språkliga uttrycksmöjligheter i en process utan slut. Vi ser alltså att det knappast är möjligt att tillägna sig abstrakta kunskaper utan att samtidigt utveckla "språk-koden". Jan: Det du nu säger kan exemplifieras med inlärandet av multiplikationstabellen. Innan en elev vet att 7 8 = 56 som en ren "reflexkunskap" måste eleven ha haft tillfälle att på olika sätt bestämma produkten och bearbeta denna information. Tabellkunskapen är sedan en förutsättning för andra beräkningar. Bengt: Precis. Kunskapen övergår via uttrycket till färdigheter som används i nästa inlärningsskede. "Baskunskaperna" lägger på detta sätt grunden för kunskaper av allt högre ordningar, t ex att kunna se sammanhang, dra slutsatser och lösa problem. Jan: Lösa problem, ja! Ibland förklaras de svårigheter många elever har när det gäller att lösa textuppgifter (s k benämnda problem) med att barnen "inte kan läsa uppgiften". Med ditt friska sätt att se det hela blir det tydligen matematiklärarens uppgift att lära eleverna läsa och förstå det lästa. Genom matematikämnet utökas elevernas språkliga repertoar! Matematiken är inte bara "tagande" utan också "givande". Matematik blir "matematiska", dvs tummen tränas av verktyget. Bengt: Ja, låt oss betona denna växelverkan mellan kunskapsinhämtande och språkuppbyggnad. Det ena förutsätter det andra och de förstärker, utvecklar varandra. Den här växelverkan kommer främst till genom språkhandlingar och kommunikation. Det är detta vi ska utnyttja pedagogiskt-metodiskt.
3 Jan: En knäckfråga i sammanhanget blir tydligen: Ska man rensa undervisningen från avancerade språkelement (t ex "svåra ord", facktermer) eller ska man tackla dem med energiska undervisningsmetodiska insatser? Vad svarar du? Bengt: Med alla reservationer för individuella skillnader mellan elevernas intellektuella förmåga och mognadsnivå bör svaret bli att vi bör anstränga oss för att ge eleverna det avancerade språk som bär den abstrakta delen av vår kunskap om verkligheten. Vi får inte i missriktad ambition kapa bort topparna eller släta ut det språk som bär fram kunskapen till våra elever. Vi måste besegra dessa toppar i vår undervisning! All undervisning och allt lärande innebär innerst inne en uppbyggnad och en utveckling av elevens språk, och det är när kunskapsinhämtande och språklig träning får stödja varandra på kunskapsfält efter kunskapsfält, på intresseområde efter intresseområde, som elevens mest positiva utveckling i olika avseenden kan väntas. Jan: Hur kan nu detta teoretiska resonemang omsättas praktiskt i klassrummet? Vi talar en stund om språkhandlingar som får bli ett nytt användbart metodiskt begrepp. Bengt: Jag skulle vilja placera in språkhandlingarna i deras pedagogiska sammanhang och se hur allsidig språkanvändning och kommunikativa arbetsformer kan leda fram till undervisningens mål. Jag ser följande skiss framför mig: MÅL: Personlig frigörelse och mognad Kommunikationsförmåga Kunskap Insikt UNDERVISNINGSPROCESS (SPRÅKHANDLINGAR OCH KOMMUNIKATION): Tala Lyssna Tänka Läsa Skriva Det gäller att utveckla elevernas förmåga att använda språket i dess fem viktigaste uttryck (att tala, att lyssna, att tänka, att läsa och att skriva) i naturliga undervisningssituationer. Man kan därvid tänka sig olika arbetsmodeller. Jan: Sådana arbetsmodeller finns beskrivna i tidigare nummer av Nämnaren och i första upplagan av Matematikämnet i skolan, där du medverkat. Det finns också mycket att hämta i din bok Tala Leva Lära. Bengt: Det jag här sagt och ritat kommer att ingå i en bok, Genom språkutveckling till kunskap. Ur den vill jag presentera en annan modell som vi kan kalla "bild-utsaga-modellen". Syftet är att eleverna genom att diskutera ett antal givna utsagor om en bild eller en text ska nå kunskap om bild- eller textinnehållet och bli förtrogna med det språk som representerar detta innehåll. Det kan exempelvis gälla en landskapsbild och till denna bild fogade utsagor som mer eller mindre direkt uttrycker bildinnehållet. Eleverna instrueras att gruppvis sortera givna utsagor i olika kategorier, t ex sanna utsagor, falska utsagor, orimliga utsagor och utsagor omöjliga att ta ställning till. Arbetet kan lätt arrangeras som parallellgruppsuppgift, dvs eleverna löser först arbetsuppgifterna i smågrupper, som sedan går samman parvis och jämför sina arbetsresultat. Jan: Vilket bra uppslag! Jag försöker omsätta bild-utsaga-modellen i några arbetsuppgifter, som följer efter vårt samtal. Lästips Bratt, B: Tala Leva Lära. Liber 1977 Bratt B: Genom språkutveckling till kunskap. Eget förlag 1983 Bratt, B och Claesson, P: Matematikundervisningen och språkträningen. Matematikämnet i skolan. Liber Utbildningsförlaget 1979 Wyndhamn, J: Alternativ arbetsuppgift i matematik. Nämnaren nr 3, 76 Wyndhamn, J: Tala matematik, Nämnaren nr 1, 78/79 och Matematikämnet i skolan. Liber Utbildningsförlaget 1979 Wyndhamn, J: Räknesätt Tankesätt Undervisningssätt. Rapport från lärarutbildningen i Linköping, nr 77, 1982 GRUNDLÄGGANDE KOMMUNIKATIONS- FÄRDIGHETER: Att skriva bokstäver, ord och meningar Att läsa text och förstå det lästa Att kunna multiplikationstabellen etc
4 Förslag till arbetsuppgifter i matematik (Lämpliga som parallellgruppsuppgifter) Uppgift A man se att = Ändras 350 till 356 går divisionen jämnt upp (8 går jämnt upp i 356). 6 För 350 kr kan man köpa 44 stycken blomplantor som kostar 8 kr styck. 7 För att sätta upp 350 frimärken på ark med plats för 8 märken går det åt 44 ark. 8 Packas 350 lampor i kartonger som rymmer 8 lampor vardera blir 6 lampor över. Uppgift C 1 Olle väger mest. 2 Karin väger minst. 3 Per väger 7 kg mer än Anna. 4 Skillnaden mellan Olles och Annas vikter är 2 kg. 5 Skillnaden i vikt mellan den som väger mest och den som väger minst är 24 kg. 6 Anna och Karin väger tillsammans lika mycket som Per och Olle väger tillsammans. 7 Skillnaden mellan Pers och Annas vikter är lika stor som skillnaden mellan Olles och Karins vikter. 8 Medelvärdet av barnens vikter är 45 kg. 9 Per och Karin väger tillsammans lika mycket som Olle och Anna väger tillsammans. 10 Anna och Karin väger tillsammans dubbelt så mycket som Olle gör. Uppgift B Sätt R för ett riktigt påstående och F för ett felaktigt. 1 Tåget går från Linköping kl Tåget kommer till Helsingborg kl Tåget kommer till Helsingborg "5 minuter över 2". 4 Tåget går från Linköping "20 minuter i 10". 5 Tågresan tar 3 timmar och 45 minuter. 6 Tågresans längd i tid kan beräknas "i huvudet" så här: "10 min + 4 tim + 5 min". 7 Tågresans längd i tid kan beräknas med hjälp av "uppställning" så här: 1 Räknesättet är division. 2 Nämnaren är Resten är 6. 4 Utan att göra någon ytterligare beräkning kan
5 Uppgift D 1) 1 Av 100 skolflickor kan 34 stycken förväntas 2 Av 200 skolpojkar kan 34 stycken förväntas 3 Andelen (delen, bråkdelen) av alla skolpojkar som är brunögda är lika stor som andelen av alla skolflickor som är brunögda. 4 Av 100 skolelever kan 34 stycken förväntas 5 Av 50 pojkar kan 17 stycken förväntas vara brunögda. 6 Av 50 flickor kan 34 stycken förväntas vara brunögda. 7 Av alla skolelever är 68 % brunögda. 8 Av 200 skolelever kan man förvänta att 68 stycken är brunögda stycken av 200 stycken motsvarar 34 %. 10 Andelen av alla skolelever som är brunögda är lika stor som andelen brunögda pojkar respektive andelen brunögda flickor. Uppgift E 9 Triangeln är spetsvinklig. 10 Triangelns omkrets är ungefär 15 cm. 11 Triangelns area är ungefär 8 cm Vinkeln E är ungefär Triangelns vinkelsumma är Punkten Q ligger inuti triangeln. 15 Punkten Q ligger lika långt från sträckan PE som punkten R. Uppgift F Linjal, gradskiva, miniräknare eller tabeller får inte användas. 1 Sidan BC står emot vinkeln A. 2 Triangeln är spetsvinklig. 3 Sidan AB är närliggande sidan i förhållande till vinkeln C. 4 Längden av sidan AC fås ur beräkningen 5/sin Längden av sidan AB fås ur beräkningen 5 tan sin 52 > tan AB = AC cos sin 52 = cos Triangelns area fås ur beräkningen av Sätt R för ett påstående som är riktigt och F för ett som är felaktigt. Linjal och gradskiva får användas. 1 Figuren kallas triangel. 2 I figuren finns 3 vinklar och 3 sträckor. 3 Sträckorna kallas sidor. 4 Punkterna P, E och R kallas hörn. 5 PR är den längsta sidan. 6 Vinkeln P är större än vinkeln E. 7 Hörnet R står emot sidan PE. 8 Triangeln är likbent. 1) Jämför Nämnarentestet i nr 2 och 3, 82/83.
Språket vår mentala tumme
Språket vår mentala tumme Bengt Bratt och Jan Wyndhamn, metodiklärare i svenska respektive matematik vid universitetet i Linköping, samtalar här kring ett centralt undervisningsmetodiskt problem: Kopplingen
Extramaterial till Matematik Y
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik Y NIVÅ TVÅ Geometri ELEV Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och
NpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32
6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN. Bilagor
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN Bilagor Gemensamma matematikprov, analysinstrument och bedömningsmatriser för kvalitetshöjningar Författare: Per Ericson, Max Ljungberg
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
9 Geometriska begrepp
9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg
Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Eva Norén, Anette de Ron och Lisa Österling, Stockholms universitet
Matematik Grundskola åk 1-9 Modul: Språk i matematik Del 3: Cirkelmodellen - texter i matematik Texter i matematik Eva Norén, Anette de Ron och Lisa Österling, Stockholms universitet I matematikklassrummet
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Planering Del 1: Redovisning av Uppgift till seminarium 6 Undervisning genom problemlösning Del 2: Grupparbete: rika matematiska problem (förberedelse till SRE2)
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Rapport av genomförd lesson study av en lektion med temat geometri i gymnasiets A-kurs
Rapport av genomförd lesson study av en lektion med temat geometri i gymnasiets A-kurs Förberedelser Geometri visade sig vara det svåraste området att planera utifrån tanken om en progression genom skolans
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
identifiera geometriska figurerna cirkel och triangel
MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna
Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F
På jakt efter förmågor i undervisningen Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F Aktivitetens namn: Triangelmatte Syfte Undervisningen ska
DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013
DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område
Likhetstecknets innebörd
Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med ettor och hoppas att du kommer att trivas mycket bra hos oss. Din första termin på gymnasiet kommer att
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Extramaterial till Matematik Y
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik Y NIVÅ ETT Geometri ELEV Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18
Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
Likhetstecknets innebörd
Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking
Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun
Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2
17 Trigonometri Övning 17.1 En likbent triangel har arean 10 cm. De båda lika långa sidorna i triangeln är 0 cm. estäm vinkeln mellan dessa sidor. Här är det dags för areasatsen = s1 s sin v där v ligger
Aktiviteter och uppgiftsförslag. Matematiska förmågor
Aktiviteter och uppgiftsförslag Med utgångspunkt i ett antal bilder från föreställningen finns nedan några olika förslag på vad du som lärare kan arbeta vidare med vad gäller elevernas kunskaper i matematik.
Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB
Gruppledtrådar Som hjälp för dina elevgrupper att utveckla sin förmåga att tala matematik, samarbeta och lära i grupp finns övningar som vi kallar Gruppledtrådar. Dessa går ut på att elever tillsammans
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Olika sätt att lösa ekvationer
Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
Delprov A Muntligt delprov
Delprov A Muntligt delprov Äp6Ma15 Delprov A 15 Beskrivning av delprov A, muntligt delprov Det muntliga delprovet kan genomföras fr.o.m. vecka 11 och resten av vårterminen. Det muntliga delprovet handlar
Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2013/2014 Matematik Delprov B Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
KURSPLAN FÖR KOMMUNAL VUXENUTBILDNING I SVENSKA FÖR INVANDRARE
KURSPLAN FÖR KOMMUNAL VUXENUTBILDNING I SVENSKA FÖR INVANDRARE Kursplanens syfte Kommunal vuxenutbildning i svenska för invandrare är en kvalificerad språkutbildning som syftar till att ge vuxna invandrare
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning
Formativ bedömning - en väg till bättre lärande Inger Ridderlind Stina Hallén www.prim-gruppen.se Bedömning Bedömning av kunskap - summativ Bedömning för kunskap - formativ Från att mäta kunskap till pedagogisk
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Planering Geometri år 7
Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande
1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km
Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 21 januari
Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 21 januari 2016 8.15 13.15 Hjälpmedel: Miniräknare Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283, Kristina Wallin 054-7002316 eller
Visible teaching visible learning. Formativ bedömning en väg till bättre lärande
Bedömning Summativ Formativ bedömning en väg till bättre lärande Gunilla Olofsson Formativ ------------------------------------------------- Bedömning som en integrerad del av lärandet Allsidig bedömning
Bedömningsanvisningar
Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet
Vad är ett problem? Kerstin Hagland och Johan Åkerstedt
Modul: Problemlösning Del 1: Matematiska problem Vad är ett problem? Kerstin Hagland och Johan Åkerstedt Var och en av oss har föreställningar om vad matematik är. Dessa föreställningar är ofta ganska
KURSPLAN FÖR KOMMUNAL VUXENUTBILDNING I SVENSKA FÖR INVANDRARE
KURSPLAN FÖR KOMMUNAL VUXENUTBILDNING I SVENSKA FÖR INVANDRARE Kursplanens syfte Kommunal vuxenutbildning i svenska för invandrare är en kvalificerad språkutbildning som syftar till att ge vuxna invandrare
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
LPP Matematik åk 4 Vt-14
LPP Matematik åk 4 Vt-14 Skolans värdegrund, uppdrag, mål och riktlinje Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden
Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun
Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?
22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:
SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
Kommentarmaterial till kunskapskraven i matematik
Kommentarmaterial till kunskapskraven i matematik Skolverket Stockholm 2012 www.skolverket.se ISBN: 978-91-87115-68-4 Innehåll 1. Inledning... 4 Vad materialet är och inte är...4 Materialets disposition...5
Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Problemlösning i undervisning Vad menas med rika problem? Heuristisk metod: geometriskt ort Problemlösning The question, what is problem solving,
MATEMATIKENS SPRÅK. Avsnitt 1
Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en
Pedagogisk planering matematik Gäller för november-december 2015
Pedaggisk planering matematik Gäller för nvember-december 2015 Myrstacken Äldre årskurs 6, Hällby skla L= mest för läraren E= viktigt för eleven I periden ingår bedömningsdelar vi pga muntliga prv ch annat
läsa och analysera skönlitteratur och andra texter för olika syften, anpassa språket efter olika syften, mottagare och sammanhang,
Arbetsområde: Huvudsakligt ämne: Svenska 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet svenska syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera sig och kommunicera
PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN
PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
Tummen upp! Matte ÅK 6
Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Skolverkets föreskrifter om kursplan för kommunal vuxenutbildning i svenska för invandrare;
1 (16) Dnr 2017:953 Bilaga 1 Skolverkets föreskrifter om kursplan för kommunal vuxenutbildning i svenska för invandrare; beslutade den XXX 2017. Med stöd av 2 kap. 12 förordningen (2011:1108) om vuxenutbildning
15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17
Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges
NpMa2b vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 67 poäng varav 26 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Trepoängsproblem. Kängurutävlingen 2012 Junior
Trepoängsproblem 1. M och N är mittpunkterna på de lika långa sidorna i en likbent triangel. Hur stor är arean av fyrhörningen markerad med X? : 3 : 4 C: 5 D: 6 E: 7 M? X 3 3 6 N 2. När lice skickar ett
Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm
Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
Förmågor i naturvetenskap, åk 1-3
Förmågor i naturvetenskap, åk 1-3 I Lgr11 betonas att eleverna ska använda sina naturvetenskapliga kunskaper på olika sätt. Det formuleras som syften med undervisningen och sammanfattas i tre förmågor.
Matematiklyftet 2013/2014
Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel