Preliminär version Kopieringsunderlag till IPAn
|
|
- Jan-Erik Ove Lundberg
- för 6 år sedan
- Visningar:
Transkript
1 Preliminär version Kopieringsunderlag till IPAn Grundpotensform och räkneregler En Ihop-Parnings-Aktivitet med låg tröskel som tränar elevers begrepps-, procedur-/metod- och resonemangsförmåga med fokus på grundpotensform och räkneregler En aktivitet utvecklad i ett delprojekt HT 2014 VT 2015 inom samarbetsprojektet Matematikdidaktik för bättre matematikkunskaper mellan Linköpings universitet och Linköpings- och Norrköpings kommuner Medverkande forskare: Jonas Bergman Ärlebäck Medforskande lärare: Marcus Claesson (Kungsgårdsgymnasiet, Norrköping) Malin Hällgren (Birgittaskolans vuxenutbildning, Linköping) Sofia Lindh (Hagagymnasiet, Norrköping) Maria Lundell (Djäkneparksskolan, Norrköping) Mattias Nordling (Anders Ljungstedska gymnasiet, Linköping) Preliminär version
2 Kort bakgrund till aktiviteten Grundpotensform och räkneregler Denna aktivitet har utvecklats och utprövats i det ettåriga projektet Ihop-Parnings-Aktiviteter aktiviteter med låg tröskel som tränar elevers begrepps-, procedur-/metod- och resonemangsförmåga. Projektet genomfördes läsåret 14/15 i samarbete mellan en forskare på Linköpings universitet och högstadie-, gymnasie- samt komvuxlärare i Linköpings- och Norrköpings kommuner inom samarbetsprojektet Matematikdidaktik för bättre matematikkunskaper. I projektet har vi utvecklat och tagit fram så kallade Ihop-Parnings-Aktiviteter (IPAs) som är aktiviteter med låg tröskel och som syftar till att träna elevers begrepps-, procedur-/metod- och resonemangsförmåga i matematik. Aktiviteterna är tänkta att användas i högstadiets och gymnasiets matematikkurser och aktiviteterna fokuserar på följande matematiska innehåll: Samband mellan bråk Uttryck och ekvationer Exponential- och potensfunktioner Grundpotenser och räkneregler Förhållande och proportioner Procent förändringsfaktor bråk Linjära funktioner och linjens ekvation Sannolikhet Vi arbetat med två typer av IPAs: Process-IPAs (PIPAs) och Grupperings-IPAs (GIPAs). De två typerna kan överlappa på olika sätt, men generellt sett handlar en Process-IPA om att koppla ihop två eller flera matematiska objekt eller representationer via en procedur eller process. En Grupperings-IPA å andra sidan handlar mer om ren sortering och gruppering. I det här materialet finns en kort sammanfattning av några av de erfarenheterna vi gjort under arbetet med projektet i form av kommentarer och förslag på hur man kan använda IPAs i undervisningen; en kort dokumentation och information om själva aktiviteten i materialet; kopieringsunderlag och facit. För en mer utförlig beskrivning och diskussion av projektet i sin helhet hänvisar vi till den rapport som dokumenterat arbetet i, och resultaten från, projektet. Om du är intresserad av att läsa rapporten eller vill veta mer så kontakta Jonas Bergman Ärlebäck (jonas.bergman.arleback@liu.se) eller besök sidan som samlat dokumentation och material från samarbetsprojektet Matematikdidaktik för bättre matematikkunskaper: Vi hoppas att du ska finna aktiviteten användbar i din matematikundervisning och att den ska ge upphov till många bra diskussioner och ett fokuserat lustfylld lärande. //Jonas, Malin, Marcus, Mattias, Mia och Sofia 2
3 Några erfarenheter av och förslag på implementering av IPAs Nedan finns några av erfarenheterna från arbetet i projektet med IPAs sammanfattade. För en mer fullständig diskussion och beskrivning av såväl projektet som av IPAs hänvisar vi till projektrapporten som dokumenterat arbetet. Om du är intresserad av att läsa rapporten eller vill veta mer så kontakta Jonas Bergman Ärlebäck (jonas.bergman.arleback@liu.se) eller besök sidan som samlat dokumentation och material från samarbetsprojektet Matematikdidaktik för bättre matematikkunskaper: Tankar om gruppindelning, rättning och återkoppling 2-3 elever i varje grupp har visat sig ofta vara lagom. Blir det fler i gruppen kommer troligen minst en i gruppen att vara inaktiv. Grupper om endast 2 elever kan vara sårbart om båda tycker att uppgiften är svår och har problem att komma igång med aktiviteten. Det kan dessutom lätt bli för många grupper för att läraren ska kunna överblicka alla gruppernas arbete. Rättning av elevernas arbete med IPAs och återkoppling kan ske på flera olika sätt, som t ex: Dela ut facit: Varje grupp får ett skriftligt facit att jämföra sin lösning med. Detta är en lätthanterlig variant, speciellt när grupperna sinsemellan är väldigt olika och/eller många. Dock bjuder detta inte automatiskt in till fler djupare resonemang och motiveringar i grupperna, och risken finns att vissa lösningar är rena gissningar som råkar vara korrekta. Läraren går runt och kontrollerar: Kan ta lång tid; svårt i stora klasser. Läraren får bra överblick. Två grupper rättar varandras arbete: Skapar förutsättningar för djupare resonemang och motiveringar om grupperna har olika svar. Kräver att grupper blir klara ungefär samtidigt. Rotation där en elev från varje grupp byter till en ny: Låt en elev från varje grupp gå till en annan grupp för att föra sin grupps talan. Detta kan vara ett sätt att få alla i gruppen att vara delaktiga de vet ju inte i förväg vem som ska byta till en ny grupp. Denna variant skapar förutsättningar för djupare resonemang och motiveringar om grupperna har olika svar. Rotationen kan ske även om inte alla är klara med uppgiften. Modellen kan dock upplevas som utelämnande och svårt för den som får byta grupp. Tvärgruppsdiskussioner: Variant som kan passa bra om klassen inte är alltför stor. Varje deltagare i gruppen paras ihop med 2-3 deltagare från andra grupper. Detta kräver att alla elever i gruppen är delaktiga eftersom alla ska kunna föra sin grupps talan. Skapar förutsättningar för djupare resonemang och motiveringar om grupperna har olika svar. Kräver att grupper blir klara ungefär samtidigt. Gemensam rättning på tavlan: Varje grupp kan t ex få i uppgift att redogöra för resonemangen bakom någon eller några ihopparningar. Skapar förutsättningar för djupare resonemang och motiveringar om grupperna har olika svar. Kräver att grupper blir klara ungefär samtidigt. Läraren får bra överblick. Att låta eleverna förbereda sig individuellt Ett sätt är att låta eleverna förbereda sig före lektionen som man ska arbeta med IPAn, är t ex genom att se en film där det matematiska innehållet presenteras eller läsa en text som inspiration. På detta sätt kan man låta eleverna förbereda sig utan att få den exakta uppgiften. Ett annat sätt är att dela ut uppgiften i slutet av lektionen före eller låta de första minuterna av lektionen att ägnas till enskilda tankar. En nackdel med att dela ut uppgiften lektionen innan kan vara att elever som är mer måna om att göra rätt än att tänka själva tar mycket hjälp och kommer med färdiga svar. En fördel med detta sätt är att de elever som behöver längre tid än bara några minuter för att riktigt hinna tänka efter själva får bättre med förberedelsetid 3
4 Grundpotenser och räkneregler Målgrupp: Högstadiet och ma1 Materiel: En uppsättning lappar till varje grupp Syfte: I den här aktiviteten ska eleverna para ihop lappar med tal skrivna i grundpotensform samt beräkningar (multiplikation och division) av tal skrivna i grundpotensform. Syftet är att träna på och få förståelse för räkneregler (prioriteringsregler) och några potensregler. Kommentarer till utformningen av aktiviteten: Exemplen är valda utifrån vanliga missuppfattningar, t ex att man vid division av ett tal skrivet i grundpotensform med ett heltal gärna dividerar båda faktorerna. Talet som står i grundpotensform är ett decimaltal eftersom eleverna då tvingas förfina uppfattningen att man lägger till eller tar bort nollor när man skriver om det till normalform. Lapparna kan paras ihop 2&2 eller 3&3 och det finns även en lapp som inte passar ihop med någon av de andra. Exempel på saker som kan komma upp och/eller lyftas i samband med aktiviteten: Varför är 10 0 =1? Frågan kan t ex besvaras med hjälp av att strukturerat söka mönster: 10 3 = = = =? 10-1 = 0,1 =!!" 10-2 = 0,01 =!!"" Man kan även utvidga diskussionen till a 0 =1 och hur det kan användas. Diskussion kring räkneregler (prioriteringsregler) och potensregler. Bland annat kan skillnaden mellan!!!! och!!! synliggöras liksom!"!!"! = 10!!! Förslag på genomförande: Dela in eleverna i grupper Förklara syftet med lektionen och berätta kort hur aktiviteten går till. Tryck extra på att alla i gruppen ska vara aktiva och att alla måste kunna förklara gruppens resonemang. Dela ut instruktionsblad och lappar till grupperna Uppmärksamma eleverna att det inte behöver vara lika många lappar i varje hög samt att det finns en som inte ska höra ihop med någon annan. Låt grupperna jämföra med facit eller en annan grupp när de är klara. En lärarledd sammanfattning är en viktig del av aktiviteten. Denna aktivitet avslutas med fördel genom att enskilda grupper/elever får förklara resonemangen bakom de olika grupperingarna Tidsåtgång: ca minuter i en Ma1a på komvux 4
5 Förslag på varianter: De grupper som blir klara tidigt kan utmanas att komma på någon eller några lappar som kan höra ihop med den ensamma, gärna någon som skulle kunna misstolkas att höra ihop med någon av de andra lapparna. På det sättet kan man som lärare få en uppfattning av om eleverna har uppfattat svårigheterna i aktiviteten. 5
6 6
7 7
8 8
Preliminär version Kopieringsunderlag till IPAn
Preliminär version 20160318 Kopieringsunderlag till IPAn Procent förändringsfaktor bråk * En Ihop-Parnings-Aktivitet med låg tröskel som tränar elevers begrepps-, procedur-/metod- och resonemangsförmåga
Preliminär version Kopieringsunderlag till IPAn
Preliminär version 20160318 Kopieringsunderlag till IPAn Linjära funktioner och linjens ekvation * En Ihop-Parnings-Aktivitet med låg tröskel som tränar elevers begrepps-, procedur-/metod- och resonemangsförmåga
IPAs IhopParningsAktiviteter
IPAs IhopParningsAktiviteter Aktiviteter med låg tröskel som tränar elevers begrepps-, procedur-/metod-, och resonemangsförmåga Marcus Claesson, Kungsgårdsgymnasiet Malin Hällgren, Birgittaskolans vuxenutbildning
IPAs - ihopparningsaktiviteter
IPAs - ihopparningsaktiviteter Aktiviteter med låg tröskel som tränar elevers begrepps-, procedur-/ metod- och resonemangsförmåga. Jonas Bergman Ärlebäck, Marcus Claesson, Malin Hällgren, Sofia Lindh,
DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013
DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område
3. Instruktioner för att genomföra provet
INSTRUKTIONER FÖR ATT GENOMFÖRA PROVET 3. Instruktioner för att genomföra provet I det här kapitlet beskrivs hur samtliga delprov som ingår i provet ska genomföras. Genomförande av Delprov A Tabell 2 Praktisk
7G,H och D matematik planering Syftet med undervisningen är att du ska utveckla din förmåga att:
Åsö grundskola VT2018 7G,H och D matematik planering Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder,
Just nu pågår flera satsningar för att förbättra svenska elevers måluppfyllelse
Andersson, Losand & Bergman Ärlebäck Att uppleva räta linjer och grafer erfarenheter från ett forskningsprojekt Författarna beskriver en undervisningsform där diskussioner och undersökande arbetssätt utgör
Matematiklyftet 2013/2014
Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Hur ska måluppfyllelsen öka? Matematiklyftet
Matematiklyftet Ökad måluppfyllelse Hur ska måluppfyllelsen öka? Matematiklyftet Fortbildning i matematikdidaktik för alla matematiklärare Stöd för arbetet med matematik i förskolan och förskoleklassen
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Karin Wallby, NCM SMAL HÖSTMÖTE STOCKHOLM 20 OKTOBER 2017
Karin Wallby, NCM SMAL HÖSTMÖTE STOCKHOLM 20 OKTOBER 2017 Arbete med anknytning till matematiklyftet Filmer Nya moduler: Matematikundervisning med digitala verktyg II Matematikdidaktik och specialpedagogik
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9
PLANERING OCH BEDÖMNING MATEMATIK ÅK 9 TERMINSPLAN HÖSTTERMINEN ÅK 9: 1 1.1 TALMÄNGDER 2 1.2 NEGATIVA TAL 3 FORTS. 1.2 NEGATIVA TAL 4 1.3 POTENSER 5 1.4 RÄKNA MED POTENSER 6 TALUPPFATTNING + RESONERA 7
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda
Matematik i Skolverket
SMaLs sommarkurs 2013 Matematik i Skolverket Helena Karis Margareta Oscarsson Reformer - vuxenutbildning 1 juli 2012 - Kursplaner - vuxenutbildning, grundläggande nivå - särskild utbildning för vuxna på
NOKflex. Smartare matematikundervisning
NOKflex Smartare matematikundervisning Med NOKflex får du tillgång till ett heltäckande interaktivt matematikläromedel som ger stöd både för elevens individuella lärande och för lärarledd undervisning.
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var
Fuengirola den 8 november Matematiklyftet. Margareta Oscarsson #malyft
Fuengirola den 8 november 2014 Matematiklyftet Margareta Oscarsson 08 52733327 margareta.oscarsson@skolverket.se #malyft Dagens program Matematiklyftet i korthet Materialet på lärportalen De didaktiska
Spridningen är vanligtvis stor i en klass när det gäller vad elever tycker om,
Kerstin Johnsson & Jonas Bergman Ärlebäck Godissugen! En tankeavslöjade aktivitet för att introducera området funktioner I den här artikeln diskuteras en aktivitet som introducerar funktioner i åk 8 genom
Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år.
1 av 15 2010-11-03 12:46 Syftet med den här enkäten är att lära mer om hur lärare tänker och känner när det gäller matematikundervisningen, särskilt i relation till kursplanen och till de nationella proven.
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
LPP Matematik åk 4 Vt-14
LPP Matematik åk 4 Vt-14 Skolans värdegrund, uppdrag, mål och riktlinje Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden
30-40 år år år. > 60 år år år. > 15 år
1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en
Det finns mycket kritik som förs fram om skolan i allmänhet samtidigt
Joakim Samuelsson Expert i matematikklassrummet Vad är det som kännetecknar skickliga matematiklärare? Artikelförfattaren har följt en erkänt duktig matematiklärare och sett hur han bedriver sin undervisning.
Vårt projekt genomfördes under vårterminen Självreglering
Carlsson, Dalsjö, Ingelshed & Larsson Bjud in eleverna att påverka sin matematikundervisning Fyra lärare beskriver hur deras elever blev inbjudna till att få insikt i och makt över sina egna lärandeprocesser
Lärarhandledning Sortering
Lärarhandledning Sortering Innehåll Aktivitet Sortering 2 Bakgrund Sortering 4 Kartläggningsunderlag Sortering 5 Elevexempel Sortering 6 KARTLÄGGNING FÖRSKOLEKLASS HITTA MATEMATIKEN. SKOLVERKET 2018. 1
8G Ma: Bråk och Procent/Samband
8G Ma: Bråk och Procent/Samband Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor
Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från
När vi läste Skolverkets rapport Svenska elevers matematikkunskaper
Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i
Att undervisa multiplikation och division med 10, 100 och 1000
Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas
Lokal pedagogisk planering för årskurs 7 i ämnet Matematik
Annerstaskolan Lokal pedagogisk planering för årskurs 7 i ämnet Matematik Centralt innehåll Lärområde Tid Delområde Undervisning/ arbetssätt Taluppfattning och tals Tal Vecka Förstå hur vårt Genomgång
Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson
Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass
Parallellseminarium 2
Parallellseminarium 2 201 Naturinspirerad matematik Fö, Föreläsning Annica Nettrup, Anette Barr, Anna Rosdahl På Naturförskolan Snusmumriken utgör naturen runt omkring inspiration till den vardagliga matematiken.
Dansa dig fram till lärandet Av Katerina Kazelis
Dansa dig fram till lärandet Av Katerina Kazelis Syftet med dansen Skapar Gemenskap/samhörighet i gruppen Rytmkänsla/taktkänsla/grovmotorik rörelse/dans begreppsuppfattning kopplingar mellan kropp och
Matematiklyftet. Ämnesdidaktisk fortbildning för matematiklärare. Läsåret 2013/14
Matematiklyftet Ämnesdidaktisk fortbildning för matematiklärare Läsåret 2013/14 8.30-9.30 Presentation av matematiklyftet Bakgrund och syfte Genomförande Lärportal Handledare och rektorers roll 9.30-10.00
Digitala lärresurser i matematikundervisningen delrapport skola
Digitala lärresurser i matematikundervisningen delrapport skola Denna systematiska översikt sammanställer forskning om digitala lärresurser för att utveckla barns och elevers kunskaper i matematik. Forskningen
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov
År Startvecka 2013 2 Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov Vecka Lektion (2h) Datum Kapitel Avsnitt 2 Ti 08-jan Kap 1: Räta linjen
8B Ma: Procent och bråk
8B Ma: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
Erik Östergren lärarutbildningen, 5hp HT 2015
Kurslitteratur Matematik ett kärnämne (Nämnaren Tema) Diverse artiklar All kurslitteratur kommer att finnas tillgänglig på Studentportalen. Kurshemsida http://studentportalen.uu.se Undervisning 20 lektionstillfällen.
Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun
Bilaga 1 Verksam hetsrapport 2015-02-18 Dnr 400-2014:2725 efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun 1 (8) Innehåll Inledning Bakgrundsuppgifter
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1a Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Tänka, resonera och räkna
Tänka, resonera och räkna 2018.06.11 Anna Ida Säfström, HH Ola Helenius, NCM Görel Sterner, NCM En strukturerad undervisningsmodell Bakomliggande principer för innehållet Modellens faser Materialet en
Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under
Christina Skodras Muffles truffles Undervisning i multiplikation med systematiskt varierade exempel I Nämnaren 2015:4 beskrivs ROMB-projektet övergripande i Unga matematiker i arbete. Här redovisas och
En snabbguide för att komma igång
En snabbguide för att komma igång Välkommen till Matematikportalen! Matematikportalen är ett helt digitalt läromedel i matematik för årskurs F 9, som är uppbyggt utifrån den svenska läroplanen. I Matematikportalen
Episoderna i denna artikel är hämtade
JONAS EMANUELSSON Berätta vad du tänker! Två berättelser om rätt och fel svar Artikeln handlar om de frågor lärare ställer till sina elever i klassrummet och vad som händer i den efterföljande interaktionen.
där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder innehåller alla
Matematikplanering åk 7 Läsår 16/17 Hösttermin Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad,
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km
Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Taluppfattning och allsidiga räknefärdigheter
Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och
Delutvärdering Matte i Πteå Moa Nilsson Juli 2014
Delutvärdering Matte i Πteå Moa Nilsson Juli 2014 Projektet Matte i Πteå Syfte Syftet med det treåriga projektet Matte i Πteå är att utveckla och förbättra undervisningen i matematik för att öka alla elevers
Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt
Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.
Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Utvidgad aritmetik. AU
Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och
Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min]
Intervjuguide Att göra inför intervjun: Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda läroboken så att du kan diskutera den med läraren. Ha ett anteckningspapper
Madeleine Zerne, rektor på Hagbyskolan
Madeleine Zerne, rektor på Hagbyskolan F-6 skola med 340 elever Rektorer på matematikkonferens Tre rektorer från Linköpings kommun, Gunilla Norden, Anna Samuelsson och Madeleine Zerne Rektorskonferens
Studiehandledning. kurs Matematik 1b
Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik
Tolkning av strävansmål i Matematik A Skolinspektionens kvalitetsgranskning
Tolkning av strävansmål i Matematik A Skolinspektionens kvalitetsgranskning Tomas Bergqvist Umeå Forskningscentrum för Matematikdidaktik Matematiska - Strävansmål - Processmål - Kompetensmål - Förmågemål
1 Julias bil har gått km. Hur långt har den gått när den har körts tio (3) kilometer till? Rita en ring runt det största bråket.
Test 9, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet
I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden
Verksamhetsrapport. Skoitnst.. 7.1,ktion.en
Skoitnst.. 7.1,ktion.en Bilaga 1 Verksamhetsrapport Verksamhetsrapport efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid den fristående gymnasieskolan JENSEN gymnasium Uppsala i Uppsala
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal
Lärarhandledning matematik
Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Ekvationen. www.grul.se
Ekvationen Ekvationen Speldesign: Niklas Lindblad Carl Heath Version 1.0 Tack till: Alexander Hallberg Tidsåtgång: Ca 50 minuter inklusive efterdiskussion Antal deltagare Fungerar bäst i grupper om 2-4
Lärarhandledning Mönster
Lärarhandledning Mönster Innehåll Aktivitet Mönster 2 Bakgrund Mönster 4 Kartläggningsunderlag Mönster 5 Elevexempel Mönster 6 KARTLÄGGNING FÖRSKOLEKLASS HITTA MATEMATIKEN. SKOLVERKET 2018. 1 Mönster Aktivitet
Nu består Diamant av 127 diagnoser, avsedda
Marie Fredriksson & Madeleine Löwing Diamantdiagnoser för hela grundskolan Diamantdiagnoserna har nu anpassats till Lgr 11 och är utvidgade till att omfatta kursplanens matematikinnehåll till och med årskurs
Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret
Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Ämnesprovet i matematik årskurs 3, 2016
Ämnesprovet i matematik årskurs 3, 2016 PRIM- gruppen, Stockholms universitet Erica Aldenius, Heléne Sandström Inledning Syftet med de nationella proven är att stödja en likvärdig och rättvis bedömning
Matematikvisionen Ht 2002- vt 2006
Matematikvisionen Ht 2002- vt 2006 Sammanfattning av Utbildningsförvaltningens satsning på kompetensutveckling av matematiklärare på gymnasiet i projektet Nollvisionen/Matematikvisionen. Nollvisionen MaA
Fritidshemsnätverk 24/11-16
Fritidshemsnätverk 24/11-16 08.30 Föreläsning Christina och Jenny 9.15 Gruppindelning + hämta fika 9.30 Grupparbete inklusive fika 10.15 Återsamling och summering 10.30 Avslutning, utvärdering och fokus
91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015
91MA11/7, 92MA11/7 Matematik 1 - Delkurs: Algebra, 7,5 hp Kurs-PM vt 2015 Johan Thim All kursinformation finns också på www.liu.se/utbildning/program/amneslarare-gy/student/termin-2/matematik-91ma11 www.liu.se/utbildning/program/amneslarare7-9/student/termin-2/matematik-91ma17
mallkurs - en gemensam kurs för varje mattekurs från vilken alla lärare kan kopiera planering, material, filmer till sin egen kurs bra att göra
mallkurs - en gemensam kurs för varje mattekurs från vilken alla lärare kan kopiera planering, material, filmer till sin egen kurs bra att göra filmer själv, eleverna känner igen rösten, innehållet i filmerna
Planera och organisera för Matematiklyftet
Planera och organisera för Matematiklyftet För huvudman, rektor och förskolechef inom Förskola Förskoleklass Grundskola och motsvarande skolformer Gymnasieskola och gymnasiesärskola Kommunal vuxenutbildning
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
TESTVERSION. Inledande text, Diamant
Inledande text, Diamant Diamant är en diagnosbank i matematik som består av 55 diagnoser, avsedda för grundskolan. Fokus ligger på grundläggande begrepp och färdigheter. Tanken med diagnoserna är att de
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lektionsplanering för matematik årskurs 9C Funktioner och Algebra
Lektionsplanering för matematik årskurs 9C Funktioner och Algebra Datum Genomgång Elevaktivitet Vecka 41 10/10 Introduktion kapitel 2 Funktioner och Algebra 11/10 Funktioner Arbetar med sidorna 44 45 Filmklipp
Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth
Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Lärarguiden Tänka, resonera och räkna i förskoleklass
Görel Sterner Tänka, resonera och räkna Tänka, resonera och räkna i förskoleklass Här beskriver artikelförfattaren ett utvecklingsarbete som har resulterat i en guide för lärare som undervisar matematik
Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet
Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
Matematiklyftet kollegialt lärande för matematiklärare. Grundskolan Gymnasieskolan Vuxenutbildningen
Matematiklyftet kollegialt lärande för matematiklärare Grundskolan Gymnasieskolan Vuxenutbildningen Välkommen till Matematiklyftet en fortbildning i didaktik för dig som undervisar i matematik i grundskolan,
Arbetsområde: Jag får spel
Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för
Veckomatte åk 3 med 10 moment
Veckomatte åk 3 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen om matematik Lgr11 3 Grundläggande struktur i Veckomatte Åk 3 4 Strategier för Veckomatte Åk 3 5 Veckomatte
Stöd för genomförandet
Till varje fråga anges ett syfte, utom i de fall där frågan är självförklarande. Utöver detta finner du exempel på hur ett resonemang kring ett alternativ kan se ut. Dessa exempel kan du använda som stöd
Lathund, samband & stora tal, åk 8
Lathund, samband & stora tal, åk 8 Den vågräta tallinjen kallas x-axeln och den lodräta tallinjen kallas y-axeln. Punkten där tallinjerna skär varandra kallas origo (0,0). När man beskriver en punkt i
Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013
Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter
Flera digitala verktyg och exponentialfunktioner
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg I Del 8: Matematikundervisning och utveckling med digitala verktyg Flera digitala verktyg och exponentialfunktioner Håkan Sollervall,
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem
Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013
Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 www.mentimeter.com 1.Skapa en fråga. 2.Låt klassen få rösta. Tag fram mobiltelefonen (det
Lärarhandledning del 2a Högstadiet och gymnasiet. Dela och jämför lösningar
Lärarhandledning del 2a Högstadiet och gymnasiet Dela och jämför lösningar Del 2a Dela och jämför lösningar Skicka in en lösning Till varje övning i NOKflex kan eleverna fotografera eller skriva en egen
Modulkonstruktion. Ola H. NCM
Modulkonstruktion Ola H. NCM Grundskolan Algebra Statistik och sannolikhet Geometri Samband och förändring Problemlösning Taluppfattning och tals användning Särskolan Förskola och förskoleklass Gymnasieskolan