Resurscentrums matematikleksaker
|
|
- Jan-Olof Håkan Lundgren
- för 9 år sedan
- Visningar:
Transkript
1 Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen i Hanoi 8 5 Bygg möbler och utnyttja resurser på bästa sätt 10 6 Först till
2 1 Bygga lutande torn som inte faller Säg att du staplar träplattor på följande sätt: Hur långt åt sidan kan du komma innan stapeln faller om du har hur många plattor som helst till ditt förfogande? Börjar man stapla lite på måfå märker man snart att det är svårt att nå så långt. Man märker kanske också att när stapeln faller börjar oftast fallet i botten. Om man vill veta hur långt man kan stapla i sidled är det en bra ide att först fundera ut hur man gör för att stapla optimalt. Enkel fysik säger oss att tornet faller när den sammanlagda tyngdpunkten ovanför en given platta hamnar utanför kanten på den givna plattan. För varje platta vi lägger på får vi alltså ett till tyngdpunktsproblem att lösa. Det som komplicerar saken är att den nya plattan också ändrar på alla de undre tyngdpunktproblemen. Att ställa upp en matematisk modell för allt detta går, men det blir mycket, mycket svårt att få ut någon information som berättar för oss hur vi skall stapla optimalt. Istället för att tänka på det här sättet kan man nu göra något mycket smart som mer har med ren problemlösning att göra än med matematik. Tricket är att börja stapla uppifrån och sedan stapla så optimalt det går nedåt. Varje ny platta ger fortfarande ett nytt tyngdpunktsproblem, men inget av problemen ovanför påverkas. Tyngdpunkten hos en platta ligger förstås i mitten och därför är det bäst att stapla de första två plattorna på följande sätt Vi vill nu lägga platta nummer 3 så att dess vänstra kant kommer i linje med tyngdpunkten hos platta ett och två tillsammans. På grund av symmetri ligger denna tyngdpunkt i mitten av figuren och alltså på avståndet 1/4 från platta tvås vänsterkant. Vi får alltså följande figur med tre plattor. Tyngdpunkten för plattorna 1 och 2 tillsammans och tyngdpunkten för plat- 2
3 1/2 1/4 ta tre är utritade. För att hitta tyngdpunkten för de tre plattorna tillsammans tittar man i figuren ovan och observerar att den måste ligga mellan den vänstra och högra pilen. Mer exakt, den vänstra pilen representerar dubbelt så stor kraft som den högra och därför ligger tyngdpunkten dubbelt så nära den vänstra pilen som den högra. Tänker man lite inser man kanske att detta blir 1/3 1/2 = 1/6 från den vänstra kanten på den tredje plattan. Vid denna punkt placerar vi nu platta fyra. 1/2 1/4 1/6 Efter ett liknande argument inser man att nästa platta skall placeras 1/2 1/4 från kanten på plattan ovan. Följande platta skall placeras på avståndet 1/2 1/5 från kanten på plattan ovan och så vidare. Räknar vi hur långt åt sidan vi når blir det eller, om vi bryter ut 1/2, ( ). Frågan om hur långt åt sidan vi kan stapla kan nu översättas till matematik och blir då frågan om vad som händer med när vi lägger till fler och fler termer. Varje term motsvarar ju precis en ny optimalt placerad platta. Tar vi med 6 termer blir summan till exempel Tar vi med 100 termer får vi ungefär 5.2, och tar vi tusen får vi cirka 7.5. Med våra plattor, som är ca 20 cm långa, betyder det att vi kan komma 1/ , dvs ungefär 0.75 meter i sidled med tusen plattor (om vi staplar optimalt). 3
4 Frågan är nu om det finns någon gräns för hur långt man kan komma? Med matematiska metoder och med hjälp av till exempel integraler kan man visa att summan ovan kan bli hur stor som helt om vi bara tar med tillräckligt många termer. På matematikspråk säger vi att summan divergerar. I sanningens namn bör vi dock påpeka att det blir svårt att i praktiken bygga så värst långt åt sidan. Serien ovan växer väldigt sakta när vi tar med fler och fler termer. Faktum är att om vi tar 1 miljard termer blir summa fortfarande bara ungefär 21 vilket motsvarar 2.1 meter. Tar vi termer blir summan cirka 230 vilket skulle motsvara 23 meter, men så långt kommer vi aldrig i praktiken eftersom är ett så stort tal att det inte tros finnas så många atomer i hela universum (än mindre så många plattor). I våra egna huvuden kan vi ju dock hantera betydligt större tal än så och vi vet nu att vi i tanken kan bygga en stapel som når precis hur långt i sidled som helst. 4
5 2 Om konsten att vinna betingat godis i spel Problemställning: Vi har 3 skåp, varav ett gömmer en chokladbit. En besökare får välja ett av skåpen. Programledaren (dvs du) öppnar ett tomt skåp, som besökaren inte valt (detta kommer alltid vara möjligt då det finns två tomma skåp). Besökaren erbjuds byta skåp. Frågeställning: Vilken strategi är att föredra? Är det bättre att byta skåp, att stanna kvar vid sitt första val eller spelar det ingen roll vad besökaren väljer? Förklaring: I. Om vi bestämmer oss för strategin att alltid byta skåp, är sannolikheten för vinst lika med sannolikheten att välja ett tomt skåp vid vårt första val. Sannolikheten att välja ett tomt skåp i första valet är 2/3. II. För alla 3 dörrar har vi 3 möjligheter/utfall. dörr 1 dörr 2 dörr 3 fall 1 C T T fall 2 T C T fall 3 T T C där C betecknar skåp med chokladbit och T betecknar skåp som är tomt Antag att besökaren väljer dörr 1. Om vi befinner oss i fall 1 öppnas antingen dörr 2 eller dörr 3 (i bilden ovan dörr 2). Om vi befinner oss i fall 2 öppnas dörr 3 och fall 3 så öppnas dörr 2. Sannolikheten för vinst om vi behåller vårt första val (dörr 1) är 1/3 (ett gynnsamt fall dividerat med 3 möjliga) och sannolikheten för vinst om vi byter är 2/3 (två gynnsamma fall dividerat med 3 möjliga). III. Antag att vi har 100 skåp (i stället för 3), varav ett innehåller en chokladbit. Efter det att besökaren valt öppnas 98 tomma skåp besökaren inte valt. Sannolikheten att vi valde fel dörr i början är ju 99/100. För den som fortfarande inte tror oss kan vi hänvisa till internet-adressen; 5
6 3 Den snåle grosshandlarens våg Det var en gång en grosshandlare som var så snål att han knappt ville slita sin balansvåg. Han hittade på alla möjliga ursäkter till sina kunder för att slippa väga det han sålde. Han såg emellertid alltid noga med att han fick tillräckligt betalt för sina varor. Nu hade han precis varit vid godisfabriken i staden och inhandlat 27 stycken godispåsar som han tänkte sälja vidare. Precis när han lämnade fabriken gick han förbi dörren till kontoret på godisfabriken och råkade då höra hur verkmästaren berättade för direktören att det under dagen tyvärr skett ett misstag. En av deras anställda hade lagt för mycket godis i en påse. Vår käre grosshandlare hamnade nu i ett dilemma. Han var ju tvungen att ta reda på om han fått med sig den extra fyllda påsen. Men det innebar ju att han måste slita på sin fina balansvåg. Hur skall han bära sig åt för att behöva använda balansvågen så få gånger som möjligt? Här i vårt spel så representeras godispåsarna av legobitar. Det man kanske inte tänker på på en gång är att vågen har tre lägen, inte bara tyngst till vänster och tyngst till höger utan också jämvikt. Det kan man använda för att dela upp legobitarna i tre högar med nio i varje. Behåll en hög och jämför de andra två högarnas vikter på vågen. Med en vägning kan man alltså avgöra vilken av dessa högar som innehåller den dopade legobiten. Den utvalda högen med 9 legobiter delar man i sin tur upp i tre höga om tre. Som tidigare kan man avgöra med en vägning vilken av dessa tre högar som innehåller den dopade biten. Nu tar man och väger två av dessa återstående tre bitarna och behåller en kvar på bordet. Denna sista vägning hjälper oss avgöra vilken av dessa tre som är den dopade biten. Vi behövde alltså 3 vägningar för att hitta den tunga bland 27 bitar. Man kan börja och fundera på hur det blir för 26, och för 28 legobitar? Om vi antar att vi har 26 bitar. Då gör vi tre högar, två högar med 9 bitar i och en hög med 8 bitar i. Väg de två 9-högarna mot varandra. Då kan man se om någon av dem är innehåller den dopade biten. I så fall kan man fortsätta som vid andra vägningen ovan. Om de väger lika finns den dopade bland de 8 på bordet. I så fall delar vi en dessa åtta i tre höger med 3 plus 3 plus 2 element, o s v. 6
7 Nu börjar vi ana hur det fungerar. I följande tabell skriver vi ner hur många vägningar vi minst behöver för ett visst antal bitar. Antal bitar Antal vägningar Den som tänker efter lite nu kan inse att på 4 vägningar kan jag klara en mängd som går att dela upp i tre högar om maximalt 27 bitar, d v s vi klarar 3*27=81 bitar på 4 vägningar. Nu börjar vi verkligen fatta hur det fungerar. Med 5 vägningar bör man klara 3*81=243 bitar. Om man nu observerar att 27 = 3 3, 81 = 3 4 och 243 = 3 5, skulle man nu rent av vilja påstå att med k vägningar klarar vi ända upp till 3 k bitar. Grosshandlaren bör alltså välja att köpa ett antal som är av typen 3 k för att lyckas hitta den tunga påsen bland så många påsar som möjligt med så få vägningar som möjligt. Efter att ha funderat ut detta tyckte grosshandlaren att han hade väldigt bra läge om samma situation skulle uppkomma igen. Men när han kom till fabriken andra dagen fick han höra att åter igen hade en påse hade blivit felaktigt fylld, men idag visste ingen om det var för mycket eller för lite i påsen. Grosshandlaren tänkte att om han lyckades få med denna påse i sitt inköp kunde han gå med vinst om den var för tung, och om den var för lätt kunde han reklamera den. Efter allt problemlösande de sista dagarna var nu grosshandlaren hjärna upptrimmad och han kom fram till att han kunde hitta den felaktigt fyllda påsen bland 12 påsar med bara tre vägningar Hur gör han? 7
8 4 Tornen i Hanoi Denna lek har börjar med att du har tre pinnar, fixerade i en bottenplatta. På en av pinnarna, vi kallar den pinne 1, sitter ett antal plattor. Plattorna blir mindre och mindre ju högre upp de ligger. Vårt problem består i att flytta alla plattor till en annan pinne. Detta vore enkelt om det inte var för att vi skulle uppfylla vissa regler. Vi får endast flytta en platta åt gången och vi får aldrig lägga en större platta ovanpå en mindre. Börjar vi med tre plattor är det lätt att se att att vi kan lösa problemet. Om vi försöker med fyra plattor blir det lite svårare, men det visar sig att även detta problem går att lösa. Faktum är att det faktiskt går att lösa problemet med hur många plattor som helst. Detta kan man bevisa med något som kallas matematisk induktion. För detta problem skulle man kunna resonera på följande sätt. Vi vill visa att vi kan lösa problemet med N antal plattor, där N står för något positivt heltal. Vi vet ju att vi klarar att lösa problemet med en platta. Låt oss nu låtsas att vi kan lösa problemet med N 1 plattor. Vi känner alltså till en metod för att flytta N 1 plattor från en pinne till en annan. Om vi nu vill flytta N plattor kan vi göra så här: 1. Flytta alla plattor utom den understa från pinne 1 till pinne två. Vi har kommit överens om att vi vet hur detta kan göra och behöver därför inte redovisa varje steg. 2. Flytta den största plattan till pinne tre. 8
9 3. Flytta de N 1 mindre plattorna från pinne två till pinne tre. Om man tror på det som kallas matematisk induktion (och det gör man om man är matematiker) har vi nu bevisat att det går att lösa problemet för vilket antal (N) plattor som helst. Är detta rimligt? Ja, vi vet ju hur vi flyttat en platta. Med N = 2 säger vår metod ovan hur vi flyttar två plattor. Tar vi nu N = 3 får vi en metod för att flytta tre plattor och så vidare. Det är inte svårt att tro på att det fungerar för vilket antal som helst. Nu när vi vet att problemet går att lösa kan vi fråga oss hur många drag vi minst måste göra för att flytta N stycken plattor. Om vi låter detta antal betecknas med P (N) kan man, genom att titta på punkterna 1-3 ovan, se att vi måste ha P (N) = P (N 1) P (N 1) = 2P (N 1) + 1. Detta är ett exempel på något som kallas en rekurrensekvation. Det finns flera sätt lösa sådana, med det som är lättast (iallafall lättast att förklara) är metoden gissa och bevisa med induktion. Man kan ganska enkelt, genom att börja med en platta och sedan räkna vidare, se att P (1) = 1, P (2) = 3, P (3) = 7, P (4) = 15,P (5) = 31 och så vidare. Om man är lite klurig kan man gissa att antalet flyttningar skulle kunna ges av formeln P (N) = 2 N 1. För att bevisa detta använder vi återigen induktion. Vi behöver alltså visa att vår formel stämmer för N = 1 och att om vi antar att den stämmer för N 1 stämmer den också för N. Att = 1 är ju inte så svårt att se, så fallet N = 1 är enkelt. Antag nu att vi vet att P (N 1) = 2 N 1 1. Vi vill visa att detta innebär att P (N) = 2 N 1. Vi börjar med vår rekurrensekvation och använder vårt antagande ovan. Då får vi P (N) = 2P (N 1) + 1 = 2(2 N 1 1) + 1 = 22 N = 2 N 1 vilket var precis vad vi behövde. Man kan observera att antalet flyttningar växer ganska fort med antalet plattor. Till exempel går det åt drygt en miljard flyttningar för att flytta 30 plattor. Lyckas man flytta en platta i sekunder och jobbar utan paus tar en sådan övning drygt 32 år. Lycka till. 9
10 5 Bygg möbler och utnyttja resurser på bästa sätt Ett snickeri tillverkar bord och stolar. Man bygger dem av stora och små legobitar. Ett bord består av två bitar av vardera sorten, medan en stol består av en stor och två små bitar. I lagret finns 6 stora och 8 små bitar. Varje bord kan säljas för 150: och varje stol för 100:. Bitarna kan inte säljas som de är. Hur många bord och hur många stolar ska vi bygga för att få så stora intäkter som möjligt? Små bitar Stol Stora bitar Bord Eftersom vi tjänar mera på att sälja ett bord än att sälja en stol börjar vi med att bygga så många bord som möjligt. När vi har byggt tre bord finns inga stora bitar kvar, men vi har två små bitar över. De tre borden kan säljas för totalt 450:. Eftersom vi har resurser (små bitar) kvar finns det en möjlighet att tjäna mer pengar genom att utnyttja dessa. Men om vi skall använda de två överblivna små bitarna kan vi inte bygga så många bord som 10
11 150: + 150: + 150: 450: vi tänkt från början utan måste bygga stolar också, trots att dessa inte ger lika stora intäkter per styck. Om vi tar isär ett av de tre borden förlorar vi 150: av med de 450: som vi får om vi bygger tre bord. Om vi lyckas bygga stolar kommer vi att tjäna 100: per stol. För att tjäna på att bygga stolar i stället för det isärtagna bordet räcker det inte med att bygga en stol; vi måste bygga minst två stycken stolar (2 100: 200: ) för att tjäna på att ta isär ett bord. Alltså: pröva med att ta isär ett bord och bygg så många stolar som möjligt: 150: + 150: + 100: + 100: 500: Kan det finnas något sätt att tjäna ännu mer pengar med hjälp av åtta små och sex stora bitar? Pröva med att ta isär ett bord till och bygg stolar av bitarna. Om vi bygger fler stolar tjänar vi 100: per stol, men då måste vi ta isär ett bord, så att vi förlorar 150:. Totalt förlorar vi 50: per stol som vi bygger (utöver de två som vi redan har. Alltså finns inget sätt att tjäna mer pengar med hjälp av åtta små och sex stora bitar än att bygga två stolar och två bord. Antag att vi kan köpa en stor bit till. Hur mycket pengar kan vi tänka oss att betala för den och hur många stora bitar är värda detta 11
12 150: + 100: + 100: + 100: 450: pris? Med hjälp av en stor bit till kan vi ta isär en stol och istället bygga ett bord. På detta tjänar vi 150: minus 100:. Alltså kan vi tänka oss att betala högst 50: per stor bit (betalar vi mindre än 50: gör vi en förtjänst). Men eftersom vi bara har två stolar att ta isär är vi bara intresserade av att köpa två stora bitar. En tredje stor bit är inte värd någonting för oss eftersom vi inte kan utnyttja den i möbelsnickeriet. Antag istället att vi kan köpa fler små bitar. Hur mycket pengar kan vi tänka oss att betala för dessa och hur många små bitar är värda detta pris? Med hjälp av två små bitar kan vi ta isär ett bord och istället bygga två stolar bord. På detta tjänar vi 2 100: minus 150:. Alltså kan vi tänka oss att betala högst 25: per liten bit, men endast om vi kan köpa två åt gången. Eftersom vi bara har två bord att ta isär är vi intresserade av att köpa högst fyra små bitar. Ytterligare små bitar är inte värda någonting för oss eftersom vi inte kan utnyttja den till möbelsnickeriet, om vi inte kan köpa både små och stora bitar, förstås. Antag att priset för bord sjunker till 90:. Hur skall vi bygga för att tjäna så mycket som möjligt? Utgå från den optimala lösningen, dvs. två bord och två stolar. Den ger nu endast 380: i intäkter. Eftersom borden nu ger sämre intäkter än stolar men kräver fler bitar för att bygga så tar vi isär borden och bygger stolar av bitarna istället. Vi får totalt fyra stolar samt två stora bitar över. Detta ger en total intäkt på 400:, vilket är det bästa vi kan få ut när priset på bord är så lågt. 12
13 6 Först till 20 Detta är en gammal matematiklek för två personer. Den som börjar säger antingen talet 1 eller 2. Sedan turas man om att säga nästa tal genom att, till det senast sagda talet, addera antingen 1 eller 2. Den som säger 20 vinner. Spelet blir lite roligare om man inför en spelplan i stil med följande figur där man flyttar fram någon typ av spelpjäs allt eftersom man adderar tal. Alternativt kan man skriva upp siffrorna 1 till 20 på ett papper och på något sätt markera de tal man hamnar på i varje steg. Antag t.ex. att de två spelarna markerar sina tal med kryss respektive ringar. Då skulle en spelomgång kunna se ut på följande sätt I detta fall vann den spelare som började (och som markerat sina tal med kryss) men man kan fråga sig om motspelaren (med ringar) i något skede kunde gjort annorlunda och förhindrat förlust. Mer specifikt kan man fråga sig om det finns någon strategi för att vinna i detta spel. Efter att kanske ha spelat några gånger så inser man snart att den som säger 17 kommer att vinna. Oavsett om motspelaren sedan adderar 1 (till talet 18) eller 2 (till talet 19) så kan man ju därefter alltid se till att hamna på 20. Det är då naturligt att gå vidare och fundera över hur man hamnar på 17. För att lyckas med det så inser man (med liknande tankegångar som i resonemanget med 17) att man bör hamna på 14, ty oavsett om motspelaren adderar 1 (till talet 15) eller 2 (till talet 16) så kan man ju därefter alltid se till att hamna på 17. Man kan sedan successivt med ett liknande resonemang komma fram till att de andra nyckeltalen, på vilket man bör hamna för att vinna, är 11, 8, 5 och 2. Slutsatsen är således att för att vara säker på att vinna så bör man vara den som börjar spelet och då välja talet 2. Därefter skall man hela tiden se till att hamna på ovan nämnda nyckeltal Antag nu att vi ändrar lite på spelreglerna och istället tävlar om att komma först till 21 (eller något annat godtyckligt positivt heltal). Vilken stragtegi skall man då ha? Eller antag att man tillåts att addera inte bara 1 och 2 utan även 3 i varje steg. Hur skall man då göra? Man kan också fråga sig huruvida det i dessa fall är bäst att börja eller inte? 13
14 För att svara på dessa frågor så kan det vara på sin plats att först försöka förstå vad som ligger bakom den vinnande strategin i spelet Först till 20 ovan. Vi behöver förstå vad nyckeltalen 20, 17, 14, 11, 8, 5, 2 har gemensamt. En viktig observation i vinnarstrategin ovan var det faktum att man alltid kan se till att summan av två efterföljande additioner/förflyttningar alltid blir 3 (ty om motståndaren adderar 1 så adderar du 2 och vise versa). Så om man bara hamnar på det första nyckeltalet (i detta fallet 2) så kan man sedan hela tiden se till att hamna 3 steg längre fram nästa gång, och till slut hamna på 20. Alla nyckeltalen har därför formen 2 + 3n, för något heltal n, dvs de är 2 + ett tal i treans multiplikationstabell. Andra sätt att uttrycka detta är att säga de har resten 2 vid division med 3 eller att de är kongruenta med 2 modulo 3 (vilket skrives 2 (mod 3) med matematiskt formspråk). Om vi nu istället tävlar om att komma först till n, där n är ett godtyckligt positivt heltal, så bör vi alltså lista ut vilket det första nyckeltalet är och därefter följa samma strategi som ovan genom att addera så att summan av två efterföljande drag hela tiden blir 3. Det första nyckeltalet (liksom de övriga) skall ha samma rest som n vid division med 3. Om t.ex n = 37 så är resten 1 ty 37 = så man skall alltså vara den som börjar och då välja talet 1. Om t.ex. n = 21 så är resten 0 (ty 21 är jämnt delbart med 3) vilket innebär att det minsta positiva nyckeltalet är 3 och för att hamna där så måste motståndaren börja. Att det är just treans tabell som har betydelse ovan beror på att man bara får addera 1 eller 2 i varje steg. Säg nu att det, utöver talen 1 och 2, även är tillåtet att addera någon av talen 3, 4, 5,..., m, för något heltal m, i varje steg. Oavsett vilken av dessa tal som motståndaren väljer att addera så kan vi i efterföljande steg också addera ett tillåtet tal så att det tillsammans blir m + 1. Så från varje givet nummer kan man, efter det att motståndaren gjort sitt drag, alltid hamna m + 1 steg längre fram nästa gång man står på tur att flytta/addera. Om man tävlar om att komma först till något heltal n så är det bara att, med utgångspunkt från n, stega sig tillbaka med m + 1 steg i taget för att se vilka nyckeltal man bör hamna på. Eftersom nyckeltalen skiljer sig åt med en multipel av m + 1 så kommer de alla att ha samma rest vid division med m + 1. Antag t.ex. att vi spelar först till och får addera 1, 2, 3, 4, 5 eller 6 i varje steg (med ovanstående beteckningar är n = och m = 6). Eftersom har resten 4 vid division med 7 (ty = ) så bör man alltså se till att börja spela och då välja 4 och därefter se till att hamna på 11, 18, 25, 32..., 9996, Ett annat klassiskt spel som påminner lite om Först till 20 är spelet Nim. Nim spelas av två spelare. Man har ett antal högar med ett antal stickor i varje hög (i det klassiska Nim hade man 3 högar med 3, 5 respektive 7 stickor i varje hög). Spelarna turas om att välja en hög och antalet stickor 14
15 hon/han vill ta från högen (minst 1 och som mest hela högen). Den spelare som tar den sista stickan vinner. Det finns ett otal hemsidor på internet där man kan spela olika typer av Nim-varianter interaktivt. Välj t.ex. att titta under Nim Games i raden av interaktiva applikationer på sidan 15
Lutande torn och kluriga konster!
Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den
Resurscentrums matematikleksaker
Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
UPPGIFT 1 V75 FIGUR 1.
UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp
1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
Utförliga regler för TRAX
Utförliga regler för TRAX Innehållsförteckning Vad är TRAX? Sid 2 Grundregler för TRAX Sid 3 Vad är en tvingad yta? Sid 4 Vad är en vinnande ögla? Sid 6 Vad är en vinnande linje? Sid 7 Grundläggande strategiska
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Övningshäfte 1: Induktion, rekursion och summor
LMA100 VT2006 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 1: Induktion, rekursion och summor Övning A 1. Kan ni fortsätta följden 1,3,5,7,9,11,...? 2. Vilket är det 7:e talet i följden? Vilket är det 184:e?
inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på
REGIONFINAL 2019 LAGEN
REGIONFINAL 2019 LAGEN 1. Kommunikationstekniker Det har sedan lång tid tillbaka varit viktigt för människor som befinner sig på olika platser att kunna kommunicera med varandra. Vilken teknik som har
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
getsmart Grå Regler för:
(x²) 1 2 Regler för: getsmart Grå Algebra 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det rekommenderas att man börjar
Grundläggande 1 övningar i kombinatorik
UPPSALA UNIVERSITET Matematiska institutionen Vera Koponen Baskurs i matematik Grundläggande 1 övningar i kombinatorik Se till att ni klarar av dessa uppgifter innan ni går vidare till svårare uppgifter
Matematiskt luffarschack
Matematiskt luffarschack - idé från Valentina Chapovalova Luffarschack är en lagtävling där lagen ska lösa uppgifter på tid. På varje uppgift ska man endast lämna in svar. På en lapp skriver man uppgiftens
Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Anvisningar Provtid Hjälpmedel
Finaltävling i Stockholm den 22 november 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella
UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3
UPPGIFT 1 EURO Harry ska åka till Portugal och behöver växla till sig 500 Euro från svenska kronor. När han kommer tillbaka från Portugal kommer han att ha 200 Euro över som han vill växla tillbaka till
MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken
Explorativ övning LMA100 ht 2002 MATEMATIS INDUTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför
MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken
) Explorativ övning MA00 vt 00 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför
7-1 Sannolikhet. Namn:.
7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för
Något om kombinatorik
Något om kombinatorik 1. Inledning Kombinatoriken är den gren av matematiken som försöker undersöka på hur många olika sätt något kan utföras. Det kan vara fråga om mycket olika slag av problem. Kombinatoriska
Pottstorleksfilosofin ett exempel
Kapitel fem Pottstorleksfilosofin ett exempel Säg att du spelar ett no limit-spel med mörkar på $2-$5 och $500 stora stackar. Du sitter i stora mörken med Någon inleder satsandet ur mittenposition med
NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid
Sannolikheten att vinna ett spel med upprepade myntkast
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 7: Matematiska undersökningar med kalkylprogram Sannolikheten att vinna ett spel med upprepade myntkast Håkan Sollervall, Malmö
8-4 Ekvationer. Namn:..
8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2
Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=
Labora&v matema&k - för en varierad undervisning
Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar
UPPGIFT 1 VÄNSKAPLIGA REKTANGLAR
UPPGIFT 1 VÄNSKAPLIGA REKTANGLAR FIGUR 1. Dessa två rektanglar är vänskapliga. Den ena har samma mätetal för arean som den andra har för omkretsen och tvärtom. Rektangeln till vänster har omkretsen 2 4
3-3 Skriftliga räknemetoder
Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,
INTRODUKTION 3 INOMHUS LEKAR 4. Kartritar leken 4. Kartteckenmemory 4. Kopieringsstafett 5. Pusselstafett 5. Ja & Nej stafett 6 UTOMHUSLEKAR 7
INNEHÅLL INTRODUKTION 3 INOMHUS LEKAR 4 Kartritar leken 4 Kartteckenmemory 4 Kopieringsstafett 5 Pusselstafett 5 Ja & Nej stafett 6 UTOMHUSLEKAR 7 Emit-stafett 7 Trollskogen 7 Kartan 8 Karttecken 8 SKATTJAKTEN
SVANTE JANSON OCH SVANTE LINUSSON
EXEMPEL PÅ BERÄKNINGAR AV SANNOLIKHETER FÖR ATT FELAKTIGT HANTERADE RÖSTER PÅVERKAR VALUTGÅNGEN SVANTE JANSON OCH SVANTE LINUSSON 1. Inledning Vi skall här ge exempel på och försöka förklara matematiken
Exempelprov. Matematik Del A, muntlig del. 1abc
Exempelprov Matematik Del A, muntlig del 1abc 2 DEL A, EXEMPELPROV MATEMATIK 1ABC Innehållsförteckning 1. Instruktioner för att genomföra del A... 5 2. Uppgifter för del A... 6 Version 1 Sten, sax och
STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.
STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar
Sagaforms spelregler SCHACK, FIA MED KNUFF, BACKGAMMON, DOMINO
Sagaforms spelregler SCHACK, FIA MED KNUFF, BACKGAMMON, DOMINO SCHACK Schack matt När en av motståndarens pjäser hotar kungen säger man att den står i schack. Schack matt - I schack vinner den som först
MATEMATIKENS SPRÅK. Avsnitt 1
Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en
En av matematikhistoriens mest berömda trianglar är Pascals triangel,
Michael Naylor Okända skrymslen i Pascals triangel Pascals triangel, som har varit känd av indiska, persiska, arabiska och kinesiska matematiker i mer än tusen år, fick sitt nuvarande namn i mitten av
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Problem avdelningen. Hej!
Problem avdelningen Hej! Problem till problemavdelningen kommer denna gång från många olika håll. 1110 är insänt av Roland Glittne, Göteborg, 1111 av Gunnar Holmberg, Obbola och 1112 av Hans Feur, Jönköping.
Matematik 5 Kap 2 Diskret matematik II
Matematik 5 Kap 2 Diskret matematik II Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html
2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)
De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)
Bråk. Introduktion. Omvandlingar
Bråk Introduktion Figuren till höger föreställer en tårta som är delad i sex lika stora bitar Varje tårtbit utgör därmed en sjättedel av hela tårtan I nästa figur är två av sjättedelarna markerade Det
Ekvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
4x 1 = 2(x 1). i ( ) får vi 5 3 = 5 1, vilket inte stämmer alls, så x = 1 2 är en falsk rot. Svar. x = = x x + y2 1 4 y
UPPSALA UNIVERSITET Matematiska institutionen Styf Prov i matematik BASKURS DISTANS 011-03-10 Lösningar till tentan 011-03-10 Del A 1. Lös ekvationen 5 + 4x 1 5 x. ( ). Lösning. Högerledet han skrivas
Resträkning och ekvationer
64 Resträkning och ekvationer Torsten Ekedahl Stockholms Universitet Beskrivning av uppgiften. Specialarbetet består i att sätta sig in i hur man räknar med rester vid division med primtal, hur man löser
Läxa nummer 1 klass 1
Läxa nummer 1 klass 1 Rita hur det ser ut där du brukar göra läxan! Skriv namn! Det här är din läxbok för klass 1. Du kommer i regel att få en läxa i veckan hela året. Det är meningen att du ska läsa exemplet
Ämnesprov i matematik. Bedömningsanvisningar. Skolår 9 Vårterminen Lärarhögskolan i Stockholm
Ämnesprov i matematik Skolår 9 Vårterminen 2004 Bedömningsanvisningar Lärarhögskolan i Stockholm Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n)
Uppsala Universitet Matematiska institutionen Isac Hedén Algebra I, 5 hp Sammanfattning av föreläsning 9. Kongruenser Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att
A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas papper med de olika räknesättens
Aktivitet 1:1 LÄRARVERSION Göra tal av siffror Eleverna ska träna på positionssystemet. A4-papper där det på varje papper står en siffra, på ett papper står det ett decimaltecken. Det kan också finnas
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.
HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1a Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Trepoängsproblem. Kängurutävlingen 2012 Junior
Trepoängsproblem 1. M och N är mittpunkterna på de lika långa sidorna i en likbent triangel. Hur stor är arean av fyrhörningen markerad med X? : 3 : 4 C: 5 D: 6 E: 7 M? X 3 3 6 N 2. När lice skickar ett
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också
Digital Choice 12 + MER, MER, MER!
MER, MER, MER! Digital Choice Du hämtar de minikategorier du vill ha på mytpchoice.se Det finns över 100 minikategorier, t.ex. Hjältar & hjältinnor, Sci-Fi & fantasy, Resor & äventyr, Mode & trender, Myter
Med tabell menas enligt Nationalencyklopedin en koncentrerad, överskådlig
Kerstin Hagland Ta till en tabell Tabeller används traditionellt som stöd för minnet, men de kan även utgöra ett bra verktyg vid problemlösning. Med hjälp av en tabell kan man systematiskt undersöka givna
Kängurun Matematikens hopp
Kängurun Matematikens hopp Ecolier 017, svar och lösningar Här följer korta svar, rättningsmall och redovisningsblanketter. Ett underlag till hjälp för bokföring av klassens resultat finns att hämta på
Problemdemonstration 1
Problemdemonstration 1 Divisorsummor och perfekta tal Låt oss för ett givet positivt naturligt tal x, summera alla naturliga tal d som x är delbar med, och som är mindre än x. Talen d kallas divisorer
Lösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet
Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används
Inlämningsuppgift, LMN100
Inlämningsuppgift, LMN100 Delkurs 3 Matematik Lösningar och kommentarer 1 Delbarhetsegenskaper (a) Påstående: Ett heltal är delbart med fyra om talet som bildas av de två sista siffrorna är delbart med
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Förberedelser: Göm i hemlighet en boll i den mellersta muggen, som visas på bilden nedan.
MUGGAR OCH BOLLAR Placera en boll på toppen av en mugg och täck den med de andra två muggarna. Knacka på muggen och bollen kommer att passera genom muggen och hamna på bordet under. De återstående bollarna
Känguru 2011 Cadet (Åk 8 och 9)
sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt
Spelregler. 2-6 deltagare från 10 år. En svensk spelklassiker
En svensk spelklassiker Spelregler 2-6 deltagare från 10 år Innehåll: 1 spelplan, korthållare, 2 tärningar, 6 spelpjäser, 21 aktier, 20 lagfartsbevis, 12 obligationer, 21 finanstidningar, 40 börstips,
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005
Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material
Three Monkeys Trading. Tärningar och risk-reward
Three Monkeys Trading Tärningar och risk-reward I en bok vid namn A random walk down Wall Street tar Burton Malkiel upp det omtalade exemplet på hur en apa som kastar pil på en tavla genererar lika bra
Ecolier för elever i åk 3 och 4
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Ecolier för elever i åk 3 och 4 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas tidigare.
Eulers polyederformel och de platonska kropparna
Eulers polyederformel och de platonska kropparna En polyeder är en kropp i rummet som begränsas av sidoytor som alla är polygoner. Exempel är tetraedern och kuben, men klotet och konen är inte polyedrar.
Lästal från förr i tiden
Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt
DIGITALA VERKTYG ÄR INTE TILLÅTNA
DIGITALA VERKTYG ÄR INTE TILLÅTNA 1. Vilket av följande tal är det bästa närmevärdet till 6,35 3,2? Ringa in ditt svar. 0,203 2,03 20,3 203 2030 (1/0/0) 2. En formel för momsberäkning är inlagd i ett kalkylblad.
Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5
Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5 Mål för lektionen: Eleven skall laborativt kunna lösa en algebraisk ekvation med en obekant. Koppling till strävansmål: - Att eleven
Steg 2 Lägg ner den stora tärningen i lådan. Vad noga med att öppningen på den stora tärningen är neråt.
Exploderande tärning En tärning inuti lådan blir till flera små träningar. Steg 1 Lägg det åtta små tärningarna i den stora tärningen. Steg 2 Lägg ner den stora tärningen i lådan. Vad noga med att öppningen
NpMa2b vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 67 poäng varav 26 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se
May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment
Kapitel 4. Scanlon svarar genom att förneka att han skulle mena något sådant. (Se också introduktionen.)
Kapitel 4 En viktig invändning mot kontraktualismen: det är orimligt att påstå att handlingar är fel därför att det inte går att rättfärdiga dem inför andra. Det är snarare tvärtom. (Se s. 391n21) Scanlon
Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,
Ekvationer och system av ekvationer
Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.
NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid
Programmeringsolympiaden 2018
Programmeringsolympiaden 2018 TÄVLINGSREGLER FÖR SKOLKVALET Tävlingen äger rum på av skolan bestämt datum under fyra timmar. Ingen förlängning ges för lunch eller raster. Eleven ska i förväg komma överens
7-2 Sammansatta händelser.
Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och
Finaltävling i Lund den 19 november 2016
SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka
1. (a) Formulera vad som skall bevisas i basfallet och i induktionssteget i ett induktionsbevis av påståendet att. 4 5 n för alla n = 0, 1, 2, 3,...
UPPSALA UNIVERSITET PROV I MATEMATIK Matematiska institutionen Baskurs i matematik Vera Koponen 2008-02-2 Skrivtid: 8-. Tillåtna hjälpmedel: Inga, annat än pennor, radergum och papper det sista tillhandahålles).
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
Lektion 2. Att göra en stretch. eller fördelen med att se sig själv som en amöba
Lektion 2 Att göra en stretch eller fördelen med att se sig själv som en amöba Utdrag ur Utrustad Johan Reftel, Kristina Reftel och Argument Förlag 2005 15 Att göra en stretch är att göra något som man
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Matteklubben Vårterminen 2015, lektion 6
Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2 Jakob Jonsson April 5, 2011 Ö Övningsuppgifter These extra exercises are mostly in Swedish. If you have trouble understanding please
Magiska kvadrater. Material Nio kapsyler Material för att göra egna spelplaner eller spelpåsar, se separata beskrivningar.
Strävorna 4A Magiska kvadrater... utvecklar sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande....
Rektangelpussel 1. Använd tre bitar vilka som helst och gör en 3 5-rektangel.
PEDER CLAESSON I Nämnarens geometrinummer, nr 3 81/82, presenterar Andrejs Dunkels pentominobrickorna. Under rubriken Kvadratpussel finns de beskrivna i Martin Gardners bok, Rolig matematik, som kom ut