NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt

Storlek: px
Starta visningen från sidan:

Download "NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10"

Transkript

1 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är tillåtna hela provet Uppgift # (/) Enkel integral Uppgift # 5 (/) Enkelt problem med sinussatsen Uppgift # 6 (/) Enkel integral Uppgift # 7 (/) Integral och area Uppgift # 8 (/) Förenkla trigonometriskt uttrck Uppgift # 9 (/) Triangelns area Uppgift # (/) Derivering med produktregeln Uppgift # (/) Primitiv funktion och linjära ekvationer Uppgift # (/) Parametrar i fasförskjuten sinuskurva Uppgift # (/4) Parabolantenn och sinussatsen Uppgift # 4 (/) Triangel och sinussatsen Uppgift # 5 (/4) Vattentank, modellbggnad c G Robertsson buggar 5-4-6

2 JENSENvuutbildning NpMaD vt för Ma4 (4) Förord Utformningen av de nationella proven i matematik har varierat över tid. Uppgifter till den äldre kursen Matematik D duger utmärkt för träning till kurser enligt G. Skolverket har endast publicerat ett kursprov till kursen Ma4. Innehållet i den äldre kursen MaD hör nu främst till Ma4 men också till Ma. I tabellen nedan framgår vilka uppgifter som är lämpliga till respektive kurs Ma Ma 4 () () Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte bara formler Rita figur (om det är lämpligt) Förklara införda beteckningar Du ska visa att du kan Formulera och utvecklar problem, använda generella metoder/modeller vid problemlösning. Analsera och tolka resultat, dra slutsatser samt bedöma rimlighet. Genomföra bevis och analsera matematiska resonemang. Värdera och jämföra metoder/modeller. Redovisa välstrukturerat med korrekt matematiskt språk. c G Robertsson buggar 5-4-6

3 NpMaD vt Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen fram till utgången av december. Anvisningar Provtid Hjälpmedel Provmaterialet NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 4 minuter utan rast. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. Provmaterialet inlämnas tillsammans med dina lösningar. Skriv ditt namn och komvu/gmnasieprogram på de papper du lämnar in. Provet Provet består av 5 uppgifter. Till några uppgifter (där det står Endast svar fordras) behöver bara ett kort svar anges. Till övriga uppgifter räcker det inte med bara ett kort svar utan det krävs att du skriver ned vad du gör, att du förklarar dina tankegångar, att du ritar figurer vid behov och att du vid numerisk/grafisk problemlösning visar hur du använder ditt hjälpmedel. Uppgift 5 är en större uppgift, som kan ta upp till en timme att lösa fullständigt. Det är viktigt att du prövar på denna uppgift. I uppgiften finns en beskrivning av vad läraren ska ta hänsn till vid bedömningen av ditt arbete. Pröva på alla uppgifterna. Det kan vara relativt lätt att även i slutet av provet få någon poäng för en påbörjad lösning eller redovisning. Även en påbörjad icke slutförd redovisning kan ge underlag för positiv bedömning. Poäng och betgsgränser Provet ger maimalt 4 poäng. Efter varje uppgift anges maimala antalet poäng som du kan få för din lösning. Om en uppgift kan ge g-poäng och vg-poäng skrivs detta (/). Undre gräns för provbetget Godkänd: poäng Väl godkänd: 4 poäng varav minst 7 vg-poäng Namn: Skola: Komvu/gmnasieprogram:

4 NpMaD vt. Beräkna med hjälp av primitiv funktion ( + )d (/). Ange alla primitiva funktioner F till f ( ) = + 5 Endast svar fordras (/). Figuren visar en enhetscirkel. v a) Bestäm sin v Endast svar fordras (/) b) Bestäm sin( 8 v) Endast svar fordras (/) 4. Låt f ( ) = sin a) Bestäm f () Endast svar fordras (/) b) Beräkna f () Endast svar fordras (/) c) Ange samtliga lösningar till ekvationen f ( ) = (/) 5. I triangeln ABC är sidan AB, cm, vinkeln A 4,5 och vinkeln C,. Beräkna längden av sidan BC. (/)

5 NpMaD vt 6. Beräkna eakt arean av det skuggade området i figuren. (/) = +sin 7. Grafen till funktionen = f () begränsar tillsammans med -aeln två områden med areorna A och B areaenheter. Grafen skär -aeln i a, b och c. A = f () a b c B Teckna med hjälp av integral ett uttrck för a) A Endast svar fordras (/) b) B A Endast svar fordras (/) 8. Förenkla så långt som möjligt (cos + sin ) sin (/)

6 9. I triangeln ABC är vinkeln C 5. NpMaD vt Välj a och b så att triangelns area A ges av A = sin 5 cm (/). Visa att = sin är en lösning till differentialekvationen = cos (/). Funktionen = f () har en primitiv funktion F ( ) = A + B där A och B är konstanter. Bestäm A och B då f ( )d = och f ( )d = (/). På en sinuskurva = Asin( B + C) + D har en av maimipunkterna koordinaterna (, 5). En av de två närliggande minimipunkterna har 7 koordinaterna (, ), se figur a) Bestäm A och D. Endast svar fordras (/) b) Bestäm B och C. (/)

7 NpMaD vt 5. En behållare som från början innehåller liter vatten flls på med en inflödeshastighet q in enligt diagram. Vattnets utflödeshastighet q ut framgår av diagram. Vätskevolmen vid en viss tidpunkt beror då på vilket värde på den konstanta utflödeshastigheten q ut som valts. Beräkna hur mcket vätska behållaren innehåller efter minuter respektive 5 minuter om utflödeshastigheten q ut väljs till 4 liter/min. Undersök och beskriv så utförligt du kan hur vätskevolmen i behållaren beror av tiden och valet av utflödeshastighet. (/4) Vid bedömningen av ditt arbete kommer läraren att ta etra hänsn till: vilka slutsatser du dragit av din undersökning hur långt mot en generell lösning du lckas komma hur sstematisk du är i din undersökning hur väl du redovisar ditt arbete om du gjort korrekta beräkningar

8 NpMaD vt Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen fram till och med utgången av december. Bedömningsanvisningar (MaD vt ) Eempel på godtagbara svar anges inom parentes. Bedömningen godtagbar ska tolkas utifrån den undervisning som föregått provet. Uppg. Bedömningsanvisningar Poäng. Ma / Korrekt primitiv funktion + g 8,67 + g med godtagbart svar ( ). Ma / Angett en korrekt primitiv funktion + g med godtcklig konstant C ( F ( ) = C ) + g. Ma / a) Godtagbart svar (,6) + g b) Godtagbart svar (,6) + g 4. Ma 4/ a) Korrekt svar ( f ( ) = cos ) + g b) Korrekt svar ( f ( ) = ) + g c) Redovisat godtagbar lösning med en vinkel + g Redovisat godtagbar lösning med samtliga vinklar ± + n + g ( ) 5. Ma / Redovisat godtagbar metod + g med godtagbart svar ( 5, cm ) + g 6. Ma / Redovisat godtagbar metod + g med korrekt svar (( + ) a.e.) + g

9 v JENSENvuutbildning NpMaD vt för Ma4 (4) NpMaD vt Uppgift # (/) Enkel integral a) Bestäm sin v Endast svar fordras (/). b) Beräkna Bestäm med hjälp sin( 8 av primitiv v) funktion ( + )d Endast svar fordras (/) (/). Ange alla primitiva funktioner F till f ( ) 5 Endast svar fordras (/) ( + ) d = ( 4. Låt f ( ) = sin + ) = = = 6 8,67 a) Bestäm f () Endast svar fordras (/) 6 Svar. Figuren b) Beräkna visar en f enhetscirkel. () Endast svar fordras (/) c) Ange samtliga lösningar till ekvationen f ( ) = (/) Uppgift # 5 (/) Enkelt problem med sinussatsen 5. I triangeln ABC är sidan AB, cm, vinkeln A 4,5 och vinkeln C,. v Beräkna längden av sidan BC. (/) Vinkeln C (känd, ) står mitt emot sträckan AB (känd cm) och vinkeln A (känd 4,5 ) står mitt emot sträckan BC (sökt). Sinussatsen ger sin A a) BC Bestäm = sin C AB sin v Endast svar fordras (/) sin 4,5 b) sin, Bestäm = sin( 8 v) Endast svar fordras (/) = 4. Låt f ( ) = sin Svar Sidan BC är 5, cm. sin 4,5 sin, 5, a) Bestäm f () Endast svar fordras (/) b) Beräkna f () Endast svar fordras (/) c) Ange samtliga lösningar till ekvationen f ( ) = (/) 5. I triangeln ABC är sidan AB, cm, vinkeln A 4,5 och vinkeln C,. Beräkna längden av sidan BC. (/) c G Robertsson buggar 5-4-6

10 JENSENvuutbildning NpMaD vt för Ma4 (4) Uppgift # 6 (/) Enkel integral NpMaD vt 6. Beräkna eakt arean av det skuggade området i figuren. (/) = +sin Integralen blir ( + sin ) d = ( cos ) f () = [ cos } {{ } ] [ cos }{{} ] = + 7. Grafen till funktionen = f () begränsar A Svar tillsammans + areaenheter. med -aeln två områden med areorna A och B areaenheter. Grafen skär a b c B -aeln i a, b och c. Teckna med hjälp av integral ett uttrck för a) A Endast svar fordras (/) b) B A Endast svar fordras (/) 8. Förenkla så långt som möjligt (cos + sin ) sin (/) c G Robertsson buggar 5-4-6

11 = +sin JENSENvuutbildning NpMaD vt för Ma4 (4) Uppgift # 7 (/) Integral och area 7. Grafen till funktionen = f () begränsar tillsammans med -aeln två områden med areorna A och B areaenheter. Grafen skär -aeln i a, b och c. A = f () a b c B Teckna med hjälp av integral ett uttrck för a) A Endast svar fordras (/) b) B A Endast svar fordras (/) a) I intervallet från a till b är f() övre funktion och linjen = undre funktion (-aeln). 8. Förenkla så långt som möjligt (cos + sin ) sin (/) A = b [f() ] d = b a a f() d Svar a) b f() d a b) I intervallet från b till c är f() undre funktion och linjen = övre funktion (-aeln). B = c B A = [ f()] d = b c f() d b b a c b f() d f() d Svar b) c f() d b f() d b a Kommentar Alternativt kan integrationsordningen kastas om vilket ger b f() d + a f() d c b c G Robertsson buggar 5-4-6

12 Teckna med hjälp av integral ett uttrck för a) A Endast svar fordras (/) JENSENvuutbildning b) B A NpMaD vt för Ma4Endast svar fordras (4) (/) Uppgift # 8 (/) Förenkla trigonometriskt uttrck 8. Förenkla så långt som möjligt (cos + sin ) sin (/) cos + cos sin +sin { }} { (cos + sin ) sin trigonometriska ettan { }} { cos + sin + noll { }} { cos sin sin Svar Det förenklade uttrcket blir. c G Robertsson buggar 5-4-6

13 JENSENvuutbildning NpMaD vt för Ma4 4(4) 7(8) Uppgift Trigonometri # 9 (/) Triangelns area Definitioner 9. I triangeln ABC är vinkeln a C 5. sin v = c b cos v = c a tan v = b Enhetscirkeln NpMaD vt sin v = Välj a och b så att triangelns area A ges av cos v = A = sin 5 cm (/) Använd areasatsen somtan finns v = i FORMELSAMLINGEN.. Visa att = sin är en lösning till differentialekvationen = cos (/) sin A sin B sin C Sinussatsen = = a b c. Funktionen = f () har en primitiv funktion F ( ) = A + B där A och B är Cosinussatsen a = b + c bccos A konstanter. absin C Areasatsen Bestäm A och B T då = f ( )d = och f ( )d = (/) Trigonometriska formler sin v + cos v = ab sin 5 Enligt areasatsen gäller att arean T = och enligt uppgiften är arean sin 5. På en sinuskurva = Asin( B + C) vilket ger ab = 4. Detsin( finns v + oändligt u) = sin vcos många u + Dcos val har vsin av en uparet av maimipunkterna a och b. koordinaterna (, 5). En av de två närliggande minimipunkterna har sin( 7 v u) = sin vcosu cosvsin u koordinaterna (, ), se figur. 5 cos( v + u) = cosvcosu sin vsin u 5 8 4cos( 5v u) = cosvcosu + sin vsin u sin v = sin v cosv cos v sin v () cosv = cos v () Svar Några möjliga val är a =, b = 8 eller a = 4, b = 6 eller a = 4, b = 4. sin v () b a sin + b cos = c sin( + v) där c = a + b och tan v = a c G Robertsson Cirkelns - buggar ( a) + ( b) = r ekvation a) Bestäm A och D. Endast svar fordras (/) b) Bestäm B och C. (/) --4 Skolverket

14 JENSENvuutbildning NpMaD vt för Ma4 5(4) Välj a och b så att triangelns area A ges av A = sin 5 cm (/) Uppgift # (/) Derivering med produktregeln. Visa att = sin är en lösning till differentialekvationen = cos (/) Givet. Funktionen = f () har en primitiv funktion F ( ) = A + B där A och B är konstanter. = sin visa att Bestäm A och B då f ( )d = och f ( )d = (/) = cos. } {{ } } {{ } vänsterled högerled Strategin är att utveckla vänsterledet (VL). Börja med att derivera med hjälp av produktregeln.. På en sinuskurva = Asin( B + C) + D har en av maimipunkterna koordinaterna = ( sin, 5). + En av cos de två. närliggande minimipunkterna har Utveckla vänsterledet 7 koordinaterna (, ), se figur. VL = ( sin + cos ) sin VL = sin + cos sin 4 VL = cos. 5 Vänsterled och högerled är alltså lika vilket skulle visas. Svar Se ovan. Kommentar Lösningen = sin är inte entdig. Det finns fler lösningar till = cos mendet hör inte till denna uppgift. - a) Bestäm A och D. Endast svar fordras (/) b) Bestäm B och C. (/) c G Robertsson buggar 5-4-6

15 Välj a och b så att triangelns area A ges av A = sin 5 cm (/) JENSENvuutbildning NpMaD vt för Ma4 6(4) = är en lösning till differentialekvationen cos (/) Uppgift. Visa # att sin(/) Primitiv funktion och linjära = ekvationer. Funktionen = f () har en primitiv funktion F ( ) = A + B där A och B är konstanter. Bestäm A och B då f ( )d = och f ( )d = (/). På en sinuskurva = Asin( B + C) + D har en av maimipunkterna Bilda dekoordinaterna två ekvationerna (, 5). En av de två närliggande minimipunkterna har 7 koordinaterna = f() ( d =, ), F () se figur. = A + B = A + B = f() d = F () = A + B = A + B. 5 Detta ekvationssstem med två obekanta har lösningen A = 4 B = 4 Svar A = och B = 4. - a) Bestäm A och D. Endast svar fordras (/) b) Bestäm B och C. (/) c G Robertsson buggar 5-4-6

16 . Funktionen = f () har en primitiv funktion F ( ) = A + B där A och B är konstanter. JENSENvuutbildning NpMaD vt för Ma4 7(4) Bestäm A och B då f ( )d = och f ( )d = (/) Uppgift # (/) Parametrar i fasförskjuten sinuskurva. På en sinuskurva = Asin( B + C) + D har en av maimipunkterna koordinaterna (, 5). En av de två närliggande minimipunkterna har 7 koordinaterna (, ), se figur a) Bestäm A och D. Endast svar fordras (/) b) Bestäm B och C. (/) Parametrana A och D är enkelt att bestämma. Mavärdet är 5 och minvärdet är. Detta ger amplituden A A = 5 = och nollpunktsförskjutningen D är D = 5 + = Svar a) A = och D =. Nu återstår att bestämma vinkelhastighet B och fasförskjutning C i = sin(b } {{ + C } ) + argument Skillnaden i argument mellan ett mavärde och nästa mavärde är radianer. Skillnaden i argument mellan ett mavärde och efterföljande minvärde är radianer. c G Robertsson buggar 5-4-6

17 JENSENvuutbildning NpMaD vt för Ma4 8(4) Vi får nu = argument för minvärde { }} { (B 7 + C) argument för mavärde { }} { (B + C) = B ( 7 ) = B 4 B = 4 Nu återstår att bestämma fasförskjutning C i = sin( 4 + C) + Använd koordinaten för mapunkten (, 5). Sinusfunktionen har ma när argumentet är vilket ger = 4 + C C = 4 Svar b) B = 4 och C = 4 c G Robertsson buggar 5-4-6

18 JENSENvuutbildning NpMaD vt för Ma4 (4) Sinussatsen ger sin(9 + v) R r = 6 7 R = = sin(,4 v) r Trigonometrisk formel för sin(α + β) ger sin(9 + v) = sin 9 cos v + cos 9 sin v = cos v och trigonometrisk formel för sin(α + β) ger sin(,4 v) = sin,4 cos v cos,4 sin v Vi får cos v = sin,4 cos v cos,4 sin v R ( r cos,4 sin,4 sin v = ) cos v r r R ( r sin,4 tan v = ) cos,4 r R tan v = tan,4 r R cos,4 ) v = tan (tan,4 r = 5,6 R cos,4 c G Robertsson buggar 5-4-6

19 JENSENvuutbildning NpMaD vt för Ma4 (4) Uppgift # 5 (/4) Vattentank, modellbggnad NpMaD vt 5. En behållare som från början innehåller liter vatten flls på med en inflödeshastighet q in enligt diagram. Vattnets utflödeshastighet q ut framgår av diagram. Vätskevolmen vid en viss tidpunkt beror då på vilket värde på den konstanta utflödeshastigheten q ut som valts. Beräkna hur mcket vätska behållaren innehåller efter minuter respektive 5 minuter om utflödeshastigheten q ut väljs till 4 liter/min. Undersök och beskriv så utförligt du kan hur vätskevolmen i behållaren beror av tiden och valet av utflödeshastighet. (/4) Vid bedömningen av ditt arbete kommer läraren att ta etra hänsn till: vilka slutsatser du dragit av din undersökning hur långt mot en generell lösning du lckas komma hur sstematisk du är i din undersökning hur väl du redovisar ditt arbete om du gjort korrekta beräkningar c G Robertsson buggar 5-4-6

20 JENSENvuutbildning NpMaD vt för Ma4 (4) Ändring i volm är inflöde minus utflöde dv dt = q in q ut dv = (q in q ut ) dt V (t) dv = V (t) = t t (q in q ut ) dt (q in q ut ) dt För de 5 första minuterna gällar att q in = t därefter gäller att q in =. Utflödet är q ut om det finns vatten i behållaren, annars är flödet. Med q ut = 4 fås V () = + V () = + V () = + V (5) = + V (5) = + V (5) = + ( t 4) dt (6 t) dt [ 6 t t 5 5 ] = 8 ( t 4) dt (6 t) dt [ 6 t t ] 5 = 5 Skolverkets lösning missar att behandla fallet att tanken töms snabbt. För att behandla detta fall lös V (t ) =. Alltså att tanken är tömd vid tiden t som alltså är mindre än 5 minuter. c G Robertsson buggar 5-4-6

21 JENSENvuutbildning NpMaD vt för Ma4 4(4) V (t) = [ ] t + t t q ut t V (t) = + t t q ut t = + t t q ut t q ut t = + t t q ut = t + t (För att tömma tanken på minut krävs q ut = 9.) För att tömma tanken på 5 minuter krävs q ut =. Om q ut < finns två fall. Fallet att t 5 då gäller V (t) = + t t q ut t och fallet att t > 5 då gäller att V (t) = V (5) q ut (t 5) som gäller fram till tanken är tom, alltså t = 5 + V (5) q ut Om q ut > så är volmen V (t) = + t t q ut t fram till tidpunkten då tanken är tom. Tidpunkten t då tanken är tom är den positiva roten till = + t t q ut t = t + ( q ut )t Ovanstående är en SKISS på lösning. Lösningen måste presenteras tdligare. c G Robertsson buggar 5-4-6

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del Np MaA vt 1997 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av april 1998.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1999. NATIONELLT

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. NATIONELLT KURSPROV

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica

Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Thomas Lingefjärd Göteborg 9 Thomas Lingefjärd Introduktion till Graphmatica 1 Kort om Graphmatica Graphmatica har funnits

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Nationellt kursprov i MATEMATIK

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Enheten för Pedagogiska Mätningar PBFyA 00-12 Umeå Universitet PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-12. Anvisningar Provtid Hjälpmedel Provmaterial

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn

C Höstterminen 2009. Matematik. Elevhäfte KURSPROV. Elevens namn KURSPROV Matematik C Höstterminen 2009 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t o m 2015-12-31.

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. NATIONELLT KURSPROV

Läs mer

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte):

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte): Linjära samband Räta linjens ekvation Förmågan att se, analsera och förstå olika samband är egenskaper som är viktiga att ha i vardagslivet men oundvikliga för kommande studier och arbetsliv. Med ett samband

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Enheten för Pedagogiska Mätningar PBFyA 02-05 Umeå universitet PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-9 Del III: Långsvarsfrågor. Uppgift 10-16

Läs mer

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30 Vid sekretessbedömning

Läs mer

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0)

Del I DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... 1. Vilket tal pekar pilen på? Svar: (1/0/0) DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Vilket tal pekar pilen på? 30 31 32 33 34 Svar: (1/0/0) 2. Du åker buss kvart i sju från Motala busstation. Hur dags beräknas du vara

Läs mer

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid Anvisningar Del I Provtid Hjälpmedel Miniräknarfri del Uppgift 14 Kravgränser 90 minuter för del I. Vi rekommenderar att du använder högst 45 minuter för arbetet med den miniräknarfria delen. Du får inte

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1998. Anvisningar tidsbunden del

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1998. Anvisningar tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1999. NATIONELLT

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Miniräknare ej tillåten Del B1 Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng (0/1). Provtid: 80 minuter för Del B1 och Del B2 tillsammans.

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov D

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov D Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov D Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds t.o.m.

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

NpMa3c Muntligt delprov Del A ht 2012

NpMa3c Muntligt delprov Del A ht 2012 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Bedömningsexempel. Matematik kurs 1b

Bedömningsexempel. Matematik kurs 1b Bedömningsexempel Matematik kurs 1b Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs.

Till några uppgifter behöver endast svar anges. De är markerade med Endast svar krävs. Anvisningar Del II Provtid Hjälpmedel Del II 120 minuter för Del II. Miniräknare, formelblad och linjal. Del II består av 11 uppgifter. Till de flesta uppgifterna räcker det inte med endast svar, utan

Läs mer

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov B och Delprov C Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

lena Alfredsson Kajsa Bråting Patrik erixon hans heikne Matematik Kurs 2b Grön lärobok natur & Kultur

lena Alfredsson Kajsa Bråting Patrik erixon hans heikne Matematik Kurs 2b Grön lärobok natur & Kultur lena Alfredsson Kajsa Bråting Patrik erion hans heikne Matematik 5000 Kurs 2b Grön lärobok natur & Kultur NATUR & KULTUR Bo 27 323, 02 54 Stockholm Kundtjänst: Tel 08-453 85 00, order@nok.se Redaktion:

Läs mer

Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203

Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... A B C D

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... A B C D DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Figuren är en regelbunden sexhörning. De båda linjerna delar sexhörningen mitt itu. Hur stor del av sexhörningen är skuggad? Svara i

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Kommentarer till uppbyggnad av och struktur för ämnet matematik

Kommentarer till uppbyggnad av och struktur för ämnet matematik 2011-06-10 Kommentarer till uppbyggnad av och struktur för ämnet matematik Likheter och skillnader jämfört med den gamla kursplanen Ämnesplanen i gymnasieskola 2011 (Gy 2011) har en ny struktur jämfört

Läs mer

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan?

Del I. Miniräknare ej tillåten. Namn:... Klass/Grupp:... 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? Miniräknare ej tillåten Namn:... Klass/Grupp:... Del I 1. Vilket tal är 0,1 större än 3,96? Svar: (1/0) 2. Vilket tal i decimalform ska stå i rutan? a 0 1 2 Svar: a = (1/0) 3. Vilka koordinater har punkten

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Enheten för Pedaggiska Mätningar PBMaE 0-05 Umeå universitet Prvtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift 0-5 Anvisningar Ttalt 0 minuter för del I ch II

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Bayesianska numeriska metoder I

Bayesianska numeriska metoder I Baesianska numeriska metoder I T. Olofsson Marginalisering En återkommende teknik inom Baesiansk inferens är det som kallas för marginalisering. I grund och botten rör det sig om tillämpning av ett specialfall

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Bedömningsexempel. Matematik kurs 2b och 2c

Bedömningsexempel. Matematik kurs 2b och 2c Bedömningsexempel Matematik kurs b och c Innehåll Inledning... Allmänna riktlinjer för bedömning... Bedömningsanvisningar... 3 Bedömning av skriftlig kommunikativ förmåga... 3 Provsammanställning... 4

Läs mer

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN PBFy9812 Enheten för Pedagogiska Mätningar 1998-12 Umeå Universitet Provtid PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Del I: Experimentell del Anvisningar Hjälpmedel: Provmaterial Miniräknare (grafritande

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Matematik. Delprov C. Vårterminen 2009 ÄMNESPROV ÅRSKURS. Elevens namn

Matematik. Delprov C. Vårterminen 2009 ÄMNESPROV ÅRSKURS. Elevens namn ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Miniräknare ej tillåten Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

Bedömningsexempel. Matematik kurs 1a

Bedömningsexempel. Matematik kurs 1a Bedömningsexempel Matematik kurs 1a Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 10 Exempel

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007.

Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Miniräknare ej tillåten Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2007. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0)

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Kortaste Ledningsdragningen mellan Tre Städer

Kortaste Ledningsdragningen mellan Tre Städer Kortaste Ledningsdragningen mellan Tre Städer Tre städer A, B och C, belägna som figuren till höger visar, ska förbindas med fiberoptiska kablar. En så kort ledningsdragning som möjligt vill uppnås för

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov År Startvecka 2013 2 Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov Vecka Lektion (2h) Datum Kapitel Avsnitt 2 Ti 08-jan Kap 1: Räta linjen

Läs mer

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar

NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996. Tidsbunden del. Anvisningar NATIONELLT PROV I MATEMATIK KURS C VÅREN 1996 Tidsbunden del Anvisningar Provperiod 3 maj - 15 maj 1996. Provtid Hjälpmedel Provmaterialet 180 minuter utan rast. Miniräknare och formelsamling. Formelblad

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2015-03-28 Provpass 2 Högskoleprovet Svarshäfte nr. Kvantitativ del j Provet innehåller 40 uppgifter Instruktion Detta provhäfte består av fyra olika delprov. Dessa är XYZ (matematisk problemlösning),

Läs mer

- Nationella prov till eleven -

- Nationella prov till eleven - - Nationella prov till eleven - Tidigare utgivna ämnesprov för årskurs 9 under kursplan 2000 :: Allmänt Detta kompendium innehåller de skriftliga delarna från fyra tidigare utgivna ämnesprov i matematik

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201

Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201 Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201 Styrdokument: Kursplan i kärnämnet matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 120 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer