NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 7

Storlek: px
Starta visningen från sidan:

Download "NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 7"

Transkript

1 freeleaks NpMaD vt1999 för Ma4 1(9) Innehåll Förrd 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1999 Del I, 13 uppgifter med miniräknare 3 Del II, breddningsdel 7 Förrd Km ihåg Matematik är att vara tydlig ch lgisk Använd text ch inte bara frmler Rita figur (m det är lämpligt) Förklara införda beteckningar Du ska visa att du kan Frmulera ch utvecklar prblem, använda generella metder/mdeller vid prblemlösning. Analysera ch tlka resultat, dra slutsatser samt bedöma rimlighet. Genmföra bevis ch analysera matematiska resnemang. Värdera ch jämföra metder/mdeller. Redvisa välstrukturerat med krrekt matematiskt språk. c G Rbertssn 016 buggar

2 Sklverket hänvisar generellt beträffande prvmaterial till bestämmelsen m sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till ch med utgången av nvember 000. NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1999 Tidsbunden del Anvisningar Prvtid Hjälpmedel Prvmaterialet 180 minuter utan rast. Grafritande räknare ch frmelsamling. Prvmaterialet inlämnas tillsammans med dina lösningar. Skriv ditt namn, kmvux/gymnasieprgram ch födelsedatum på de papper du lämnar in. Prvet Prvet består av 14 uppgifter. De flesta uppgifterna är av långsvarstyp där det inte räcker med bara ett krt svar utan där det krävs att du skriver ned vad du gör att du förklarar dina tankegångar att du ritar figurer vid behv att du vid numerisk/grafisk prblemlösning visar hur du använder ditt hjälpmedel Till några uppgifter (där det står Endast svar frdras ) behöver bara svaret anges. Pröva på alla uppgifterna. Det kan vara relativt lätt att även i slutet av prvet få någn päng för en påbörjad lösning eller redvisning. Betygsgränser Ansvarig lärare meddelar de gränser sm gäller för betygen Gdkänd ch Väl gdkänd. Prvet ger maximalt 38 päng.

3 1. Triangeln ABC är given enligt figur. Beräkna längden av sidan AC. C (cm) A 5 4 6,6 B (p). Bestäm den primitiva funktin F(x) y = till funktinen f ( x) 8x 3 x = för vilken F ( ) = 4 (p) 3. Bestäm alla lösningar till ekvatinen sin x = 0, 6 i intervallet 0º < x < 450º (p) π 4. Beräkna integralen sin x dx med hjälp av primitiv funktin. (p) 0 5. Teckna ett integraluttryck för arean av det mråde sm begränsas av kurvrna y = 3x ch y = 16 x samt beräkna denna area. (3p)

4 yy ; yyyyy ;; ; yyy yyy y yy ;y ;; yy yy yy; y ;;;; yy ; y yyyyy yy; y ;;;;; yyy ; y yyyyy yyy; y y ; y yyyyy ;; yy ;;yy ; y yyyyy ; y ;;yy ; y yyyyy ; y yyyy ; y ; y yyyy ; y ; y yyyy ;;;;; y ; y yyyy ;;;;; y yyyy ;;;;; y ;; yy ; yyyyy ;;;; yy ;;;;; y yyyy ;;; y yy yyyy ;; ;;;; yy ;; ;;;; yyy;;;;; y ;; yy yyy;;;; ; yyyyy yy yyyy;;; yyyyy ; yyyyy ;; yyyy yyyy;; yyyy ; yyyyy ;; yyyy yyyyy;; yyyy yyyy ;; yyyy ; yyy yyyy ;; yyyy ; yyy yyyy ;; yyyy yyyyy yy yyyy ; yyy yy yyyy ; yyy yy ; yyyyy ; yyy yyyyy yy ;; yy yyyyy yy ;;; y yyyyy yy ;;;; yy yyyy yy ;;;; yy ;; yy ;;;; yy yyyy ; yyy ;; yyyyy yyyyy; yyy ; yyyyy yyyy yyyyy; yyy ; yyyyy ;; ; yyy ;; ;;;; yy ; yyy ;;; y ;;; y yyyyy; yyy ;;; y yyy;;; y ;;yy yyyyy;; yyyy ;;; y yyy;;; y y ;;;;; y ;;; y yy; yyy;; ;; yy ;;;; yy y; yyy;;;;; y yyyy yy ;;;; yy y; yyy;;;;; y yyyyy yy ;;;; yy y yy;;;;; y yyyyy yyy ;;;; yy y yy;;;;; y yyyyy yyy ;;;; yy y yy;;;;; y yyy ;; y yy;;;;; y yyy ;; yy;;;; yyyyy yyy ;; yy;;;; yyyyy;; yy yyy ;;;;;;; yyyyy y ; y ;;;;; y yyyy;;; yyy yyy ;; ; y ;;;; yyyy;;;; yyyy yyy yyyy ;; yy ;;;; yyyy yyyyy yyy yyyy ;;;; yyyy yyy yyyy yyyyyyy ;;;;; yyy yyyy yyyy ;;;; yyyy y yyyy ;; ;y ;;;; ;;;;; yyy y yyyy ;; ;y yy yyyy yy yyyy ;; ;y yy ;;;;; yyy yyy yyyy ;; ;y yy ;;; y yyyy ;; ;y yy yyyy ;; ;;yy ;; yyyy yyyy ;;; y ; yyy ;;; y ; yyy yyyy ;; ;;;; yy ; yyyyy yyyy; yyy yyyy ;;;; yy y yy ;;yy y yyyy ;;;; yy y ;y ;y yy yyyy ;;;; yy ;;yy ; yyyyy ;;yy yyyy ;;;; yy yy;;;; yyyy; y ;;yy yyyy ;;; y;;; yyy;; yy ;;yy yyyy ;;; y yyyy ;; ;;yy yyyy yyyy y yyyy y yyyy y yyyy y yyyy ;;yy yyyy y ;;;;; yyyy ;;;; yy ;; yy ;;; y ;;;; yyyy ;;; y ;;;;; yyyyy yyyyy ;;yy y ; yyyyy ;;;; yy y yy ; yyy ; yyy ; yyyyy ;y ; yyyyy ;y yyy ; yyy ;;yy ;; ;;;; y ;;;;; yyy ; y ;;;; yy ;;yy ; yy ; yyy yy ; yyy yyyy yyy yy ;;;;; y yyyyy ; yyy ;;;; yyyy ; y ;;;; yyyy ;; yy ; yyyyy yyy ;;;;; y ;;; yyyyy yy ;;;;; yyy ;;; y ;;; y yyyy yy yy ;; yy ;;; yyy yy ; y yy ; yyyyy ;;;; yy ;;;;; yyyyy ;; yy ; y yyyyy ; y yyy ; yyy yy ;;; y y ;y ;;; yyyyy ;;;;; yyyyy ; yyyyy yy yyy ; y ;; yy ;; yyyyy ; yyy ; y ; y ; yyyyy ;;;; yy ;;;;; yyy ;;yy ; y ;; yy ; yyy ; yyyyy yyyy y ;; yy yy ; yyy ;;;;; yyyyy ;; yy ;; yy ; y ; yyy y y ;; yy ;; yy ;; yy ; yyy ;;;;; yyyyy yy ;; yy ;; yy ;;; yyy ;; yyyy ;; yy y ; y ;;;;; yyy ; yyyyy ;;;;; yyy ; yyyyy ; y yyyy yyy ;;; y ; yyyyy yyyyy yy yyyy yyyy yyyyy ;;;; ; yyy ; yyy yyyyy ;;; yyyyy y yy ; y ; yyy y ; y yy y ; yyy ;;;;; y yyyyy ;;; ;;;; ;;;;; yyy yyyy yyyyy ; y yyyy ;; yyyy ;;;;; yyy ; y ;;;;; yyy ;;;; yy y yyyy ;;; yyyyy yy Np MaD vt S F K 105 ;; yy ;;yy ; y ;; yy ;;yy ;; yy ;; yy En slig ch vindstilla vinterdag är Helen ch Ltta ute ch åker långfärdsskridskr. Klckan 1.00 kmmer de fram till Kappelskär. De vet att det tar 35 minuter att åka från Kappelskär till Sundskär ch att det tar 60 minuter att åka från Kappelskär direkt till Furusund. Bussen från Furusund går kl Vinkeln mellan siktlinjerna mt Sundskär ch mt Furusund uppskattas till 105. De bestämmer sig för att åka till Sundskär ch fika ch sedan åka raka vägen från Sundskär till Furusund. Hur lång fikapaus kan de ta ch ändå hinna med bussen sm går 14.30? Vi förutsätter att Helen ch Ltta färdas med knstant fart. (3p) 7. Temperaturen i en sjö uppmättes under ett mlnigt smmardygn. Temperaturen visade sig följa funktinen y() t = 15 + sin 0, 6t där t är antalet timmar efter kl a) Bestäm y () t Endast svar frdras (1p) b) Beräkna y ( 10) Endast svar frdras (1p) c) Tlka vad y ( 10) betyder för vattnets temperatur. (1p) y 8. Visa att y = x cs x, då y = x sin x (p) x

5 yy yy ; yyy yy ; yyy yy y yy yy ;;yy yy ;;yy yy ;;;;; yyyy yyyy yy yyy yyyy ;;yy yyyy yyyy y yyyy yyyy y yyyy y yyyy yyyy yyyy yy ;;; y;; ;;; yyyyy ; y ;;;; yyyyy ;;;; yyyy ;;;; ;; yyy ;;;; ; y yyy yy ; yyyyy yyy ;; yy ; yyyyy ;;; yyy yyy ; yyyyy yyy ;y ;;;; yyy yy yyy ;;;;; yyy ;y yyy ;; yy yyyy yy yyy ;;yy ;;;; yy yyy yy ; yyyyy ; y yyy ;;;; yy ; yyy ;;;; yyy yyyy ;;; y yyy yyyyy ;y yyy ; y yyy yy ; yyyyy yyy ;; yyyy yyyy yyy ;;;; yy yy ;;;; ;;;;; y yyy ;;;; yy yy yy yy yy yy yy yy yy yy yy yy yyy yy yyy yy yyy yy yyy yy yyy yy yyy yy yyy yy yy yy yyyy ;; yy yy ; y yy ; y yy ; y yy ; y yy yy yy yy yy yy yy yy ;y ;y ;y ;y ;y ;y ;;;; yyyy ;;;; yyyy ;;;; yyyy ;;;; yyyy ;;;; yyyy ;;;; yyyy ;;;; yyyy ;; y Np MaD vt Låt gx ( )= x t dt a) Tlka med figur vad g(3) kan betyda. (p) b) Bestäm med hjälp av din räknare ett närmevärde till g(3). Endast svar frdras (1p) 10. Visa hur sambandet cs A = cs A 1 kan fås ur likheterna cs u + v = csu cs v sin u sin ch sin u + cs u = 1 (p) ( ) v 11. Bestäm den psitiva knstanten A i funktinen f ( x) 5 + Asin 3x = så att funktinens största värde blir dubbelt så strt sm dess minsta värde. (p) 1. En stenkula släpps en bit vanför en vattenyta. Grafen nedan visar hur stenens hastighet v m/s varierar med tiden t sekunder från det ögnblick då den släpps. v m / s A 5 4 B 3 C 1 D t s yy ;;; ;; yy ; y a) Beskriv vad sm händer med stenkulan i A, B, C ch D. (p) b) Hur högt vanför vattenytan släpptes stenen? (1p) c) Stenkulans hastighet v () t m/s i vattnet kan beskrivas med funktinen 3t v() t = 1+ 18e. Bestäm vattendjupet där stenkulan släpps. Ge svaret i meter med två decimaler. (p)

6 13. Figuren visar en kvadrat ch grafen till en funktin. Välj en trignmetrisk funktin vars graf liknar den i figuren ch bestäm kvadratens area för den funktin du valt. (3p) y x 14. Funktinerna f ch g är deriverbara. hx ( ) = f( x) + gx ( ) För funktinerna f ch g gäller f ( 0) = ch g( 0) = 1 f ( x) = g( x) ch g ( x) = f ( x) Man bildar en ny funktin ( ) ( ) Bestäm h ( x) ch använd resultatet till att visa att hx ( ) = 5 för alla x. (4p)

7 Sklverket hänvisar generellt beträffande prvmaterial till bestämmelsen m sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till ch med utgången av september 000. NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1999 Breddningsdel Anvisningar Prvperid Vecka Prvtid Hjälpmedel Prvmaterialet Enligt beslut vid sklan (60 min rekmmenderas). Grafritande räknare ch frmelsamling. Prvmaterialet inlämnas tillsammans med dina lösningar. Skriv ditt namn, kmvux/gymnasieprgram ch födelsedatum på de papper du lämnar in. Prvet Prvet innehåller två alternativa uppgifter varav en väljs. Frågrna i uppgiften kan vara sådana att du själv måste ta ställning till de möjliga tlkningarna. Du skall redvisa de utgångspunkter sm ligger till grund för dina beräkningar ch slutsatser. Vid redvisning av grafiska lösningar där grafritande räknare använts skall du redvisa i enlighet med de anvisningar ch metder du ch din lärare kmmit överens m. Även en påbörjad icke slutförd redvisning kan ge underlag för psitiv bedömning. Till varje uppgift finns en beskrivning av vad läraren kan ta hänsyn till vid bedömning av ditt arbete. Om någt är klart fråga din lärare. Arbetsfrmer Ansvarig lärare infrmerar m de arbetsfrmer sm gäller för breddningsdelen i prvet.

8 1. POTENSFUNKTIONER OCH AREOR Figuren föreställer grafen till en funktin y = x n, x 0, där n är ett reellt tal större än nll. Från den punkt på kurvan där x-krdinaten är c (c är en psitiv knstant) dras linjer parallellt med de båda krdinataxlarna. Dessa linjer avgränsar tillsammans med krdinataxlarna ch grafen två mråden med arerna A 1 respektive A. y y = x n A 1 A c x 1. a) Sätt n = ch undersök för några lika värden på c vad kvten A 1 A Frmulera en slutsats. blir. b) Visa att din slutsats gäller för alla värden på c när n =.. a) Sätt c = 1 ch undersök för några lika värden på n vad kvten A 1 A Frmulera en slutsats. blir. b) Visa att din slutsats gäller för alla värden på n när c = Låt nu både c ch n variera. Frmulera en slutsats m kvten A 1 A slutsats gäller för alla värden på c ch n. ch visa att din Vid bedömning av ditt arbete kmmer läraren att ta hänsyn till: hur systematisk du är i din undersökning. hur väl du redvisar ditt arbete ch mtiverar dina resultat. hur väl du frmulerar dina slutsatser. hur väl du visar att dina slutsatser gäller allmänt.

9 . TRIGONOMETRISKA EKVATIONER I denna uppgift ska du studera trignmetriska ekvatiner av typen a sin kx = b då 0 x 360. Antalet lösningar till ekvatinen berr på vilka värden på a, k ch b sm används. Om t.ex. a =, b = 1 ch k = så får vi ekvatinen sin x = 1. Vi kan grafiskt eller algebraiskt visa att den ekvatinen har fyra lösningar i intervallet 0 x 360. Sm en del av mtiveringen till en grafisk lösning till ekvatinen sin x = 1 kan en skiss av räknarens fönster ingå. 1. a) Beskriv hur du med hjälp av grafritande räknare kan bestämma antalet lösningar till ekvatinen 10 sin x = b då b = 5 (0 x 360 ). b) Bestäm samtliga värden på b för vilka ekvatinen 10 sin x = b har två lösningar i intervallet 0 x Undersök hur antalet lösningar till ekvatinen a sin x = 3 varierar med valet av knstanten a (0 x 360 ). 3. Undersök hur antalet lösningar till ekvatinen a sin kx = 3 varierar med valet av knstanterna a ch k, när k är ett psitivt heltal (0 x 360 ). Vid bedömning av ditt arbete kmmer läraren att ta hänsyn till: hur systematisk du är i din undersökning. hur väl du redvisar ditt arbete. hur väl du mtiverar dina slutsatser.

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Tidsbunden del Sklverket hänvisar generellt beträffande prvmaterial till bestämmelsen m sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till ch med utgången av nvember 000. NATIONELLT KURSPROV

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 6 freeleaks NpMaD ht2007 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 2007 2 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 6 Förord Kom ihåg Matematik

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN uppgifter med miniräknare 3 freeleaks NpMaD ht000 för Ma (8) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN 000 6 uppgifter med miniräknare 3 Förord Kom ihåg Matematik är att vara tdlig och logisk Använd tet och inte

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 8

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Del I, 13 uppgifter med miniräknare 3. Del II, breddningsdel 8 freeleaks NpMaD vt1997 för Ma4 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 1997 2 Del I, 13 uppgifter med miniräknare 3 Del II, breddningsdel 8 Förord Kom ihåg Matematik är att

Läs mer

Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5

Kursprov i matematik, kurs E ht Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5 freeleaks NpMaE ht1997 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E ht1997 2 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara tydlig

Läs mer

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5 freeleaks NpMaE vt2000 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E vt 2000 2 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara

Läs mer

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6 freeleaks NpMaE vt999 för Ma4 (7) Innehåll Förord Kursprov i matematik, kurs E vt999 Del I: Uppgifter utan miniräknare Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att vara tdlig och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av april 999. NATIONELLT KURSPROV

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5 freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Enheten för Pedaggiska Mätningar PBMaE 0-05 Umeå universitet Prvtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift 0-5 Anvisningar Ttalt 0 minuter för del I ch II

Läs mer

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6 freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1998. Anvisningar

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 uppgifter utan miniräknare 3. Del II, 8 uppgifter med miniräknare 5 freeleaks NpMaB ht2002 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 2002 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 8 uppgifter med miniräknare 5 Förord Skolverket har endast

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4 freeleaks NpMaB ht000 () Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 000 Del I, 0 kortsvarsuppgifter med miniräknare 4 Del II, 9 uppgifter med miniräknare, fullständiga lösningar 7 Del

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är

Läs mer

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in.

Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in. NpMa3c ht 2012 Del B Del C Provtid Hjälpmedel Kravgränser Endast svar krävs Skriv ditt namn, födelsedatum och gymnasieprogram på alla papper du lämnar in. NpMa3c ht 2012 Del B:Endast svar krävs 1. x x

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del Np MaA vt 1997 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av april 1998.

Läs mer

NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996

NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av mars 1997. NATIONELLT PROV

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Anvisningar Provtid Hjälpmedel

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 7 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 5

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 7 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 5 freeleaks NpMaB vt2011 1(10) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011 2 Del I, 7 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 5 Förord Skolverket har endast

Läs mer

Geometri år 7C och 7D vt-14

Geometri år 7C och 7D vt-14 Gemetri år 7C ch 7D vt-14 Förankring i kursplanens syfte I matematik tränas elevernas förmåga att: frmulera ch lösa prblem med hjälp av matematik samt värdera valda strategier ch metder använda ch analysera

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1999. NATIONELLT

Läs mer

för Tekniskt/Naturvetenskapligt Basår

för Tekniskt/Naturvetenskapligt Basår Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare

Läs mer

NpMa4 Muntligt delprov Del A vt 2013

NpMa4 Muntligt delprov Del A vt 2013 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Ma3bc. Komvux, Lund. Prov kap3-4/

Ma3bc. Komvux, Lund. Prov kap3-4/ Ma3bc. Komvux, Lund. Prov kap3-4/5. 150513. (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 110 minuter för Del B, C och Del D. Du

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30. Vid sekretessbedömning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

NpMa3c Muntligt delprov Del A ht 2012

NpMa3c Muntligt delprov Del A ht 2012 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare.

En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare. Matematik b, repetition Kan du det här? Primitiva funktioner och integraler o o o Vad menas med primitiv funktion? Kan du hitta en primitiv funktion? Vad menas med en integral? Kan du beräkna en integral?

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik

Anvisningar. 240 minuter utan rast. Miniräknare och Formler till nationellt prov i matematik Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 00. Anvisningar Provtid

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Likvärdig bedömning i matematik med stöd av nationella prov

Likvärdig bedömning i matematik med stöd av nationella prov 1 (50) Likvärdig bedömning i matematik med stöd av nationella prov Matematik kurs D, MA1204, 100 poäng Sammanfattning Detta material är framtaget av Timo Hellström och Peter Nyström på Institutionen för

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Didaktik med inriktning matematik från förskola till tidiga skolår A, del 2, vt2011. Omtentamen

Didaktik med inriktning matematik från förskola till tidiga skolår A, del 2, vt2011. Omtentamen Uppsala universitet Institutinen för pedaggik, didaktik ch utbildningsstudier Marita Kjellin KOD: ---- Didaktik med inriktning matematik från förskla till tidiga sklår A, del 2, vt2011. Omtentamen 2011

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. NATIONELLT KURSPROV

Läs mer

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Enheten för Pedagogiska Mätningar PBFyA 00-12 Umeå Universitet PROV I FYSIK KURS A FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-12. Anvisningar Provtid Hjälpmedel Provmaterial

Läs mer

Np MaE vt Provmaterialet inlämnas tillsammans med dina lösningar.

Np MaE vt Provmaterialet inlämnas tillsammans med dina lösningar. Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av juni 2010. Anvisningar Provtid

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer

Komvux/gymnasieprogram:

Komvux/gymnasieprogram: Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del

Läs mer

Tips 1. Skolverkets svar 14

Tips 1. Skolverkets svar 14 JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte

Läs mer

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1997. Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS A VÅREN 1997. Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002

Np MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 2002. Anvisningar Provtid

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

Geometri år 9D, vt-14

Geometri år 9D, vt-14 Gemetri år 9D, vt-14 Förankring i kursplanens syfte I matematik tränas elevernas förmåga att: frmulera ch lösa prblem med hjälp av matematik samt värdera valda strategier ch metder använda ch analysera

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Ma3bc. Komvux, Lund. Prov kap

Ma3bc. Komvux, Lund. Prov kap Ma3bc. Komvux, Lund. Prov kap1-3.1. 150513 (Lärare: Ingemar Carlsson) Anvisningar Del B, C och Del D Provtid Hjälpmedel Del A Del B Del C och D Kravgränser Övrigt 140 minuter för Del B, C och Del D. Du

Läs mer

4. Gör lämpliga avläsningar i diagrammet och bestäm linjens ekvation.

4. Gör lämpliga avläsningar i diagrammet och bestäm linjens ekvation. Repetitionsuppgifter inför prov 2 Ma2 NASA15 vt16 E-uppgifter 1. Beräkna sträckan i triangeln nedan. 3,8 m 37 o 2. En seglare ser en fyr på ett berg. Hon mäter höjdvinkeln till fyrljuset till 7,3 o. På

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 009 40 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2005 Anvisningar Provtid Hjälpmedel Provmaterialet NpMaB vt 2005 Version 1 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material

Läs mer

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean.

I den här uppgiften ska du undersöka förhållandet mellan parabelarean och rektangelarean. 17. Figuren visar en parabel och en rektangel i ett koordinatsystem. Det skuggade området är begränsat av parabeln och x-axeln. Arean av det skuggade området kallas i fortsättningen parabelarean. Vid bedömning

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning del 1 i Fysik A för Basåret (Denna tentamen avser första halvan av Fysik A, kap 1, 3-6 ch 11,12 i Heureka! Fysik kurs A) Måndagen den 7 december 2009 kl.

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS E HÖSTEN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS E HÖSTEN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av april 1999. Anvisningar NATIONELLT

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30 Vid sekretessbedömning

Läs mer

Np MaE ht Provmaterialet inlämnas tillsammans med dina lösningar.

Np MaE ht Provmaterialet inlämnas tillsammans med dina lösningar. Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av december 009. Anvisningar

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

Examinator: Bengt Hällgren

Examinator: Bengt Hällgren Karlstads universitet / Elektrteknik / TEL102 ch TEL108 / Tentamen 020612 / Hä PRö 1 (5) 7HQWDPHQGHQMXQL 7(/±,QWURGXNWLRQWLOO(',SURJUDPPHW 7(/±,QOHGDQGHHOHNWURQLNRFKPlWWHNQLN Examinatr: engt Hällgren Hjälpmedel:

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans.

Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 120 minuter för Delprov B och Delprov C tillsammans. Delprov B Delprov C Provtid Hjälpmedel Uppgift 1-9. Endast svar krävs. Uppgift 10-14. Fullständiga lösningar krävs. 10 minuter för Delprov B och Delprov C tillsammans. Formelblad och linjal. Kravgränser

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp

Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1b Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer