Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen
|
|
- Elias Pålsson
- för 7 år sedan
- Visningar:
Transkript
1 Faktorisering med hjälp av kvantberäkningar Lars Engebretsen
2 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner i polynomisk tid. Kanske kan vi lösa svårare problem med kvantmekanik? Vi behöver en vettig modell som dessutom går att implementera. Modellen bör kunna lösa svårare problem än vanliga datorer. Lars Engebretsen
3 Vad är en kvantdator? Klassisk programmering: C, C++, Java, källkod och kompilering: g++ -O4 gurka.cc; javac apelsin.java;./a.out; gdb;... Såsmåningom hoppas vi på något liknande för kvantdatorer. Tekniken är nu mycket mer primitiv, söker analogier till turingmaskinen. Ett kvantprogram : matematiska operationer på ett matematiskt objekt. Detta kan (ska kunna) realiseras fysiskt i laboratorium. Lars Engebretsen
4 Vad är en kvantdator? Man kan tänka på kvantdatorn på två sätt. 1) En klump materia i ett laboratorium. ) En följd av abstrakta matematiska beräkningssteg efter vissa regler. Vi kommer att använda det senare idag. Lars Engebretsen
5 Modell översikt Informationslagring: Vågfunktionen, en linjärkombination av tillstånd. Programsteg: Lokala unitära transformationer av vågfunktionen. Mätning: Vi frågar systemet vilket tillstånd det är i. Slumpvis svar som beror på vågfunktionen. En mätning förstör nästan all information som finns i vågfunktionen. Lars Engebretsen
6 Modell kvantbiten En kvantbit beskrivs av två bastillstånd: 0 och 1. Kvantbiten kan vara i tillstånd α α 1 1 så snart α 0 + α 1 = 1. ( ) α0 Ibland skriver vi α α 1 1 som. α 1 Lars Engebretsen
7 Modell kvantbiten En kvantbit beskrivs av två bastillstånd: 0 och 1. Kvantbiten kan vara i tillstånd α α 1 1 så snart α 0 + α 1 = 1. ( ) α0 Ibland skriver vi α α 1 1 som. α 1 Mätning: Vi frågar kvantbiten vilket tillstånd den är i. Sannolikheten att vi får svaret i är α i. Efter mätningen kollapsar kvantbiten till det tillstånd vi såg vid mätningen. Lars Engebretsen
8 Modell programsteg Minsta byggstenen: Unitära operatorer. Lars Engebretsen
9 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 Lars Engebretsen
10 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) Lars Engebretsen
11 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) ( ) ( ) ( ) 1 0 α0 1 0 α0 avbildar på 0 1 α α 1 Lars Engebretsen
12 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) ( ) ( ) ( ) ( ) 1 0 α0 1 0 α0 α0 avbildar på =. 0 1 α α 1 α 1 Lars Engebretsen
13 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) 1 0 avbildar varje tillstånd på sig själv 0 1 Lars Engebretsen
14 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) 1 0 avbildar varje tillstånd på sig själv 0 1 ( ) ( ) ( ) ( ) ( ) 0 1 α0 0 1 α0 α1 avbildar på =. 1 0 α α 1 α 0 Lars Engebretsen
15 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) 1 0 avbildar varje tillstånd på sig själv 0 1 ( ) 0 1 definierar α α 1 1 α α 0 1. Lars Engebretsen
16 Modell programsteg Minsta byggstenen: -matriser sådana att A = A 1. ( ) ( ) α0 α0 En matris A avbildar tillståndet på A. α 1 α 1 ( ) 1 0 avbildar varje tillstånd på sig själv 0 1 ( ) 0 1 definierar α α 1 1 α α 0 1. ( ) definierar Lars Engebretsen
17 Modell ett exempel Systemet startar i tillstånd 0. Lägg på operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Lars Engebretsen
18 Modell ett exempel Systemet startar i tillstånd 0. Lägg på operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i Lars Engebretsen
19 Modell ett exempel Systemet startar i tillstånd 0. Lägg på operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i En mätning nu ger 0 och 1 med samma sannolikhet. Lars Engebretsen
20 Modell ett exempel Systemet startar i tillstånd 0. Lägg på operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i En mätning nu ger 0 och 1 med samma sannolikhet. Antag att vi mäter och ser 1. Efteråt vet vi att systemet är i tillstånd 1. Lars Engebretsen
21 Modell ett exempel Systemet startar i tillstånd 0. Lägg på operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i En mätning nu ger 0 och 1 med samma sannolikhet. Antag att vi mäter och ser 1. Efteråt vet vi att systemet är i tillstånd 1. Använd A igen; systemet hamnar i tillstånd 1 i 1+i Mät igen. Lars Engebretsen
22 Modell ett exempel Systemet startar i tillstånd 0. Lägg på operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i En mätning nu ger 0 och 1 med samma sannolikhet. Antag att vi mäter och ser 1. Efteråt vet vi att systemet är i tillstånd 1. Använd A igen; systemet hamnar i tillstånd 1 i Mätningen ger 0 och 1 med samma sannolikhet. 1+i Mät igen. Lars Engebretsen
23 Modell ett liknande exempel Samma början: Vi startar i 0 och kör operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Lars Engebretsen
24 Modell ett liknande exempel Samma början: Vi startar i 0 och kör operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i Lars Engebretsen
25 Modell ett liknande exempel Samma början: Vi startar i 0 och kör operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i Men nu kör vi A igen; Då hamnar vi i 1 ( ) ( ) ( 1 + i 1 i i 0 =. 1 i 1 + i 1 i 1) Lars Engebretsen
26 Modell ett liknande exempel Samma början: Vi startar i 0 och kör operatorn A = 1 ( ) 1 + i 1 i. 1 i 1 + i Systemet byter tillstånd till 1 ( ( ) 1 + i 1 i 1 = 1 i 1 + i) 1 ( ) 1 + i. 0 1 i Men nu kör vi A igen; Då hamnar vi i 1 ( ) ( ) ( 1 + i 1 i i 0 =. 1 i 1 + i 1 i 1) En mätning nu ger 1 med sannolikhet ett. Lars Engebretsen
27 Modell fler bitar Vi behöver fler bitar än en. Bastillstånden blir då b för binära strängar b. Systemets tillstånd skrivs α b b där α b = 1. Vid mätning ser vi b med sannolikhet α b. Efter en mätning kollapsar systemet till det tillstånd vi såg. Lars Engebretsen
28 Feynmans motivering av kvantberäkningar Hur många bastillstånd finns det? Två bitar: 00, 01, 10, 11. Tre bitar: 000, 001, 010, 011, 100, 101, 110, 111. n bitar: n bastillstånd! Lars Engebretsen
29 Feynmans motivering av kvantberäkningar Hur många bastillstånd finns det? Två bitar: 00, 01, 10, 11. Tre bitar: 000, 001, 010, 011, 100, 101, 110, 111. n bitar: n bastillstånd! Det tar exponentiell tid att simulera ett n-bitarsystem klassiskt. Så kanske ger kvantberäkningar en exponentiell uppsnabbning? Lars Engebretsen
30 Modell operationer på två bitar Operationer definieras, som tidigare, som unitära matriser Vilken transformation definieras av ? α α α α α α α α Lars Engebretsen
31 Modell operationer på två bitar Operationer definieras, som tidigare, som unitära matriser Vilken transformation definieras av ? α α α α α α α α Om den första biten är noll ändras inte den andra biten. Om den första biten är ett negeras den andra biten. Lars Engebretsen
32 Modell sammanfattning Information lagras som en vektor i ett komplext vektorrum. Vektorrummet har n dimensioner om vi har n kvantbitar. Programmet består av unitära operationer på högst två kvantbitar åt gången. Mått på komplexitet: Antal sådana operationer. Vi får resultatet genom att mäta. Vi ser b med sannolikhet koefficienten framför b. En mätning gör att vågfunktionen kollapsar. Lars Engebretsen
33 Är modellen användbar? Vad klarar vi av att göra i kvantmodellen? Lars Engebretsen
34 Är modellen användbar? Vad klarar vi av att göra i kvantmodellen? Alla kvantberäkningar är reversibla; de kan alltså köras baklänges. Därför finns inte operationer av typen sätt x till 17. Lars Engebretsen
35 Är modellen användbar? Vad klarar vi av att göra i kvantmodellen? Alla kvantberäkningar är reversibla; de kan alltså köras baklänges. Därför finns inte operationer av typen sätt x till 17. Trots detta kan alla deterministiska beräkningar simuleras. Huvudidé: NAND-grindar är universella; det räcker alltså att simulera dem. [NAND(x 1, x ) = (x 1 x ).] NAND-grindar kan simuleras reversibelt om man behåller indata. Lars Engebretsen
36 Faktorisering Vi vill dela upp N, ett tal med n-bitar, i primfaktorer. Lars Engebretsen
37 Faktorisering Vi vill dela upp N, ett tal med n-bitar, i primfaktorer. Välj ett slumpvis x och låt r vara dess ordning mod N; x r 1 mod N. Det är känt att gcd(x r/ 1, N) ofta är en icke-trivial faktor. Lars Engebretsen
38 Faktorisering Vi vill dela upp N, ett tal med n-bitar, i primfaktorer. Välj ett slumpvis x och låt r vara dess ordning mod N; x r 1 mod N. Det är känt att gcd(x r/ 1, N) ofta är en icke-trivial faktor. Så om vi kan beräkna ordningen mod N så kan vi även faktorisera N. Shors algoritm beräknar ordningen mod N i polynomisk tid. Lars Engebretsen
39 Faktorisering Vi vill dela upp N, ett tal med n-bitar, i primfaktorer. Välj ett slumpvis x och låt r vara dess ordning mod N; x r 1 mod N. Det är känt att gcd(x r/ 1, N) ofta är en icke-trivial faktor. Så om vi kan beräkna ordningen mod N så kan vi även faktorisera N. Shors algoritm beräknar ordningen mod N i polynomisk tid, dvs antalet operationer är polynomiskt i n. Lars Engebretsen
40 Översikt av algoritmen Shors algoritm har tre faser: 1. Konvertera 0 till en likformig fördelning. Lars Engebretsen
41 Översikt av algoritmen Shors algoritm har tre faser: 1. Konvertera 0 till en likformig fördelning. Kan göras genom att köra 1 ( ) 1 1 på varje kvantbit. 1 1 Lars Engebretsen
42 Översikt av algoritmen Shors algoritm har tre faser: 1. Konvertera 0 till en likformig fördelning. Kan göras genom att köra 1 ( ) 1 1 på varje kvantbit Beräkna x a mod N givet x, a och N. Lars Engebretsen
43 Översikt av algoritmen Shors algoritm har tre faser: 1. Konvertera 0 till en likformig fördelning. Kan göras genom att köra 1 ( ) 1 1 på varje kvantbit Beräkna x a mod N givet x, a och N. Går att göra om vi behåller indata. Lars Engebretsen
44 Översikt av algoritmen Shors algoritm har tre faser: 1. Konvertera 0 till en likformig fördelning. Kan göras genom att köra 1 ( ) 1 1 på varje kvantbit Beräkna x a mod N givet x, a och N. Går att göra om vi behåller indata. m 1 3. Beräkna fouriertransformen av a: a m/ ω ac c där ω = e πi/m. Lars Engebretsen
45 Översikt av algoritmen Shors algoritm har tre faser: 1. Konvertera 0 till en likformig fördelning. Kan göras genom att köra 1 ( ) 1 1 på varje kvantbit Beräkna x a mod N givet x, a och N. Går att göra om vi behåller indata. m 1 3. Beräkna fouriertransformen av a: a m/ Antag tillsvidare att detta går att göra. ω ac c där ω = e πi/m. Lars Engebretsen
46 Mer detaljerad version av algoritmen Givet x and N vill vi beräkna ordningen av x mod N. N består av n bitar. 1. Skapa a genom att skapa m = 3n likafördelade slumpbitar. Tillstånd: m/ m 1 a=0 a, x, N Lars Engebretsen
47 Mer detaljerad version av algoritmen Givet x and N vill vi beräkna ordningen av x mod N. N består av n bitar. 1. Skapa a genom att skapa m = 3n likafördelade slumpbitar. Tillstånd: m/ m 1 a=0 a, x, N. Beräkna x a mod N. Tillstånd: m/ m 1 a=0 xa, a, x, N Lars Engebretsen
48 Mer detaljerad version av algoritmen Givet x and N vill vi beräkna ordningen av x mod N. N består av n bitar. 1. Skapa a genom att skapa m = 3n likafördelade slumpbitar. Tillstånd: m/ m 1 a=0 a, x, N. Beräkna x a mod N. Tillstånd: m/ m 1 a=0 xa, a, x, N 3. Fouriertransformera a. a m/ m 1 ω ac c Lars Engebretsen
49 Mer detaljerad version av algoritmen Givet x and N vill vi beräkna ordningen av x mod N. N består av n bitar. 1. Skapa a genom att skapa m = 3n likafördelade slumpbitar. Tillstånd: m/ m 1 a=0 a, x, N. Beräkna x a mod N. Tillstånd: m/ m 1 a=0 xa, a, x, N 3. Fouriertransformera a. Tillstånd: m m 1 a=0 m 1 ω ac x a, c, x, N Lars Engebretsen
50 Mer detaljerad version av algoritmen Givet x and N vill vi beräkna ordningen av x mod N. N består av n bitar. 1. Skapa a genom att skapa m = 3n likafördelade slumpbitar. Tillstånd: m/ m 1 a=0 a, x, N. Beräkna x a mod N. Tillstånd: m/ m 1 a=0 xa, a, x, N 3. Fouriertransformera a. Tillstånd: m m 1 a=0 4. Mät tillståndet och beräkna r givet observationen av c. m 1 ω ac x a, c, x, N Lars Engebretsen
51 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Lars Engebretsen
52 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Lars Engebretsen
53 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Pr[ x k, c, x, N ] = m a:x a x k ω ac Lars Engebretsen
54 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Pr[ x k, c, x, N ] = m a:x a x k ω ac = m ω (k+jr)c j Lars Engebretsen
55 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Pr[ x k, c, x, N ] = m a:x a x k ω ac = m ω kc ω jrc j Lars Engebretsen
56 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Pr[ x k, c, x, N ] = m a:x a x k ω ac = m ω kc j ω jrc Lars Engebretsen
57 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Pr[ x k, c, x, N ] = m När är denna summa stor? a:x a x k ω ac ( = ) m ω rc j j. Lars Engebretsen
58 Analys av algoritmen intuition m 1 Tillstånd när vi mäter: m a=0 m 1 ω ac x a, c, x, N Vad är sannolikheten att se ett visst x k, c, x, N? Eftersom x k x k+r x k+r bidrar flera a till samma x k, c, x, N. Pr[ x k, c, x, N ] = m a:x a x k ω ac När är denna summa stor? Studera j (ωrc ) j. ( = ) m ω rc j j. Lars Engebretsen
59 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i 1 1 i Lars Engebretsen
60 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc 1 1 i Lars Engebretsen
61 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 i Lars Engebretsen
62 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i Lars Engebretsen
63 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i Lars Engebretsen
64 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i Lars Engebretsen
65 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i Lars Engebretsen
66 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i Lars Engebretsen
67 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i Lars Engebretsen
68 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc ω rc 1 1 ω 3rc i j (ωrc ) j = längden av summan av ovanstående vektorer. Lars Engebretsen
69 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc i ω rc ω rc 1 ω 3rc i i j (ωrc ) j = längden av summan av ovanstående vektorer. Lars Engebretsen
70 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc i ω rc ω rc 1 ω 3rc i i j (ωrc ) j = längden av summan av ovanstående vektorer. Lars Engebretsen
71 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc i ω rc ω 3rc rc 1 ω 3rc i i j (ωrc ) j = längden av summan av ovanstående vektorer. Lars Engebretsen
72 Analys av algoritmen summor av enhetsrötter När är j (ωrc ) j stort? (ω komplext tal med norm 1.) i ω rc i ω rc ω 3rc rc 1 ω 3rc i i j (ωrc ) j = längden av summan av ovanstående vektorer. Lars Engebretsen
73 Analys av algoritmen sammanfattning m 1 Tillstånd när vi mäter: m a=0 m 1 Pr[ x k, c, x, N ] = m ω ac x a, c, x, N a:x a x k ω ac Stort om ω rc är nära 1, dvs om e πirc/m är nära 1. ( = ) m ω rc j j. Lars Engebretsen
74 Analys av algoritmen sammanfattning m 1 Tillstånd när vi mäter: m a=0 m 1 Pr[ x k, c, x, N ] = m ω ac x a, c, x, N a:x a x k ω ac ( = ) m ω rc j Stort om ω rc är nära 1, dvs om e πirc/m är nära 1, dvs om rc/ m är nästan ett heltal. j. Lars Engebretsen
75 Analys av algoritmen sammanfattning m 1 Tillstånd när vi mäter: m a=0 m 1 Pr[ x k, c, x, N ] = m ω ac x a, c, x, N a:x a x k ω ac ( = ) m ω rc j Stort om ω rc är nära 1, dvs om e πirc/m är nära 1, dvs om rc/ m är nästan ett heltal, dvs om c m är nära d/r för något heltal d. j. Lars Engebretsen
76 Analys av algoritmen sammanfattning m 1 Tillstånd när vi mäter: m a=0 m 1 Pr[ x k, c, x, N ] = m ω ac x a, c, x, N a:x a x k ω ac ( = ) m ω rc j Stort om ω rc är nära 1, dvs om e πirc/m är nära 1, dvs om rc/ m är nästan ett heltal, dvs om c m är nära d/r för något heltal d. Vi observerar c och vet m, så vi får en approximation till d/r. Om approximationen är bra kan vi beräkna d och r. j. Lars Engebretsen
77 Analys av algoritmen sannolikheten att se ett visst c 0.01 Figuren nedan visar Pr[c] då r = 10 och m = Med hög sannolikhet är c d m r 1 m+1; detta räcker. Lars Engebretsen
78 Fouriertransformen m 1 Vi vill implementera a m/ e πiac/m c Lars Engebretsen
79 Fouriertransformen m 1 Vi vill implementera a m/ e πiac/m c En kvantbit: a 1 1 e πiac/ c = 1 1 ( 1) ac c Lars Engebretsen
80 Fouriertransformen m 1 Vi vill implementera a m/ e πiac/m c En kvantbit: a ( ); 1 e πiac/ c = 1 1 ( 1) ac c Lars Engebretsen
81 Fouriertransformen m 1 Vi vill implementera a m/ e πiac/m c En kvantbit: a 1 1 e πiac/ c = 1 1 ( 1) ac c 0 1 ( ); 1 1 ( 0 1 ) Lars Engebretsen
82 Fouriertransformen m 1 Vi vill implementera a m/ e πiac/m c En kvantbit: a 1 1 e πiac/ c = 1 1 ( 1) ac c 0 1 ( ); 1 1 ( 0 1 ) Detta kan göras med rotationen R = 1 ( ) Lars Engebretsen
83 Fouriertransformen av två kvantbitar verktyg Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c. Vi kommer att behöva rotationerna från enbitsfallet: R k roterar bit k Vi kommer också att behöva byta fas: S = i Lars Engebretsen
84 Fouriertransformen av två kvantbitar verktyg Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c. Vi kommer att behöva rotationerna från enbitsfallet: R k roterar bit k Vi kommer också att behöva byta fas: S = i α α α α α α α iα Lars Engebretsen
85 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c. Lars Engebretsen
86 Fouriertransformen av två kvantbitar intuition Vi vill implementera a e πiac/4 c = 1 3 i ac c. Lars Engebretsen
87 Fouriertransformen av två kvantbitar intuition Vi vill implementera a e πiac/4 c = 1 3 i ac c. Lars Engebretsen
88 Fouriertransformen av två kvantbitar intuition Vi vill implementera a ( 00 3 e πiac/4 c = 1 3 i ac c. Lars Engebretsen
89 Fouriertransformen av två kvantbitar intuition Vi vill implementera a ( e πiac/4 c = 1 3 i ac c. Lars Engebretsen
90 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) Lars Engebretsen
91 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 Lars Engebretsen
92 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 + i i 11 ) Lars Engebretsen
93 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 + i i 11 ) 10 1 ( 00 Lars Engebretsen
94 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 + i i 11 ) 10 1 ( ) Lars Engebretsen
95 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 + i i 11 ) 10 1 ( ) 11 1 ( 00 Lars Engebretsen
96 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 + i i 11 ) 10 1 ( ) 11 1 ( 00 i i 11 ) Lars Engebretsen
97 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( 00 + i i 11 ) 10 1 ( ) 11 1 ( 00 i i 11 ) Vi kan multiplicera med i genom att byta fas. Samla därför termer som innehåller i. Lars Engebretsen
98 Fouriertransformen av två kvantbitar intuition Vi vill implementera a 1 3 e πiac/4 c = 1 3 i ac c ( ) 01 1 ( ) + i1 ( ) 10 1 ( ) 11 1 ( ) + i1 ( ) Vi kan multiplicera med i genom att byta fas. Samla därför termer som innehåller i. Notera att i enbart dyker upp om bit noll är 1 i VL. Rotation av bit ett ändrar b 1 b 0 till ungefär 0b 0 ± 1b 0. Lars Engebretsen
99 Fouriertransformen av två kvantbitar konstruktion Rotera först bit ett (R 1 ): ; ; Lars Engebretsen
100 Fouriertransformen av två kvantbitar konstruktion Rotera först bit ett (R 1 ): ; ; Byt sedan fas (S R 1 ): ; i ; i 1 11 Lars Engebretsen
101 Fouriertransformen av två kvantbitar konstruktion Rotera först bit ett (R 1 ): ; ; Byt sedan fas (S R 1 ): ; i ; i 1 11 Mönstermatchning vi vill egentligen ha: 00 1 ( ) + 1 ( ); 01 1 ( ) + i1 ( ) 10 1 ( ) + 1 ( ); 11 1 ( ) i1 ( ) Lars Engebretsen
102 Fouriertransformen av två kvantbitar konstruktion S R 1 ger: ; i ; i 1 11 Lars Engebretsen
103 Fouriertransformen av två kvantbitar konstruktion S R 1 ger: ; i ; i 1 11 Rotera nu bit noll (R 0 S R 1 ): 00 1 ( ) + 1 ( ); 01 1 ( ) + i1 ( ) 10 1 ( ) 1 ( ); 11 1 ( ) i1 ( ) Lars Engebretsen
104 Fouriertransformen av två kvantbitar konstruktion S R 1 ger: ; i ; i 1 11 Rotera nu bit noll (R 0 S R 1 ): 00 1 ( ) + 1 ( ); 01 1 ( ) + i1 ( ) 10 1 ( ) 1 ( ); 11 1 ( ) i1 ( ) Mönstermatchning vi vill egentligen ha: 00 1 ( ) + 1 ( ); 01 1 ( ) + i1 ( ) 10 1 ( ) + 1 ( ); 11 1 ( ) i1 ( ) Lars Engebretsen
105 Fouriertransformen av två kvantbitar konstruktion S R 1 ger: ; i ; i 1 11 Rotera nu bit noll (R 0 S R 1 ): 00 1 ( ) + 1 ( ); 01 1 ( ) + i1 ( ) 10 1 ( ) 1 ( ); 11 1 ( ) i1 ( ) Mönstermatchning vi vill egentligen ha: 00 1 ( ) + 1 ( ); 01 1 ( ) + i1 ( ) 10 1 ( ) + 1 ( ); 11 1 ( ) i1 ( ) Vi är nästan klara, vi behöver bara byta ordning på bitarna i HL! Lars Engebretsen
106 Fouriertransformen generella fallet Transformen av två kvantbitar kan skrivas R 0 S R 1 (bitvändning). Detta går att generalisera. Lars Engebretsen
107 Fouriertransformen generella fallet Transformen av två kvantbitar kan skrivas R 0 S R 1 (bitvändning). Detta går att generalisera. Vi använder operationerna R k operera med 1 ( ) 1 1 på bit k och S kl operera med på bitarna k och l e πi/l k Lars Engebretsen
108 Fouriertransformen generella fallet Transformen av två kvantbitar kan skrivas R 0 S R 1 (bitvändning). Detta går att generalisera. Vi använder operationerna R k operera med 1 ( ) 1 1 på bit k och S kl operera med på bitarna k och l e πi/l k Transformen av n bitar kan då skrivas R 0 S 0,1 S 0,n 1 R 1 R n 3 S n 3,n S n 3,n 1 R n S n,n 1 R n 1. Lars Engebretsen
109 Fouriertransformen grafiskt schema a 0 R 0 c 3 a 1 R 1 S 01 c a R S 1 S 0 c 1 a 3 R 3 S 3 S 13 S 03 c 0 Antal operationer: O(n ). Lars Engebretsen
110 Avslutning Vi kan faktorisera i polynomisk tid med kvantberäkningar. Är modellen realistisk? Lars Engebretsen
111 Avslutning Vi kan faktorisera i polynomisk tid med kvantberäkningar. Är modellen realistisk? Svårt att säga... Lars Engebretsen
112 Avslutning Vi kan faktorisera i polynomisk tid med kvantberäkningar. Är modellen realistisk? Svårt att säga... Det verkar svårt att bygga datorer enligt modellen. Rekord för närvarande: 7 bitar, faktorisera 15. (Nature 414, ss , 001.) Lars Engebretsen
113 Avslutning Vi kan faktorisera i polynomisk tid med kvantberäkningar. Är modellen realistisk? Svårt att säga... Det verkar svårt att bygga datorer enligt modellen. Rekord för närvarande: 7 bitar, faktorisera 15. (Nature 414, ss , 001.) Å andra sidan har den klassiska datorn utvecklas en hel del sedan turingmaskinen introducerades kanske ska vi inte bygga kvantdatorer exakt enligt modellen? Lars Engebretsen
114 Avslutning Vi kan faktorisera i polynomisk tid med kvantberäkningar. Är modellen realistisk? Svårt att säga... Det verkar svårt att bygga datorer enligt modellen. Rekord för närvarande: 7 bitar, faktorisera 15. (Nature 414, ss , 001.) Å andra sidan har den klassiska datorn utvecklas en hel del sedan turingmaskinen introducerades kanske ska vi inte bygga kvantdatorer exakt enligt modellen? Ett modellproblem: Hur stoppar vi in indata i kvantbitarna? Kräver att bitarna tvingas till ett specifikt tillstånd. Lars Engebretsen
Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen
Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 00-1-03 Lars Engebretsen 00-1-03 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Läs mer1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!
KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel
Läs merTATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
Läs merSF1624 Algebra och geometri
Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med
Läs merFöreläsning 3: Dekomposition. Dekomposition
Föreläsning 3: Dekomposition Dekomposition Dekomposition är en generell metod för att lösa problem Metoden bygger på att man delar upp ett problem i delproblem av samma typ som ursprungsproblemet Uppdelningen
Läs merKOSMOS VÅR KVANTVÄRLD KVANTDATORER SUPERDATORER I SUPERPOSITION ERIKA ANDERSSON SÄRTRYCK UR: SVENSKA FYSIKERSAMFUNDETS ÅRSBOK 2017
SÄRTRYCK UR: KOSMOS VÅR KVANTVÄRLD SVENSKA FYSIKERSAMFUNDETS ÅRSBOK 2017 KVANTDATORER SUPERDATORER I SUPERPOSITION ERIKA ANDERSSON Artikeln publiceras under Creative Commons-licensen CC BY-NC-SA 4.0 För
Läs merVektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0.
Vektorrum Denna kurs handlar till stor del om s k linjära rum eller vektorrum. Dessa kan ses som generaliseringar av R n. Skillnaden består främst i att teorin nu blir mer abstrakt. Detta är själva poängen;
Läs merKvantmekanik II Föreläsning 2 Joakim Edsjö 1/37
Kvantmekanik II - Föreläsning 2 Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Läs merKvantteknologi. Superpositioner, entanglement, kvantbitar och helt döda katter
Kvantteknologi Superpositioner, entanglement, kvantbitar och helt döda katter Att ta med sig / kunna svara på Vad är skillnaden på en klassisk bit och en kvantbit? Vad är skillnaden på flera klassiska
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merAndragradspolynom Några vektorrum P 2
Låt beteckna mängden av polynom av grad högst 2. Det betyder att p tillhör om p(x) = ax 2 + bx + c där a, b och c är reella tal. Några exempel: x 2 + 3x 7, 2x 2 3, 5x + π, 0 Man kan addera två polynom
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Läs merSökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Läs merExplorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
Läs merLinjära ekvationssystem
Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på
Läs merFöreläsning 1. Introduktion. Vad är en algoritm?
Några exempel på algoritmer. Föreläsning 1. Introduktion Vad är en algoritm? 1. Häll 1 dl havregryn och ett kryddmått salt i 2 1 2 dl kallt vatten. Koka upp och kocka gröten ca 3minuter. Rör om då och
Läs merLinjära ekvationssystem
Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att
Läs mer12. SINGULÄRA VÄRDEN. (u Av) u v
. SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer
Läs merOändligtdimensionella vektorrum
Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
Läs merBlock 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Läs merFöreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Läs merFFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska
Läs merAndragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7
Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)
Läs merFöreläsning 9: NP-fullständighet
Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till
Läs merBakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Läs mer9 Funktioner. Exempel. f(x) = x + 1 sqr(y) = y 2. x, om x < 0. abs(x) =
Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 9 Funktioner I kursen i endimensionell analys definieras funktioner genom att man ger funktionen ett namn, talar
Läs merDigitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.
Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra
Läs merLösningar till utvalda uppgifter i kapitel 8
Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet
Läs mer1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
Läs merFöreläsning 7. Felrättande koder
Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas
Läs merTentamen i Programmering
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen i Programmering EDAA65/EDA501/EDAA20 M MD W BK L 2018 05 30, 8.00 13.00 Preliminärt ger uppgifterna 7 + 14 + 6 + 9 + 4 = 40 poäng.
Läs merSignalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Läs merTMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska
Läs merGivet två naturliga tal a och b, som inte båda två är 0, hur räknar man ut största gemensamma delaren av a och b?
Euklides algoritm för största gemensamma delaren Givet två naturliga tal a och b, som inte båda två är 0, hur räknar man ut största gemensamma delaren av a och b? Euklides har kommit på en metod (algoritm)
Läs merSjälvkoll: Ser du att de två uttrycken är ekvivalenta?
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen
Läs merÖvningshäfte 2: Komplexa tal
LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet
Läs merDeterminanter, egenvectorer, egenvärden.
Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a
Läs merFöreläsning 5: Dynamisk programmering
Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall
Läs merKvantteknologi. Superpositioner, entanglement, kvantbitar och helt döda katter
Kvantteknologi Superpositioner, entanglement, kvantbitar och helt döda katter Varför kvantteknologi? Därför att det finns pengar EU kommissionen lanserar 2017 en satsning av 1 000 000 000 på kvantteknologi
Läs merDefinition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller
April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +
Läs merSammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Läs merMer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Läs merTMV166 Linjär algebra för M, vt 2016
TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare
Läs merFöreläsning 2. Operativsystem och programmering
Föreläsning 2 Operativsystem och programmering Behov av operativsystem En dator så som beskriven i förra föreläsningen är nästan oanvändbar. Processorn kan bara ges enkla instruktioner såsom hämta data
Läs merKvantmekanik II (FK5012), 7,5 hp
Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.
Läs merTENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Läs merKomplexitetsklasser och repetition
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 12 Komplexitetsklasser och repetition Uppgifter på komplexitetsklasser co-np-fullständighet Ett diskret tekniskt diagnosproblem
Läs merTuringmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt
Läs merMatematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
Läs merFöreläsning 3, Matematisk statistik Π + E
Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition
Läs merAlgoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter
Läs merAsymptotisk komplexitetsanalys
1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:
Läs mer5.7. Ortogonaliseringsmetoder
5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig
Läs mer1 Positivt definita och positivt semidefinita matriser
Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida
Läs merÖvningshäfte 2: Komplexa tal (och negativa tal)
LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa
Läs merIsometrier och ortogonala matriser
Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället
Läs merInledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock
Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.
Läs merTentamen TMV140 Linjär algebra Z
Tentamen TMV40 Linjär algebra Z 307 kl. 08.30 2.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, 0703 088 304 Hjälpmedel: Inga, ej heller räknedosa För godkänt
Läs merUPG5 och UPG8 Miniprojekt 1: 2D datorgrafik
UPG5 och UPG8 Miniprojekt 1: 2D datorgrafik I den här uppgiften studerar vi hur man kan använda sig av linjära avbildningar för att modifiera bilder i två dimensioner Mycket är repetition av vissa grundbegrepp
Läs merLösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Läs merMaterial till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning
Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal
Läs merDEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna
Läs merLaboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Läs mer2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Läs merFöreläsning 8: Aritmetik och stora heltal
2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen
Läs merMatematisk statistik 9 hp Föreläsning 3: Transformation och simulering
Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik
Läs merInstruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python)
Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken
Läs merTentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra TATA/TEN) 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
Läs merTransformationer i 3D. Gustav Taxén
Transformationer i 3D Gustav Taén gustavt@csc.kth.se 2D64 Grafik och Interaktionsprogrammering VT 27 Bakgrund Ett smidigt sätt att arbeta med 3D-grafik är att tänka sig att man har en virtuell kamera som
Läs merSF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
Läs merAtom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:
Läs merTATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Läs merFöreläsning 12+13: Approximationsalgoritmer
Föreläsning 12+13: Approximationsalgoritmer Många av de NP-fullständiga problemen är från början optimeringsproblem: TSP, Graph Coloring, Vertex Cover etc. Man tror att P NP och att det alltså inte går
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Läs merAtom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 6 Gillis Carlsson gillis.carlsson@matfys.lth.se 10 Oktober, 2013 Föreläsningarna i kvantmekanik LP1 V1 : Repetition av kvant-nano kursen. Sid 5-84 V2
Läs merEgenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
Läs merHt Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra
Ht-2010 Umeå universitet Institutionen för matematik och matematisk statistik PAB Läsanvisningar till Hilbertrum och partiella differentialekvationer Del 1 Ur Anton, Rorres; Elementary Linear Algebra 10.1-10.
Läs mer5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3
1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift
Läs merM = c c M = 1 3 1
N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny
Läs merMer om geometriska transformationer
CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.
Läs merPreliminärt lösningsförslag
Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel
Läs merKvadratkomplettering
Kvadratkomplettering Steg-för-steg-demonstration Hillevi Gavel Institutionen för matematik och fysik (IMa) Mälardalens högskola (MDH) 3 april 2006 Instruktioner Det här bildspelet visar hur man genomför
Läs merLinjär Algebra, Föreläsning 8
Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ
Läs merSvar till vissa uppgifter från första veckan.
Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Läs merCarl Olsson Carl Olsson Linjär Algebra / 18
Linjär Algebra: Föreläsn 1 Carl Olsson 2018-03-19 Carl Olsson Linjär Algebra 2018-03-19 1 / 18 Kursinformation Kurschef Carl Olsson arbetsrum: MH:435 tel: 046-2228565 epost: calle@maths.lth.se Carl Olsson
Läs mer7 november 2014 Sida 1 / 21
TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av
Läs mer! &'! # %&'$# ! # '! &!! #
56 6 MATRISER 6.6. Tillämpningar I exemplen nedan antar vi att {e, e 2 } är en ON-bas i planet och Oe e 2 ett högerorienterat system i detta plan. Exempel 6.39. Antag att u e + e 2 e är en vektor i planet
Läs merLösningsförslag till övningsuppgifter, del V
Lösningsförslag till övningsuppgifter, del V Obs! Preliminär version! Ö.1. (a) Vi kan lösa uppgiften genom att helt enkelt räkna ut avståndet mellan vart och ett av de ( 7 ) = 1 paren. Först noterar vi
Läs merHjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
Läs merELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Läs merMULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =
Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET
Läs mer