Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37"

Transkript

1 Kvantmekanik II - Föreläsning 2 Joakim Edsjö HT 2013 Kvantmekanik II Föreläsning 2 Joakim Edsjö 1/37

2 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5 Observabler Kvantmekanik II Föreläsning 2 Joakim Edsjö 2/37

3 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5 Observabler Kvantmekanik II Föreläsning 2 Joakim Edsjö 3/37

4 Formalism I Vi har tidigare tittat på specifika system (en given potential t.ex.) och ibland bevisat egenskaper för detta system (osäkerhetsrelationen t.ex.). Vi vill nu införa en mer generell abstrakt formalism för att hjälpa oss att formulera kvantmekaniken mer kraftfullt. En av många fördelar är att vi kan formulera många problem på ett mer generellt sätt och vi kan ofta utföra bevis en gång för alla istället för för varje givet problem. Kvantmekanik II Föreläsning 2 Joakim Edsjö 4/37

5 Vågfunktionen och operatorer Hittills har vi i kvantmekaniken sett vågfunktionen Ψ(r, t) beskriver systemets tillstånd vid en given tidpunkt operatorer Ô beskriver observabler (eller gör något annat med vårt tillstånd) Istället för att betrakta tillstånden som en vågfunktion Ψ(r, t), låt oss nu beteckna dem med en tillståndsvektor, en ket: α OBS! α är inte en variabel utan en beteckning! Vi väljer den till vad vi vill så att vi kan identifiera vårt tillstånd. Detta sätt att beteckna tillstånden kallas Dirac-notation och vi kommer att utveckla den mer och använda den i denna kurs. Kvantmekanik II Föreläsning 2 Joakim Edsjö 5/37

6 Exempel på kets Exempel Exempel på kets kan vara α, mitt tillstånd, f, ψ,, 1, 1, 2, +,, etc Ofta väljer vi egenvärdet eller något liknande som beteckning. Det viktiga är att vi väljer något som är tydligt (och helst inte för långt). Kvantmekanik II Föreläsning 2 Joakim Edsjö 6/37

7 Frågedags Fråga 1 Betrakta ett kvantmekaniskt system som beskrivs av en vågfunktion Ψ(r, t) och där vi har en operator Ô som beskriver en observabel. Vilket av följande påståenden är korrekt? 1 Operatorn Ô beskriver också systemet. 2 Vi kan välja att beteckna vårt tillstånd α, vilket också beskriver systemet. 3 Vi måste välja om vi ska beteckna vårt tillstånd Ψ(r, t) eller α (dvs vi kan inte använda båda beteckningarna samtidigt). Kvantmekanik II Föreläsning 2 Joakim Edsjö 7/37

8 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5 Observabler Kvantmekanik II Föreläsning 2 Joakim Edsjö 8/37

9 Representation av tillståndsvektorer I Ibland kan det räcka att ha tillstånden beskrivna så abstrakta, men ofta vill vi kunna representera dem på något annat sätt. Tidigare har vi nästan alltid valt att representera tillstånden som funktioner, men ofta är det naturligare och enklare att representera tillstånden som vektorer. Betrakta ett system med N ortonormerade tillstånd. Vi kan då skriva egentillstånden (egenvektorerna) som e n ; n = 1,..., N där { e n } utgör en ortonormerad bas av egenvektorer. Kvantmekanik II Föreläsning 2 Joakim Edsjö 9/37

10 Representation av tillståndsvektorer II Låt oss nu skriva ett tillstånd α som en linjärkombination av dessa: N α = a n e n n=1 där a n = komplext tal, utvecklingskoefficient α är normerad om N a n 2 = 1 n=1 Kvantmekanik II Föreläsning 2 Joakim Edsjö 10/37

11 Representation av tillståndsvektorer III En naturlig representation av α är då α a = a 1 a 2 a 3. a N dvs vi representerar α som en kolumnvektor. Vi använder ofta beteckningen α synonymt med a då det oftast är uppenbart vad vi menar. Kvantmekanik II Föreläsning 2 Joakim Edsjö 11/37

12 Tillstånd representerade som funktioner I Även för tillstånd som vi vill representera som funktioner (dvs som för tillstånden vi har stött på i tidigare kurser) är Dirac-notationen bra. Betrakta två tillstånd som representeras av funktioner: f f (x) g g(x) Inre produkten skrivs då f g = b a f (x)g(x)dx (där f och g är definierade i intervallet [a, b]). Kvantmekanik II Föreläsning 2 Joakim Edsjö 12/37

13 Tillstånd representerade som funktioner II Exempel: Oändliga potentialbrunnen Betrakta den oändliga potentialbrunnen, { 0, 0 x a V (x) =, annars Sedan tidigare vet vi att lösningarna är ψ n (x) = 2 nπx sin a a ; n = 1, 2, 3,... Även om vi har oändligt många egentillstånd N = och vektorrepresentationen därför är direkt olämplig kan vi fortfarande med fördel använda Dirac-notationen, n = ψ n ψ n (x) Kvantmekanik II Föreläsning 2 Joakim Edsjö 13/37

14 Hilbertrummet För godtyckliga funktioner f och g kan det hända att inre produkten inte är väldefinierad. Om vi kräver att f och g är kvadratiskt integrerbara, dvs b a f (x) 2 dx < ; b a g(x) 2 dx < så spänner de upp ett rum som är mindre än rummet av alla funktioner. Detta rum kallas Hilbertrummet. För att våra vågfunktioner ska ha väldefinierade inre produkter kräver vi därför att Våra vågfunktioner lever i Hilbertrummet Då kan vågfunktionerna normeras så att ψ 2 dx = 1 och vi kan identifiera ψ 2 som en sannolikhetstäthet. Kvantmekanik II Föreläsning 2 Joakim Edsjö 14/37

15 Något om baser När f och g lever i Hilbertummet så är inre produkten f g alltid väldefinierad, f f = f (x) 2 dx = f 2 där f är normen av f. En bas { e n } är ortonormerad om e n e m = δ nm där δ nm är Kronecker-deltat (=1 om n = m, annars 0). Om vi uttrycker f i basen { e n } är den given av f = n c n e n Hur hittar vi c n? Jo, vi tar reda på hur mycket av e n som finns i f, dvs c n ges av c n = e n f Kvantmekanik II Föreläsning 2 Joakim Edsjö 15/37

16 Frågestund Fråga 2 Betrakta två funktioner f och g som lever i Hilbertrummet. Om inre produkten mellan f och g är f g, hur skriver vi då inre produkten mellan g och f? 1 g f = f g 2 g f = f g 3 g f = f g Kvantmekanik II Föreläsning 2 Joakim Edsjö 16/37

17 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5 Observabler Kvantmekanik II Föreläsning 2 Joakim Edsjö 17/37

18 Representation av operatorer I Vi har sett att vi kan representera ett tillstånd α som en kolumnvektor a 1 a 2 α a = a 3. a N Men hur representerar vi då operatorerna? Kvantmekanik II Föreläsning 2 Joakim Edsjö 18/37

19 Representation av operatorer II Betrakta två tillstånd α = n β = n a n e n ; a n = e n α b n e n ; b n = e n β Betrakta nu en operator ˆQ och antag att n β = ˆQ α b n e n = a n ˆQ e n n Tag nu inre produkten med e m, b n e m e n = a n e m ˆQ e n }{{} n n δ mn b m = a n e m ˆQ e n Q mn a n }{{} n n = Q mn Kvantmekanik II Föreläsning 2 Joakim Edsjö 19/37

20 Representation av operatorer III Matriselementet Q mn e m ˆQ e n kallas matriselementet för ˆQ med avseende på e m och e n. Notera att ˆQ är en linjär transformation, b m = n Q mn a n dvs vi kan identifiera ˆQ med en matris Q. Vi har alltså transformationen b = Qa där Q = Q 11 Q Q Notera att vi talar om matriselementet av en operator även när vi har valt att representera våra tillstånd som funktioner. Kvantmekanik II Föreläsning 2 Joakim Edsjö 20/37

21 Linjär algebra När vi arbetar med operatorer och tillstånd som matriser och vektorer behöver vi linjär algebra. Egenvektorerna till en operator på matrisform är våra egentillstånd till operatorn. Samma relationer som gäller för matriser och vektorer gäller även våra kvantmekaniska operatorer och tillstånd Kvantmekanik II Föreläsning 2 Joakim Edsjö 21/37

22 Frågestund Fråga 3 Om ˆQ är en godtycklig operator, vad gäller då helt generellt för den på matrisform, dvs vilket påstående är korrekt? 1 Q måste vara diagonal 2 Q måste vara reell 3 Q är en helt generell komplex matris Kvantmekanik II Föreläsning 2 Joakim Edsjö 22/37

23 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5 Observabler Kvantmekanik II Föreläsning 2 Joakim Edsjö 23/37

24 Mer om Dirac-notationen Vi skriver inre produkterna som α β Dirac föreslog att vi kan betrakta α som ett eget objekt, en bra, dvs Dirac-notation β ket α bra α β bra(c)ket Bra:n är som funktioner som bara väntar på något, t.ex. en ket eller operator, att verka på Jämför med operatorer När en operator verkar på en ket får vi en ny ket När en bra verkar på en ket får vi en skalär (ett komplext tal) Kvantmekanik II Föreläsning 2 Joakim Edsjö 24/37

25 Kommentarer a) Om α representeras av funktionen f (x) kan bran representeras av α = f (x)[ ]dx där [ ] bara väntar på att fyllas med vad som kommer efter bran. b) Om α representeras av en kolumnvektor α = a 1 a 2. a N så representeras bran av en radvektor α = ( a 1 a 2 a N ) = (a ) T = a Kvantmekanik II Föreläsning 2 Joakim Edsjö 25/37

26 Duala rummet och operatorer Våra bran lever i det duala rummet och beskriver våra tillstånd precis lika bra som våra kets. Att betrakta bran som egna objekt har många fördelar Vi kan t.ex. definiera en projektionsoperator ˆP α α ˆP plockar ut komponenten längs α av en godtycklig vektor och ger tillbaka en vektor av den storleken i riktningen α : ˆP β = α α β = ( α β ) α där α β är utvecklingskoefficienten som talar om hur mycket av α som finns i β. Kvantmekanik II Föreläsning 2 Joakim Edsjö 26/37

27 Enhetsoperatorn För ett godtyckligt tillstånd α kan vi i en ortonormerad bas { e i } skriva α = a i e i ; a i = e i α i Vi kan nu skriva om detta som α = e i α e i = ( ) e i e i α = e i e i α }{{} i ett komplext tal i i }{{} ˆ1 där vi har definierat Enhetsoperatorn ˆ1 i e i e i Enhetsoperatorn kan vi sätta in var som helst där det är praktiskt. Kvantmekanik II Föreläsning 2 Joakim Edsjö 27/37

28 Operatorer och matriser I För en operator  kan vi då skriva  = ˆ1ˆ1 = e i e i  i j = e i A ij e j ij e j e j = ij e i e i  e j e j }{{} Matriselementet A ij Tidigare såg vi hur vi tar fram matriselementet från operatorn, nu vet vi hur vi tar fram operatorn från matriselementet. Notera att om basen { e i } är egenvektorer till  så är matrisen A diagonal, A ij = e i  e j = e i a j e j = a j e i e j = a j δ ij }{{} e j egentillstånd till  δ ij Enhetsmatrisen Kvantmekanik II Föreläsning 2 Joakim Edsjö 28/37

29 Operatorer och matriser II Operatorn  är då given av a A = 0 a Dubbelsumman för  blir då också en enkelsumma,  = ij e i A ij e j = i e i a i e i Kvantmekanik II Föreläsning 2 Joakim Edsjö 29/37

30 Egenskaper hos inre produkter Egenskaper hos inre produkter Betrakta två tillstånd α och β. Låt b vara ett komplext tal och ˆQ en operator. Vi har då att α bβ = b α β bα β = b α β α bβ = b α β Detta följer från definitionen av de inre produkterna. Man kan också visa att α ˆQβ = ˆQ α β Kvantmekanik II Föreläsning 2 Joakim Edsjö 30/37

31 Frågestund Fråga 4 Vad är β α för något? 1 Inre produkten mellan β och α 2 En operator 3 En ket 4 En bra Kvantmekanik II Föreläsning 2 Joakim Edsjö 31/37

32 Innehåll 1 Formalism 2 Tillståndsvektorer 3 Operatorer 4 Mer om Dirac-notationen 5 Observabler Kvantmekanik II Föreläsning 2 Joakim Edsjö 32/37

33 Observabler I En obervabel är något vi kan mäta. Betrakta en operator för en observabel, ˆQ. Vi kan skriva väntevärdet som ˆQ = ψ ˆQψdx = ψ ˆQψ = ψ ˆQ ψ ˆQ verkar på ψ där vi ofta skriver det på den sista formen och då underförstår att ˆQ verkar åt höger. Men ˆQ är ju nu en observabel, väntevärdet måste då vara reellt, dvs ˆQ = ˆQ för en observabel Men vi kan nu skriva ˆQ = ψ( ˆQψ) dx = ( ˆQψ) ψdx = ˆQψ ψ ˆQ verkar på ψ Kvantmekanik II Föreläsning 2 Joakim Edsjö 33/37

34 Observabler II För en observabel har vi alltså ψ ˆQψ = ˆQψ ψ, för alla ψ En sådan operator kallas hermitsk. Man kan visa att uttrycket ovan kan generaliseras till Teorem För godtyckliga ψ a och ψ b gäller då ˆQ är hermitsk att ψ a ˆQψ b = ˆQψ a ψ b Kom ihåg: Observabel reella väntevärden hermitsk operator, dvs Observabler representeras av hermitska operatorer Kvantmekanik II Föreläsning 2 Joakim Edsjö 34/37

35 Hermitska operatorer Generellt har vi att ψ a ˆQψ b = ˆQ ψ a ψ b men för hermitska operatorer gäller att ψ a ˆQψ b = ˆQψ a ψ b dvs ˆQ = ˆQ för hermitska operatorer Hermitskt konjugat innebär komplexkonjugering och transponering så för operatorer på matrisform är det ganska lätt att kolla om en operator är hermitsk. För operatorer som inte är på matrisform får man istället undersöka vad som händer då de verkar på godtyckliga vågfunktioner f (x) och g(x). Kvantmekanik II Föreläsning 2 Joakim Edsjö 35/37

36 Frågestund Fråga 5 Vilken eller vilka av följande operatorer är hermitska (flera val är möjliga)? Â = i 1 0 i i 3 + i 3 ; ˆB = 2 i 3 i ; Ĉ = 2 2i i 3i Ingen är hermitsk 2 Â är hermitsk 3 ˆB är hermitsk 4 Ĉ är hermitsk Kvantmekanik II Föreläsning 2 Joakim Edsjö 36/37

37 Frågestund Fråga 6 Måste alla operatorer vara hermitska? 1 Nej, bara sådana som svarar mot observabler, dvs något vi kan mäta 2 Nej, men alla som dyker upp i kvantmekaniken är hermitska 3 Ja, alla operatorer är hermitska Kvantmekanik II Föreläsning 2 Joakim Edsjö 37/37

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Kvantmekanik II - Föreläsning 10

Kvantmekanik II - Föreläsning 10 Kvantmekanik II - Föreläsning 10 Degenererad störningsteori (tidsoberoende) Joakim Edsjö edsjo@fysik.su.se Kvantmekanik II Föreläsning 10 Joakim Edsjö 1/26 Degenererad störningsteori Innehåll 1 Allmänt

Läs mer

Kvantmekanik II - Föreläsning 7

Kvantmekanik II - Föreläsning 7 Kvantmekanik II - Föreläsning 7 Identiska partiklar Joakim Edsjö edsjo@fysik.su.se HT 2013 Kvantmekanik II Föreläsning 7 Joakim Edsjö 1/44 Innehåll 1 Generalisering av Schrödingerekvationen till fler partiklar

Läs mer

Kvantmekanik II (FK5012), 7,5 hp

Kvantmekanik II (FK5012), 7,5 hp Joakim Edsjö Fysikum, Stockholms Universitet Tel.: 8-5537876 E-post: edsjo@physto.se Lösningar till Kvantmekanik II (FK51, 7,5 hp 3 januari 9 Lösningar finns även tillgängliga på http://www.physto.se/~edsjo/teaching/kvant/index.html.

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0.

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0. Vektorrum Denna kurs handlar till stor del om s k linjära rum eller vektorrum. Dessa kan ses som generaliseringar av R n. Skillnaden består främst i att teorin nu blir mer abstrakt. Detta är själva poängen;

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Dugga i FUF040 Kvantfysik för F3/Kf3

Dugga i FUF040 Kvantfysik för F3/Kf3 Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

Föreläsning 3, Linjär algebra IT VT Skalärprodukt

Föreläsning 3, Linjär algebra IT VT Skalärprodukt Föreläsning 3, Linjär algebra IT VT2008 1 Skalärprodukt Denition 1 Låt u oh v vara två vektorer oh låt α vara minsta vinkeln mellan dem Då denierar vi skalärprodukten u v genom u v = u v os α Exempel 1

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

LINJÄRA AVBILDNINGAR

LINJÄRA AVBILDNINGAR LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

Kvantmekanik II, 7,5 hp (FK5012) HT 2015

Kvantmekanik II, 7,5 hp (FK5012) HT 2015 2015-09-29 Kvantmekanik II, 7,5 hp (FK5012) HT 2015 Innehåll: Fördjupad kunskap om grundläggande begrepp och metoder inom icke-relativistisk kvantmekanik: osäkerhetsprincipen; Dirac-notation; rörelsemängdsmoment,

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

Kvantmekanik II, 7,5 hp (FK5012)

Kvantmekanik II, 7,5 hp (FK5012) 2013-10-01 Kvantmekanik II, 7,5 hp (FK5012) Innehåll: Fördjupad kunskap om grundläggande begrepp och metoder inom icke-relativistisk kvantmekanik: osäkerhetsprincipen; Dirac-notation; rörelsemängdsmoment,

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

Linjär algebra kurs TNA002

Linjär algebra kurs TNA002 Linjär algebra kurs TNA002 Lektionsanteckningar klass ED1 I detta dokument finns ett utdrag av de tavelanteckningar som uppkommit under lektionstid under kursen TNA002. Alltså kan detta dokument långt

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 003-11-18 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner i polynomisk tid. Kanske

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

Instuderingsfrågor, Griffiths kapitel 4 7

Instuderingsfrågor, Griffiths kapitel 4 7 Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen

Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 00-1-03 Lars Engebretsen 00-1-03 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner

Läs mer

Algebrans fundamentalsats

Algebrans fundamentalsats School of Science and Technology SE-701 8 Örebro, Sweden Algebrans fundamentalsats Ett linjäralgebraiskt bevis Andreas Thore Örebro Universitet Akademin för naturvetenskap och teknik Matematik C, 61 75

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13

Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13 LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris

Läs mer

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.

avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

F3: Schrödingers ekvationer

F3: Schrödingers ekvationer F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem

Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem Laboration 0: Del 2 Benjamin Kjellson 2016 03 21 Introduktion till matriser, vektorer, och ekvationssystem I den här filen får ni en kort introduktion till hur man hanterar och räknar med matriser i R,

Läs mer

Föreläsning 7. Felrättande koder

Föreläsning 7. Felrättande koder Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Stöd inför omtentamen i Linjär algebra TNA002.

Stöd inför omtentamen i Linjär algebra TNA002. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Lite Linjär Algebra 2017

Lite Linjär Algebra 2017 Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund

Läs mer

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e . Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik. Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +

Läs mer

Kvantmekanik II - Föreläsning 14

Kvantmekanik II - Föreläsning 14 Kvantmekanik II - Föreläsning 14 Kvantmekanikens tolkningar Joakim Edsjö edsjo@fysik.su.se Kvantmekanik II Föreläsning 14 Joakim Edsjö 1/36 Kvantmekanikens tolkningar Innehåll 1 Kvantmekanikens tolkningar

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är KTH, Matematik Övningar till Kapitel 5.5-5.6, 6.6 och 8.3-8.6. Matrisframställningen A γ av en rotation R γ : R R med vinkeln γ är ( cos(γ sin(γ. sin(γ cos(γ Då R α+β = R α R β, är matrisen ( cos(α + β

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken

Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken Här följer kommentarer om sånt i boken som kan behövas förtydligas samt anvisningar om vad som ska läsas, eller snarare vilka delar

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer