- ett statistiskt fråga-svarsystem

Storlek: px
Starta visningen från sidan:

Download "- ett statistiskt fråga-svarsystem"

Transkript

1 - ett statistiskt fråga-svarsystem Artificiell intelligens II Linnea Wahlberg linwa713 1

2 Innehåll Introduktion... 1 Grundprinciper för asked!... 2 Retrieval model... 4 Filter model... 6 Komponenter... 8 Sammanfattning... 9 Litteraturförteckning... Fel! Bokmärket är inte definierat. 2

3 Introduktion asked! är ett fråga-svarsystem, ett så kallat QA-system, som finns att tillgå på internet på hemsidan Där kan man skriva in en faktafråga och systemet ställer då upp fem svar rankade efter hur stor sannolikhet att vara rätt svar som systemet anser att de har. Svaren består av ett eller några få ord, men genom att hålla musen över ett av svaren blir den mening som svaret finns i synlig. För att få ännu mer information kan man klicka på svaren och då kommer man till den hemsida där svaren har hittats. Skaparna av asked! anser att deras metod är väsentligt annorlunda än de vanliga metoderna att lösa QA-problem (Whittaker, Furui, Klakow, & Chatain, 2005). Idén med asked! är att det ska gå snabbt och lätt att bygga QA-system för olika språk, utan att avancerade lingvistiska moduler ska behöva användas. Istället för lingvistisk information använder sig asked! av en stor mängd tokens och webbaserad data. Med denna typ av information behandlas frågebesvaring som ett klassifikationsproblem och löses med ett statistiskt tillvägagångssätt. Eftersom det är ett statistiskt QA-system går principerna lätt att överföra till andra språk genom att ändra träningsdatan. Systemet finns nu på engelska, japanska, kinesiska, ryska och svenska (Whittaker, Furui, & Klakow, 2005). Andra fördelar med ett statistiskt system är att det är mindre känsligt för brusig (noisy) data och kan enkelt utökas till andra domäner (Whittaker, Furui, Klakow, & Chatain, 2005). Detta QA-system använder sig av statistik över n-gram hämtad från en stor samling med exempelfrågor med tillhörande svar och hittar svaren i stora mängder av textdata (Whittaker, Hamonic, & Furui, 2005). Även för träning av systemet används stora mängder av data (Whittaker, Furui, Klakow, & Chatain, 2005). Det använder sig inte av WordNet (en databas med olika betydelser och synonymer till engelska ord (Jurafsky & Martin, 2009)), extraktion av namn, information från semantisk analys eller parsning (att skapa en lingvistisk eller grammatisk struktur för ord (Jurafsky & Martin, 2009)). De enda särdrag som används är tokens omskrivna till versaler (Whittaker, Hamonic, & Furui, 2005). Svar till frågor beror egentligen inte bara på frågan i sig utan även på många andra faktorer som till exempel vem som ställer frågan, vilken situation frågan ställs i och vilken bakgrundsinformation som finns. Detta tas dock inte hänsyn till i asked! på grund av att det är svårt att modellera (Whittaker, Hamonic, & Furui, 2005). Om hänsyn skulle tas till sådana faktorer skulle inte heller systemet kunna överföras mellan olika språk så lätt som det görs utan sådan information. Hur asked! presterar är jämförbart med många andra QA-system som används, men det är sämre än de bästa system som finns (Whittaker, Hamonic, & Furui, 2005). År 2005 kom skaparna av asked! på elfte plats av tjugo i TREC, Text Retrieval Conference, vilket är en årlig tävling för informationsutvinning, med deras system (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). 1

4 Grundprinciper för asked! asked! använder det sig av stora mängder data som det beräknar statistiska sannolikheter på, och på så sätt räknar det ut vilket svar som enligt systemet passar bäst till frågan, det vill säga, vilket svar som har den största sannolikheten att vara det lämpligaste svaret på den ställda frågan. En stor mängd data används både för att träna systemet och för att utvinna svar till frågor. I asked! används en matematisk modell vilken gör ad-hocvikter och andra parametrar onödiga (Whittaker, Furui, & Klakow, 2005). Till att börja med, för att kunna göra en statistisk beräkning, antas svaret A på en fråga Q vara beroende av endast Q. Både Q och A består av varsin sträng med de ord som bygger upp frågan respektive svaret så att Q = och A =, där och är längden på strängarna. Q består av två delar; en del som visar vilken frågetyp det är och en informationsbärande del som är vad frågan handlar om. Dessa betecknas W och X så att W = W(Q) och X = X(Q). I frågan Hur många sjöar finns det i Finland? skulle Hur många höra till W och sjöar i Finland skulle höra till X. Att A är beroende av Q ger att A är beroende av W och X. Systemet ska hitta det svar som har störst sannolikhet att vara ett korrekt svar, givet de två delarna av en fråga. Detta gör det genom att söka igenom alla möjliga svar. För att förenkla uträkningen används Bayes regel för att skriva om ekvationen. Bayes regel tillåter att en ekvation för en sannolikhet skrivs om till ett set med andra sannolikheter som är enklare att räkna ut men ger samma svar, enligt följande: Den största sannolikheten för ett svar blir med Bayes regel omskriven till: Eftersom frågan, och därmed W och X, alltid är samma påverkar inte nämnaren P(W,X) jämförelser mellan sannolikheter för olika svar och kan därför tas bort ur beräkningen. För att ytterligare förenkla uträkningen antas X vara villkorligt oberoende av W givet A. Detta ger: Genom att återigen använda Bayes regel, den här gången åt omvänt håll, fås den slutgiltiga ekvationen. 2

5 Den slutliga ekvationen delas in i två delar som får namnen retrieval model och filter model. Retrieval model räknar ut sannolikheten för ett svar givet den informationsbärande delen av frågan, det vill säga X och filter model räknar ut sannolikheten för en frågetyp, det vill säga W, givet ett svar. Retreival model får fram en lista med möjliga svar, grundat på den informationsbärande delen i frågan. Filter model rangordnar sedan dessa utifrån hur svaren passar ihop med frågeorden i frågan genom att sätta samman sätt att ställa frågor på, med svar som passar ihop med dessa. Till exempel sätts frågor som innehåller ordet när ihop med svar som innehåller datum, veckodagar, år och så vidare. (Whittaker, Furui, Klakow, & Chatain, 2005). 3

6 Retrieval model För att räkna ut sannolikheten P(A X) används den så kallade retrieval model. Den räknar ut likheten mellan ett svar A och den informationsbärande delen X av frågan Q. A är en ordsekvens bestående av a 1,,a la och X = X(Q) vilket betyder att X genererar ord ur frågan Q. Genereras gör endast de ord som inte finns med i en stopplista, vilket är en lista bestående av ungefär 50 ofta förekommande ord. Den aktiva uppsättningen av särdrag x 1,,x la betecknas med X i, sådant att X i = x 1 * δ(d 1 ), x 2 * δ(d 2 ), x lx * δ(d lx ), där δ(.) är en diskret indikator som blir 1 om dess argument är sant och 0 om dess argument är falskt..x i består på så sätt av en lista med särdrag som är sanna, det vill säga de ord som finns som särdrag i frågan men som inte finns med i stopplistan. Sannolikheten för P(A X) räknas ut genom följande formel: där λ xi = 1/2 lx för alla i, P(A X 0 ) är ett nollgram och P(A X i ) är sannolikheten för A givet X i. Detta räknas ut med hjälp av MLE (maximum likelihood estimation) genom att dela antalet gånger A och X i förekommer i samma mening i korpusen S med hur många gånger X i förekommer i en mening i samma korpus S. V är den totala uppsättningen av unika ord som förekommer i korpusen. Formeln för att räkna ut N(A, X i ) modifieras på så sätt att påverkan från om A förekommer i föregående och/eller efterkommande mening läggs till genom λ adj, vilket oftast har ett värde 1. Ingen smoothing används eftersom det ger en mycket liten effekt på resultatet. Detta är delvis på grund av att det sker en automatisk smoothingeffekt vid interpolering av den totala 4

7 fördelningen och att det inte finns någon anledning för smoothing då ord som inte finns med i korpusen aldrig kan väljas som svar. En brist med retrieval model är att man använder samma vikter oavsett hur distributionen ser ut, det vill säga hur många särdrag som ingår i frågan, och detta borde påverka hur många gånger X i förekommer i korpusen N(X i ). Dock är inga pålitliga sådana relationer fastställda (Whittaker, Furui, Klakow, & Chatain, 2005). 5

8 Filter model För att räkna ut sannolikheten P(W A) så används den så kallade filter model. Den rangordnar de svar som retrieval model har fått fram efter hur bra de passar ihop med den typ av fråga som är ställd. Från frågan Q tas frågefraser W ut som läggs in i n-tupler genom mappningsfunktionen W(Q). Exempel på sådana frågefraser är Hur, Hur många och När var. De ord som extraheras som frågefraser är de som finns med i ett set med V W = 2522 ord. Dessa är hämtade ur frågor som varit med i TREC. Exempel på ord som används är när, var, vem, hur, många, djup, lång och så vidare. Det är ett komplicerat förhållande mellan W och A och därför införs en mellanliggande variabel c e, som representerar klasser av exempel på frågor med tillhörande svar. e visar vilken klass det är och är en siffra mellan 1 och C E, där C E är ett set bestående av alla c e. För att förenkla modelleringen antas W vara villkorligt oberoende av A. Sannolikheten P(W A) räknas ut genom att kolla om W och A förekommer i samma klass med frågor och tillhörande svar. E är ett set bestående av exempel på frågor med tillhörande svar, där ett exempel betecknas t j för j = 1 E. t j består av orden i exempelfrågan följt av orden i det tillhörande svaret så att t j = (. E är alltså ett set med exempelfrågor och svar och C E är ett set med klasser med exempelfrågor och svar. Genom att ange E kan en mappningsfunktion definieras som f : E C E genom f(t j ) = e. Funktionen lägger in setet med exempelfrågor och svar, E, i setet med klasser med exempelfrågor och svar, C E, genom att sätta ett nummer, e, på en exempelfråga med svar, t j, så att den hamnar i en klass. Formeln gör så att varje klass består av frågeorden, som finns i exempelfrågorna, i klassen ifråga tillsammans med orden i de tillhörande svaren. Detta ger att c e = (. Med denna definition av c e kan sannolikheten P(W A) skrivas om så att: vilket ger: 6

9 Genom två antaganden fås en ny formel för sannolikheten P(W A) fram. Det första antagandet är att svarsorden i en klass c e är villkorligt oberoende av A och det andra antagandet är att nummer j av svarsorden,, i klassen c e endast beror på det j:de svarsordet i svaret A. Den nya formeln blir: Eftersom setet med exempel på frågor med svar, E, inte täcker alla möjliga svar till frågor som kan ställas till systemet introduceras ett set C A som innehåller klasser med svar, c a. Med dessa kan man beräkna sannolikheten för att orden i ett exempelsvar är med i samma svarsklass som orden på samma position i det verkliga svaret. Med denna formel antas det att orden i exempelsvaret är villkorligt oberoende av svarsklassen c a givet orden i det verkliga svaret a j. Detta antagande leder till att svar med flera ord får en undervärderad sannolikhet. För att undvika detta normaliseras sannolikheten P(W A) med det geometriska medelvärdet av längden på svaret (Whittaker, Furui, Klakow, & Chatain, 2005). 7

10 Komponenter För att skapa ett QA-system så som asked! är uppbyggt behövs fyra komponenter: En samling med exempel på frågor med tillhörande svar. De behöver inte vara rätt svar till frågan men det måste vara rätt typ av svar till frågan (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). Denna samling används för att ange vilken typ av svar det är och betecknas E (i beskrivningen av filter model). Ett klassifikationssystem innehållandes klasser med olika typer av ord, till exempel klasser med namn på länder, personnamn, nummer och så vidare (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). Denna klassifikation används för att kunna generalisera olika svar till samma typ av svar och betecknas C A (i beskrivningen av filter model). En lista med frågeord så som vem, var, när och så vidare (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). Denna lista används för att få ut frågefrasen ur en fråga, det vill säga W (i beskrivningen av filter model). En stopplista med vanliga ord, vilka ska ignoreras av retrieval model (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). Exempel på frågor med tillhörande svar kan hittas på internet eller i frågesportsprogramvara som finns att köpa (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). Till asked! användes frågor med svar som förekommit i TREC (Whittaker, Furui, Klakow, & Chatain, 2005). För att skapa klasser med olika typer av ord används en snabb automatisk grupperingsalgoritm (automatic clustering algorithm), beskriven i E. Whittakers Statistial Language Modelling for Automatic Speech Recognition of Russian and English, För att utföra algoritmen behövs en stor mängd träningstext T ur vilken ett vokabulär med unika tokens tas ut. Dessa tokens grupperas sedan i klasser. Listan med frågeord fås fram genom att använda de oftast förekommande termerna i exempelfrågorna i E. Stopplistan består av de cirka 50 ord som oftast förekommer i träningstexten T. En stopplista används för att undvika att stora likheter mellan fråga och svar ska uppkomma i retrieval model på grund av att de innehåller många likadana vanligt förekommande ord, som och, en, men och liknande (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). asked! använder sig av sökmotorn Google för att hitta dokument som kan innehålla svaret på frågan som ställs. Frågan skickas vidare till Google efter att eventuella ord som finns med i stopplistan tagits bort. De 100 första dokumenten från Googles sökning laddas ner i sin helhet. HTML-taggar tas bort och alla bokstäver görs om till versaler i dokumenten. Dessa dokument söks sedan igenom för att hitta svaret med mest likhet med frågan (retrieval model) och som passar ihop med vilken typ av fråga det är (filter model). Undersökningar har visat att ju fler dokument som används desto bättre resultat blir det utan att några försämringar har upptäckts. Ända upp till 1000 dokument visar på dessa tendenser (Whittaker E., Hamonic, Klingberg, Yang, & Furui, 2006). 8

11 Sammanfattning asked! är ett QA-system som använder sig av statistiska beräkningar för att generera ett svar A till en fråga Q som, enligt systemet, har den högsta sannolikheten att vara rätt svar. Det använder sig inte av någon lingvistisk information, utan ser det som ett klassifikationsproblem, vilket innebär att frågor och svar delas in i klasser med vilken typ av fråga det är och vilken typ av svar som passar ihop med den. Systemet tar inte hänsyn till vem som ställer frågan, tidigare ställda frågor, vilken situation frågan ställs i och så vidare, dock är skaparna medvetna om att detta påverkar vilka svar som borde genereras. För att generera ett svar räknar systemet ut sannolikheten för ett svar givet en fråga. Frågan delas dock upp i två delar, en informationsbärande del X, som är vad frågan handlar om, och en frågetypsdel W, som är vilken typ av fråga det rör sig om. Till exempel i frågan Vad heter Håkan Hellströms första album? så hör Vad heter till W och Håkan Hellströms första album till X. Vilka ord som hör till W är de ord som oftast förekommer i ett set med exempelfrågor. Genom att anta ett antal villkorliga oberoenden, bland andra att X är villkorligt oberoende av W, och genom att använda Bayes regel fås en formel fram som räknar ut vilket svar som har störst sannolikhet att vara korrekt, nämligen: Denna formel är uppdelad i två delar, retreival model och filter model. Retrieval model räknar ut sannolikheten för ett svar A givet den informationsbärande delen X av frågan och filter model räknar ut sannolikheten för vilken frågetyp W det är givet svaret A. För att räkna ut hur stor sannolikhet för A givet X kollar retrieval model på hur lika A och X är varandra. Ju mer lika de är desto högre sannolikhet får A. De vanligaste orden i det språk som används tas dock bort ur frågan och ingår alltså inte i jämförelsen. Ett sådant ord kan vara och på svenska. Dessa ord tas bort för att de kan göra att ett svar med många sådana ord, men utan lika informationsbärande ord, får en hög sannolikhet. Vilka ord som ska tas bort fås fram genom att kolla vilka ord som oftast förekommer i en träningstext. Retrieval model kollar hur många gånger som X och A finns med i samma mening i den korpus där svaret ska hittas och jämför på så sätt likheten mellan dem. Filter model räknar ut sannolikheten för W givet A genom att kolla om de tillhör samma klass. Detta gör den genom att ha ett set med exempel på frågor med tillhörande svar som indelas i klasser. Ett sådant set kan fås från internet eller går att köpa. Med klassificeringen av exempelfrågorna med svar kan filter model undersöka om ett svar hör till samma klass som W. Eftersom inte alla tänkbara svar finns med bland exempelfrågorna med svar används även ett annat set som innehåller klasser med svar. Då kan sannolikheterna räknas ut utifrån om W passar ihop med den svarsklass som svaret är med i, istället för om det passar ihop med det specifika svaret. Vilken klass svaret tillhör får man fram genom att använda en grupperingsalgoritm på en träningstext. Retrieval model får fram svar som till innehållet passar ihop med frågan. Filter model används sedan för att rangordna svaren från retrieval model efter hur bra de passar ihop med vilken frågetyp det är på frågan. För att systemet ska hitta ett svar krävs en korpus i vilken det kan söka efter svaret. asked! använder sig av sökmotorn Google. Frågan Q skickas som den är till Google, dock utan orden 9

12 som är med i stopplistan och de 100 första dokumenten som fås fram genom sökningen letas igenom efter svaret. 10

13 Litteraturförteckning Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing. New Jersey: Pearson Education, Inc. Whittaker, E., Furui, S., & Klakow, D. (2005). A Statistical Classification Approach to Question Answering using Web Data. Washington DC: IEEE Computer Society. Whittaker, E., Furui, S., Klakow, D., & Chatain, P. (2005). TREC2005 Question Answering Experiments at Tokyo Institute of Technology. Proceedings of the Fourteenth Text Retrieval Conference (TREC). Whittaker, E., Hamonic, J., & Furui, S. (2005). A Unified Approach to Japanese and English Question Answering. Proceedings of the 5th NTCIR Workshop. Whittaker, E., Hamonic, J., Klingberg, T., Yang, D., & Furui, S. (2006). Rapid Development of Web-based Monolingual Question Answering Systems. Proceedings of the 28th European Conference on Information Retrieval. 11

Taltaggning. Rapport av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003

Taltaggning. Rapport av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003 Taltaggning av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003 Sammanfattning Denna rapport är skriven i kursen Språkteknologi och behandlar taggning av årtal i en text. Metoden som används

Läs mer

Linköpings Universitet Artificiell Intelligens II 729G11 HT QA- system. Anders Janson

Linköpings Universitet Artificiell Intelligens II 729G11 HT QA- system. Anders Janson Linköpings Universitet Artificiell Intelligens II 729G11 HT 2011 QA- system Anders Janson 861128-6918 andja338@student.liu.se Sammanfattning Inom denna uppsats tar jag upp Question Answering system, som

Läs mer

Grundläggande textanalys. Joakim Nivre

Grundläggande textanalys. Joakim Nivre Grundläggande textanalys Joakim Nivre Om kursen Ni har hittills läst Lingvistik Datorteknik Matematik Språkteknologiska tillämpningar Nu ska vi börja med språkteknologi på allvar Hur gör man text hanterbar

Läs mer

Forskning och utveckling inom språkteknologi Uppgift 3: Projektförslag Parallelliserad dependensparsning i CUDA

Forskning och utveckling inom språkteknologi Uppgift 3: Projektförslag Parallelliserad dependensparsning i CUDA Forskning och utveckling inom språkteknologi Uppgift 3: Projektförslag Parallelliserad dependensparsning i CUDA Evelina Andersson 18 maj 2011 1 Introduktion Att träna mycket för att bli duktig på ett språk

Läs mer

Internets historia Tillämpningar

Internets historia Tillämpningar 1 Internets historia Redan i slutet på 1960-talet utvecklade amerikanska försvaret, det program som ligger till grund för Internet. Syftet var att skapa ett decentraliserat kommunikationssystem som skulle

Läs mer

Ontologier. Cassandra Svensson 2014-01-09

Ontologier. Cassandra Svensson 2014-01-09 Ontologier Cassandra Svensson 2014-01-09 Sammanfattning Jag har läst Annika Flycht-Ericssons avhandling Design and Use of Ontoligies in information-providing Dialogue Systems. Med Annikas text som utgångspunkt

Läs mer

Word- sense disambiguation

Word- sense disambiguation KTH Word- sense disambiguation Inlämningsuppgift - DD2418 - sprakt12 Mattias Uskali & Emilia Hillert 1/8/2013 Sammanfattning Denna rapport kommer att undersöka två metoder för word- sense disambiguation,

Läs mer

Dialogue Technologies April 2005

Dialogue Technologies April 2005 Dialogue Technologies April 2005 En typisk självbetjäningstjänst för web ser ut enligt följande En inledande text för att användaren skall förstå tjänsten En aktuell lista med de 10 vanligast frågorna

Läs mer

Taligenkänning. Sanna Aronsson sanar429 Artificiell Intelligens, HKGBB0

Taligenkänning. Sanna Aronsson sanar429 Artificiell Intelligens, HKGBB0 Taligenkänning, HKGBB0 Abstract Ett taligenkänningssystem är att ett system som har som uppgift att identifiera enstaka ord eller hela sekvenser av ord. Detta gör den genom att jämföra denna ordsekvens

Läs mer

http://www.sm.luth.se/~andreas/info/howtosearch/index.html

http://www.sm.luth.se/~andreas/info/howtosearch/index.html & ' ( ( ) * +, ', -. / ' 0! 1 " 2 # 3 / /! 1 $ 4, % 5 # 3, http://www.sm.luth.se/~andreas/info/howtosearch/index.html Andreas Tips och trix till sökningar i Cyberrymnden Här försöker jag att gå igenom

Läs mer

Linköpings universitet Artificiell Intelligens II 729G11 HT Maskinöversättning. med hjälp av statistik. Erik Karlsson

Linköpings universitet Artificiell Intelligens II 729G11 HT Maskinöversättning. med hjälp av statistik. Erik Karlsson Maskinöversättning med hjälp av statistik Erik Karlsson erika669@student.liu.se Innehåll Inledning... 1 Bakgrund och historia... 2 Historia... 2 Klassiska designer... 2 Direkt översättning... 2 Interlingua...

Läs mer

TDDD02 Föreläsning 6 HT-2013

TDDD02 Föreläsning 6 HT-2013 TDDD02 Föreläsning 6 HT-2013 QA: Frågebesvarande system Lars Ahrenberg Litteratur: Brill m.fl. An Analysis of the AskMSR QA system Översikt Definition och exempel Utvärdering Standardkomponenter i QA-system

Läs mer

LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, HT10 SMT. En fördjupning i statistiska maskinöversättningssystem

LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, HT10 SMT. En fördjupning i statistiska maskinöversättningssystem LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, SMT En fördjupning i statistiska maskinöversättningssystem johka299@student.liu.se 2010-10-01 Innehållsförteckning 1. Introduktion till översättning...

Läs mer

Statistisk mönsterigenkänning

Statistisk mönsterigenkänning Statistisk mönsterigenkänning Jonas Sandström Artificiell intelligens II Linköpings universitet HT 2011 Innehållsförteckning 1. Innehållsförteckning sid 2 2. Inledning sid 3 3. Statistisk mönsterigenkänning

Läs mer

http://www.youtube.com/watch?v=jpenfwiqdx8

http://www.youtube.com/watch?v=jpenfwiqdx8 http://www.youtube.com/watch?v=jpenfwiqdx8 1 Sökmotoroptimering SEO En introduktion för webbredaktörer 2 Agenda Var är vi på väg? Hur fungerar sökmotorer? Hur går det till när jag söker? Hur hänger det

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

STRÄNGAR DATATYPEN. Om du vill baka in variabler eller escape-tecken måste du använda dubbla citattecken. strängar

STRÄNGAR DATATYPEN. Om du vill baka in variabler eller escape-tecken måste du använda dubbla citattecken. strängar STRÄNGAR En av de mest avancerade av de normala datatyperna är. Här skall vi grundläggande gå igenom hur den datatypen fungerar och vidare flertalet funktioner som hör till datatypen. Låt oss kasta oss

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Artificiell intelligens II, 729g11 Projekt HT-11. Taligenkänning. Nina Knez

Artificiell intelligens II, 729g11 Projekt HT-11. Taligenkänning. Nina Knez Taligenkänning 1 Sammanfattning Taligenkänning är i dagens samhälle en nödvändig teknik för många människor för att lättare ta sig fram genom vardagen. Man hittar tekniken i olika sammanhang som telefonupplysning,

Läs mer

Alla filer som bearbetar PHP script ska avslutas med ändelsen.php, exempelvis ska en indexsida till en hemsida heta index.php

Alla filer som bearbetar PHP script ska avslutas med ändelsen.php, exempelvis ska en indexsida till en hemsida heta index.php Introlektion PHP är ett av de enklare språken att lära sig just pga. dess dynamiska struktur. Det används för att bygga upp båda stora och mindre system. Några vanliga system som använder sig av PHP är

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Falcon och QA- system generellt

Falcon och QA- system generellt Falcon och QA- system generellt Ett projektarbete i kursen Artificiell Intelligens II, 729G11 Linköpings Universitet ht 2009 Sanna Heurlén sanhe399@student.liu.se 880831-1966 Sammanfattning Denna rapport

Läs mer

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692 Beräkning med ord -hur en dator hanterar perception 2010-10-03 Erik Claesson 880816-1692 Innehåll Inledning... 3 Syfte... 3 Kan datorer hantera perception?... 4 Naturligt språk... 4 Fuzzy Granulation...

Läs mer

Olika sätt att lösa ekvationer

Olika sätt att lösa ekvationer Modul: Algebra Del 5: Algebra som språk Olika sätt att lösa ekvationer Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Att lösa ekvationer är en central del av algebran, det

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Linköpings universitet

Linköpings universitet 2016-08-24 Vad är kognition? tt ta in, lagra och bearbeta information: Kognitionsvetenskaplig introduktionskurs Perception Information tas in och flödar genom begränsade informationskanaler Föreläsning

Läs mer

En introduktion till predikatlogik

En introduktion till predikatlogik rasmus.blanck@gu.se FT1200, LC1510 och LGFI52 VT2017 (Premiss 1) (Premiss 2) (Slutsats) Alla människor är dödliga Sokrates är en människa Sokrates är dödlig Detta argument är intuitivt giltigt: Det finns

Läs mer

Medieteknologi Webbprogrammering och databaser MEB725, 5p (7,5 ECTS) Klientprogrammering JavaScript Program på flera sidor

Medieteknologi Webbprogrammering och databaser MEB725, 5p (7,5 ECTS) Klientprogrammering JavaScript Program på flera sidor http://w3.msi.vxu.se/multimedia Medieteknologi Webbprogrammering och databaser MEB725, 5p (7,5 ECTS) Klientprogrammering JavaScript Program på flera sidor Rune Körnefors Innehåll Variabler i JavaScript

Läs mer

Introduktion till frågespråket SQL (v0.91)

Introduktion till frågespråket SQL (v0.91) DD1370: Databaser och Informationssystem Hösten 2014 Petter Ögren Introduktion till frågespråket SQL (v0.91) 13:e November Disclaimer: Dessa anteckningar har producerats under viss tidspress, och kan därför

Läs mer

Arv. Fundamental objekt-orienterad teknik. arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier

Arv. Fundamental objekt-orienterad teknik. arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier Arv Fundamental objekt-orienterad teknik arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier Programmeringsmetodik -Java 165 Grafisk respresentation: Arv

Läs mer

Introduktion till programmering SMD180. Föreläsning 9: Tupler

Introduktion till programmering SMD180. Föreläsning 9: Tupler Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]

Läs mer

729G11 Artificiell Intelligens Marcus Johansson Marjo581. Fuzzy logic. Marcus Johansson Marjo581

729G11 Artificiell Intelligens Marcus Johansson Marjo581. Fuzzy logic. Marcus Johansson Marjo581 Fuzzy logic 880328-2535 Innehåll Fuzzy logic... 1 1. Inledning... 4 2. Jämförelse mellan fuzzy logic och tvåvärdeslogik.... 4 3. Fuzzy sets.... 4 4. Linvistiska variabler... 5 5. Operatorer... 5 6. If-

Läs mer

Specifikation och tidsplan för examensarbete

Specifikation och tidsplan för examensarbete Specifikation och tidsplan för examensarbete Anneli Lönn 19 maj 2003 1 Deltagare Anneli Lönn ska utföra projektet hos CognIT a.s i Oslo Robert Engels, handledare CognIT a.s Till Christopher Lech, handledare

Läs mer

Introduktion till språkteknologi

Introduktion till språkteknologi Introduktion till språkteknologi OH-serie 9: informationshantering http://stp.lingfil.uu.se/~matsd/uv/uv08/ist/ Informationshantering Hjälpa en användare att söka efter dokument eller information i dokumentsamlingar.

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering Marco Kuhlmann Institutionen för datavetenskap Ordpredicering Ordpredicering innebär att föreslå eller välja ord i en given kontext.

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Varför ska man använda ett CMS? Vilka är fördelarna och är det alltid bra? Kattis Lodén 2010-03-18

Varför ska man använda ett CMS? Vilka är fördelarna och är det alltid bra? Kattis Lodén 2010-03-18 Varför ska man använda ett CMS? Vilka är fördelarna och är det alltid bra? Kattis Lodén 2010-03-18 Innehåll Inledning... 3 Fakta... 4 Innehåll... 4 Texthantering... 4 Granskning och versionshantering...

Läs mer

Webbgenvägar. Krishna Tateneni Yves Arrouye Översättare: Stefan Asserhäll

Webbgenvägar. Krishna Tateneni Yves Arrouye Översättare: Stefan Asserhäll Krishna Tateneni Yves Arrouye Översättare: Stefan Asserhäll 2 Innehåll 1 Webbgenvägar 4 1.1 Inledning........................................... 4 1.2 Webbgenvägar........................................

Läs mer

2D1418, Språkteknologi NADA, Kungliga Tekniska Högskolan 2004-10-17 SÖKMOTOROPTIMERING. Av Erik Lindgren 810110-8218 soft@kth.se

2D1418, Språkteknologi NADA, Kungliga Tekniska Högskolan 2004-10-17 SÖKMOTOROPTIMERING. Av Erik Lindgren 810110-8218 soft@kth.se 2D1418, Språkteknologi NADA, Kungliga Tekniska Högskolan 2004-10-17 SÖKMOTOROPTIMERING Av Erik Lindgren 810110-8218 soft@kth.se SAMMANFATTNING Föreliggande uppsats behandlar ämnet sökmotoroptimering.

Läs mer

Probabilistisk logik 2

Probabilistisk logik 2 729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk

Läs mer

Vardagssituationer och algebraiska formler

Vardagssituationer och algebraiska formler Modul: Algebra Del 7: Kommunikation i algebraklassrummet Vardagssituationer och algebraiska formler Cecilia Kilhamn, Göteborgs Universitet och Jörgen Fors, Linnéuniversitetet En viktig del av algebran

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

Artificiell Intelligens

Artificiell Intelligens Omtentamen Artificiell Intelligens Datum: 2014-02-20 Tid: 14.00 18.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!

Läs mer

Peter Hellström. PH-Digital Marketing peter.hellstrom@digitalmarketing.fi www.digitalmarketing.fi

Peter Hellström. PH-Digital Marketing peter.hellstrom@digitalmarketing.fi www.digitalmarketing.fi Peter Hellström PH-Digital Marketing peter.hellstrom@digitalmarketing.fi www.digitalmarketing.fi Internet, trender och Google sökmotor Sökmotoroptimering = SEO, Search Engine Optimization Sökmotormarknadsföring

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Tentamen 2016-01-13. Marco Kuhlmann

Tentamen 2016-01-13. Marco Kuhlmann TDDD02 Språkteknologi för informationssökning (2015) Tentamen 2016-01-13 Marco Kuhlmann Denna tentamen består av 10 frågor. Frågorna 8 10 ligger på en högre kunskapsnivå än de övriga och kräver utförliga

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014

Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014 Tentamen Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet marco.kuhlmann@liu.se 17 mars 2014 Inga hjälpmedel är tillåtna. Maximal poäng finns angiven för varje fråga. Maximal poäng

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

Användarhandledning Version 1.2

Användarhandledning Version 1.2 Användarhandledning Version 1.2 Innehåll Bakgrund... 2 Börja programmera i Xtat... 3 Allmänna tips... 3 Grunderna... 3 Kommentarer i språket... 4 Variabler... 4 Matematik... 5 Arrayer... 5 på skärmen...

Läs mer

Kom igång med TIS-Office

Kom igång med TIS-Office Kom igång med TIS-Office Denna guide hjälper dig att komma igång med TIS-Office, mer information om hur man använder programmet finns i manualer på TIS-Office CD-skivan och i den inbyggda hjälpfunktionen

Läs mer

Föreläsningsanteckningar, Introduktion till datavetenskap HT S4 Datastrukturer. Tobias Wrigstad

Föreläsningsanteckningar, Introduktion till datavetenskap HT S4 Datastrukturer. Tobias Wrigstad 1 Datatyper Tobias Wrigstad Det finns flera olika typer av (slags) data Olika datatyper har olika egenskaper. T.ex. är ett personnummer inte ett tal. (Den sista siffran skall stämma enligt den s.k. Luhnalgoritmen

Läs mer

Rekommendationssystem. med fördjupning på collaborative filtering

Rekommendationssystem. med fördjupning på collaborative filtering Rekommendationssystem med fördjupning på collaborative filtering, majsc331 870325-1929 729G11 Artificiell Intelligens II Linköpings Universitet HT 2009 Innehållsförteckning Inledning... 1 Bakgrund...

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

Klustring av svenska tidningsartiklar

Klustring av svenska tidningsartiklar Klustring av svenska tidningsartiklar Magnus Rosell rosell@nada.kth.se http://www.nada.kth.se/ rosell/ Klustring Kategorisering eller klassificering att föra texter till på förhand bestämda kategorier

Läs mer

Bygga linjära modeller! Didrik Vanhoenacker 2007

Bygga linjära modeller! Didrik Vanhoenacker 2007 Bygga linjära modeller! Didrik Vanhoenacker 2007 1 Bygga enkla modeller Tänk att vi ska försöka förstå vad som styr hur många blommor korsblommiga växter har. T ex hos Lomme och Penningört. Hittills har

Läs mer

1. 20 identiska bollar skall delas ut till fem flickor och fem pojkar. På hur många olika sätt kan detta ske om

1. 20 identiska bollar skall delas ut till fem flickor och fem pojkar. På hur många olika sätt kan detta ske om 1 Matematiska Institutionen KTH Lösning till några övningar inför lappskrivning nummer 4 Diskret matematik för D och F vt0 1 0 identiska bollar skall delas ut till fem flickor och fem pojkar På hur många

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Kungl. Tekniska högskolan NADA Grundformer med Stava

Kungl. Tekniska högskolan NADA Grundformer med Stava Kungl. Tekniska högskolan NADA Grundformer med Stava Språkteknologi 2D1418 Höstterminen 2004 Författare: Andreas Pettersson az@kth.se 1. Bakgrund Om man automatiskt ska plocka ut de informationsbärande

Läs mer

Från TEPA och Valter till en nationell termbank?

Från TEPA och Valter till en nationell termbank? Från TEPA och Valter till en nationell termbank? Seminar: Alle termer på (r)ett sted? Språkrådet, Oslo 17 november 2014 Mari Suhonen och Kaisa Kuhmonen Hej! Jag är Kaisa Kuhmonen, ledande terminolog vid

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Sökanalys för intranät

Sökanalys för intranät Sökanalys för intranät 2014-12-03 Henrik Gelius OSLO STOCKHOLM Agenda Henrik Gelius, sökkonsult www.comperiosearch.com Idag tittar vi på detta: 1. Affärsnytta - sök på intranät 2. Sökanalys & nyckeltal

Läs mer

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar)

Satslogik grundläggande definitioner 3. Satslogik. Uppgift 1. Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Satslogik grundläggande definitioner Satslogikens syntax (välformade formler) Satslogikens semantik (tolkningar) Modeller, logisk konsekvens och ekvivalens Några notationella förenklingar Kompletta mängder

Läs mer

TDDD02 Språkteknologi för informationssökning / Textsammanfattning. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning / Textsammanfattning. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning / 2015 Textsammanfattning Marco Kuhlmann Institutionen för datavetenskap Textsammanfattning Textsammanfattning går ut på att extrahera den mest relevanta informationen

Läs mer

Regression med Genetiska Algoritmer

Regression med Genetiska Algoritmer Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer336 770529-5991 2014 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet

Läs mer

Projekt i språkteknologi Projektförslag Johanna Karlsson joka1954

Projekt i språkteknologi Projektförslag Johanna Karlsson joka1954 Projekt i språkteknologi Projektförslag Johanna Karlsson 870411-7129 joka1954 1. Inledning Opus är en växande parallell korpus med data från många olika språk (Tiedemann, 2009). Data som finns i OPUS i

Läs mer

Tekniker för storskalig parsning

Tekniker för storskalig parsning Tekniker för storskalig parsning Introduktion Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning 1(18) Kursöversikt Kursnamn:

Läs mer

ALEPH ver. 16 Sökning

ALEPH ver. 16 Sökning Fujitsu, Westmansgatan 47, 582 16 Linköping INNEHÅLLSFÖRTECKNING 1. INLEDNING... 1 2. SÖK... 1 2.1 Avancerad sökning... 2 2.2 CCL flera databaser... 2 2.3 Flera fält... 3 2.4 Regler för sökning... 4 2.5

Läs mer

Fil: /home/lah/undervisning/sprakteknologi/ohbilder/oh1_kv.odp. Tjänster

Fil: /home/lah/undervisning/sprakteknologi/ohbilder/oh1_kv.odp. Tjänster Taligenkänning 729G17/729G66 Språkteknologi 1 Vad är språkteknologi? Vad är språkteknologi? Kursens mål och uppläggning Att analysera textdata Korpusar och korpusarbete Textanalys med reguljära uttryck

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

Stina Nyman 2012-09-16

Stina Nyman 2012-09-16 LINKOPINGS UNIVERSITET, IDA SmartKom Hur systemet fungerar Stina Nyman 2012-09-16 stiny786 Artificiell intelligens II Sammanfattning Detta projekt kommer handla om SmartKom som är ett multimodalt dialogsystem

Läs mer

Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg

Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg Föreläsning 5: Modellering av frasstruktur 729G09 Språkvetenskaplig databehandling Lars Ahrenberg 2014-05-05 1 Översikt Introduktion generativ grammatik och annan syntaxforskning Att hitta mönster i satser

Läs mer

Question answering system

Question answering system LINKÖPINGS UNIVERSITET Question answering system Artificiell Intelligens II Sammanfattning Detta arbete handlar om question answering (QA) system, om hur QA- system fungerar och hur de går till väga för

Läs mer

Välkommen till Studiekanalen.se

Välkommen till Studiekanalen.se Välkommen till Studiekanalen.se Det här produktbladet beskriver besökarens (elevens) väg till utbildningen, hur de matchas mot rätt skola och utbildning. Det beskriver även hur utbildningsanordnaren kan

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19

Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium. v. 2.0, den 29/ III. Metalogik 17-19 Filosofisk Logik (FTEA21:4) föreläsningsanteckningar/kompendium IV v. 2.0, den 29/4 2013 III. Metalogik 17-19 Modeller för satslogiken 18.1 Vi har tidigare sagt att en modell är en tolkning av en teori

Läs mer

Grundläggande Datalogi

Grundläggande Datalogi s delar Grundläggande Datalogi s delar s delar s delar Dataabstraktion Rekursion Algoritmanalys s delar Sortering Trädstrukturer Grafalgoritmer Optimering Stavning Strängmatchning Datakompression Versionshantering

Läs mer

hjälp av SAS Text Miner

hjälp av SAS Text Miner Enterprise Intelligence Customer Intelligence Supplier Intelligence Organizational Intelligence Intelligence Architecture Identifiera stora gömda värden i textbaserad information med hjälp av SAS Text

Läs mer

TDDD02 Språkteknologi för informationssökning / Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning / Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning / 2015 Ordpredicering Marco Kuhlmann Institutionen för datavetenskap Ordpredicering Ordpredicering innebär att föreslå eller välja ord i en given kontext.

Läs mer

KONSTEN ATT FÖRSTÅ EN LEDTRÅD

KONSTEN ATT FÖRSTÅ EN LEDTRÅD KONSTEN ATT FÖRSTÅ EN LEDTRÅD Hur IBM Watson analyserar och förstår frågor i Jeopardy! DEN 10 JANUARI 2014 FRIDA ENGSLÄTT 729G43 Sammanfattning Den här rapporten beskriver hur IBM Watson, en intelligent

Läs mer

Hur man hjälper besökare hitta på en webbplats

Hur man hjälper besökare hitta på en webbplats Forskare vid Stockholms Universitet ger råd Hur man hjälper besökare hitta på en webbplats Av: Jacob Palme Filnamn:URL: http://dsv.su.se/jpalme/web-structure/hitta-webben.pdf Senast ändrad: 04-02-19 11.43

Läs mer

Business Intelligence. Vad är r Business Intelligence? Andra termer. Övergripande faktorer. Specifika termer för BI är:

Business Intelligence. Vad är r Business Intelligence? Andra termer. Övergripande faktorer. Specifika termer för BI är: Business Intelligence Vad är r Business Intelligence? Hercules Dalianis DSV-SU-KTH e-post:hercules@kth.se 070-568 13 59 / 08-674 75 47 Intelligence är ett tvetydigt ord Både förmåga och underrättelse Hercules

Läs mer

Sökoptimering - Innehåll

Sökoptimering - Innehåll Sökoptimering - Innehåll Introduktion Del 1 - Lokal Sökoptimering Del 2 - Onsite Optimering Del 3 - Offsite Optimering Sökoptimering (SEO): Sökoptimering är grunden för din synlighet på nätet. Ca 97% av

Läs mer

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1 Inlämningsuppgift : Finn 2D1418 Språkteknologi Christoffer Sabel E-post: csabel@kth.se 1 1. Inledning...3 2. Teori...3 2.1 Termdokumentmatrisen...3 2.2 Finn...4 3. Implementation...4 3.1 Databasen...4

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Web Crawlers. TDTS09, Datornät och internetprotokoll. Denis Golubovic Fredrik Salin Linköpings universitet Linköping 2011-02-23

Web Crawlers. TDTS09, Datornät och internetprotokoll. Denis Golubovic Fredrik Salin Linköpings universitet Linköping 2011-02-23 Web Crawlers TDTS09, Datornät och internetprotokoll Denis Golubovic Fredrik Salin Linköpings universitet Linköping 2011-02-23 Omslagsbild: Spider robot Google 3d model Källa: turbosquid.com Sammanfattning

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

AI, musik & PLCGalgoritmen

AI, musik & PLCGalgoritmen LINKOPINGS UNIVERSITET, IDA AI, musik & PLCGalgoritmen AI inom en artistisk domän sarwi387 9/18/2012 ABSTRAKT AI har anpassats på de flesta naturvetenskapliga ämnen tidigare men man har de senaste årtionden

Läs mer

Introduktion till integrering av Schenkers e-tjänster. Version 2.0

Introduktion till integrering av Schenkers e-tjänster. Version 2.0 Introduktion till integrering av Schenkers e- Version 2.0 Datum: 2008-06-18 Sida 2 av 8 Revisionshistorik Lägg senaste ändringen först! Datum Version Revision 2008-06-18 2.0 Stora delar av introduktionen

Läs mer

TDDD02 Föreläsning 7 HT-2013

TDDD02 Föreläsning 7 HT-2013 TDDD02 Föreläsning 7 HT-2013 Textsammanfattning Lars Ahrenberg Litt: Våge et al.170-185; Das & Martins, A Survey on Automatic Text Summarization sid 1-4, 11-14, 23-25. Översikt Textstruktur Problemet textsammanfattning

Läs mer

Omvärldsbevakning. Sammanfattning av Business Intelligence-kursen. Nyhetsarkiv och källork. Hämta webbnyheter. Modeller över texter

Omvärldsbevakning. Sammanfattning av Business Intelligence-kursen. Nyhetsarkiv och källork. Hämta webbnyheter. Modeller över texter Sammanfattning av Business Intelligence-kursen Hercules Dalianis DSV-SU-KTH e-post:hercules@kth.se Omvärldsbevakning Påverkan från omvärlden Påverka omvärlden Tidigare långsam spridning papperstidningar,

Läs mer

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.

kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor. Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

Prototypbaserad Inkrementell Diagnos. Anders Holst SICS, Swedish Institute of Computer Science AB

Prototypbaserad Inkrementell Diagnos. Anders Holst SICS, Swedish Institute of Computer Science AB Prototypbaserad Inkrementell Diagnos Anders Holst SICS, Swedish Institute of Computer Science AB Metoder för Industriell Diagnos Datadrivna metoder Träna in en mappning från symptom till diagnoser. Kräver

Läs mer

Ledtidsanpassa standardavvikelser för efterfrågevariationer

Ledtidsanpassa standardavvikelser för efterfrågevariationer Handbok i materialstyrning - Del B Parametrar och variabler B 43 Ledtidsanpassa standardavvikelser för efterfrågevariationer I affärssystem brukar standardavvikelser för efterfrågevariationer eller prognosfel

Läs mer

Standard print manual template

Standard print manual template Standard print manual template Dundret 823 m.ö.h Travstat Iphone Travstat Iphone av Hennix Data Med denna app har du alltid den senaste informationen i handen. Oddsen du ser är aldrig för gamla. Med en

Läs mer