Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014

Storlek: px
Starta visningen från sidan:

Download "Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014"

Transkript

1 Tentamen Marco Kuhlmann, Institutionen för datavetenskap, Linköpings universitet 17 mars 2014 Inga hjälpmedel är tillåtna. Maximal poäng finns angiven för varje fråga. Maximal poäng på hela tentamen är 32; 16 poäng ger säkert godkänt. Det går bra att besvara flera frågor på samma papper. Del A Besvara alla frågor i denna del. Varje fråga ger 2 poäng. 1. Vid språkteknologiskt korpusarbete tokeniserar man helst texter så att skiljetecken som komma och punkt utgör egna token. (a) Varför gör man det? (b) Varför resonerar man annorlunda när det gäller förkortningspunkter? (a) För att få bättre underlag till t.ex. frekvenslistor. Om man inte avskiljer skiljetecken från orden så kommer t.ex. hon och hon. att betraktas tillhöra olika ordtyper. (b) Om man tokeniserar så att skiljetecken i förkortningar utgör egna token så bryts t.ex. bl.a. ner till bl.a. bl och a, token som inte är önskvärda ingångar i en frekvenslista. 2. I en svensk korpus finner vi följande frekvenser för några utvalda ord och ordsekvenser: med: ; tanke: 400; på: ; med tanke: 260; tanke på: 270; med tanke på: 250 Vad är den Maximum Likelihood-uppskattade sannolikheten 𝑃(på med tanke) om vi använder (a) trigramsannolikheter, (b) en omskrivning till bigramsannolikheter? (a) trigramsannolikheter: 𝑃(på med tanke) frekvens(med tanke på) 250 = frekvens(med tanke) 260 (b) omskrivning till bigramsannolikheter: 𝑃(tanke med) 𝑃(på tanke) frekvens(med tanke) frekvens(tanke på) = frekvens(med) frekvens(tanke)

2 3. (a) Vilka typer av sannolikheter ingår i en Hidden Markov-modell för ordklasstaggning? (b) Vilka konkreta sannolikheter måste man ha skattat för att i en sådan modell kunna räkna ut den kombinerade sannolikheten för följande taggade mening? Jag/PN äter/vb (a) Övergångssannolikheter på formen 𝑃(tagg föregående tagg) och observationssannolikheter på formen 𝑃(ord tagg). (b) 𝑃(PN -BOS-), 𝑃(Jag PN), 𝑃(VB PN), 𝑃(äter VB), 𝑃(-EOS- VB) 4. Nedanstående tabell visar reglerna i en probabilistisk kontextfri grammatik. Rita två olika frasstrukturträd (parseträd) enligt denna grammatik och ange deras sannolikheter. S VP Lotta cykeln VP V V lånar 1,00 0,25 0,75 1,00 1,00 Två olika frasstrukturträd: S S Lotta VP V Lotta lånar cykeln VP V lånar Lotta Det första trädet har sannolikhet 0,25 0,75; det andra trädet har sannolikhet 0,25 0,25. 2

3 5. Nedanstående graf visar en liten del av WordNet. (a) Förklara vad noderna och bågarna representerar. (b) Bestäm avståndet (eng. pathlength) mellan nickel och budget och utifrån detta avstånd räkna ut den semantiska likheten mellan de två orden. standard, criterion, measure, touchstone medium of exchange, monetary system currency money coinage, mintage, specie, metal money fund, monetary fund coin budget nickel scale, graduated table, ordered series Richter scale dime (a) Varje nod representerar en mängd av ömsesidigt synonyma ord, en s.k. synset. (b) Avståndet (pathlength) mellan nickel och budget är 7. Utifrån detta kan man räkna ut den semantiska likheten mellan de två orden som 1/(pathlength + 1) = 1/8. 6. Ett automatiskt system för författaridentifikation ska hitta texter som är skrivna av författaren A. En utvärdering av systemet på en guldstandard ger följande resultat, där + betyder att texten är skriven av A och betyder att texten inte är skriven av A. Räkna ut systemets precision och recall. system + system guldstandard guldstandard 0 19 Precision: 1/(1 + 0) = 1/1 = 100%. Recall: 1/(1 + 3) = 1/4 = 25%. 3

4 7. En enkel metod för att tagga filmrecensioner med polariteter är att använda en Naive Bayesklassificerare. Ange klassificerarens beslutsregel och förklara den. Beslutsregel (𝑟 = recensionen; 𝑤 = ord i 𝑟): 𝑝 = arg max 𝑃(𝑝) 𝑃(𝑤 𝑝) 𝑝 𝑤 Klassificeraren väljer den polaritet 𝑝 som maximerar den sannolikhet som specificeras till höger om arg max. Denna sannolikhet är produkten av priorisannolikheten för polariteten 𝑝, som betecknas 𝑃(𝑝), och den betingade sannolikheten för recensionen 𝑟 givet 𝑝. I Naive Bayes approximeras denna sannolikhet genom produkten av alla ordsannolikheter, 𝑃(𝑤 𝑝). 8. (a) Vad innebär entitetsextraktion (eng. named entity recognition)? (b) Hur kan entitetsextraktion hanteras som ett taggningsproblem? (a) Entitetsextraktion går ut på att hitta och klassificera ord eller andra textenheter som tillhör i förväg definierade semantiska kategorier som namn på personer, organisationer och platser. (b) Man kan använda BIO-kodningen som går ut på att tagga det första ordet (token) i en textenhet som betecknar en entitet med B (beginning), varje följande ord med I (inner) och varje ord som inte tillhör en entitet med O (outer). Med denna kodning kan entitetsextraktion hanteras som ordklasstaggning. 9. Utifrån följande svensk mening, ange en översättning till engelska som är (a) fluent men inte faithful, (b) faithful men inte fluent. Han jämförde äpplen och päron. (a) He compared apples and pears. (b) Apples and oranges he compared. (Yoda-språk!) 10. En central modul i ett frågebesvarande system är en analysator som bestämmer frågans svarstyp. Förklara vad som menas med en svarstyp och ge några exempel på möjliga svarstyper. Begreppet svarstyp avser den entitetstyp eller mera allmänt den semantiska kategori som det förväntade svaret syftar på. En fråga kan till exempel syfta på en person eller en plats, men även på mera generella kategorier som sammanfattning eller förklaring. 4

5 Del B Välj två frågor och besvara dem utförligt. Varje fråga kan ge maximalt 6 poäng. 1. Utjämning (eng. smoothing) är en teknik som används när man bygger statistiska språkmodeller. Förklara vad det innebär och varför man använder det. Beskriv därefter utförligt den utjämningsteknik som kallas Add-1 (eller Laplace). Utjämning innebär att man modifierar en sannolikhetsmodell genom att omfördela sannolikhetsmassan så att fördelningen blir mera jämn. Ett bra sätt att förklara och motivera utjämning är att utgå från ett konkret exempel, som MLE-skattning av unigramsannolikheter utifrån en textkorpus. För ord som förekommer förhållandevis ofta i korpusen kan MLE-skattning ge goda resultat. Men ju mindre omfattning korpusen har, desto mera sannolikt är det att några ord kommer att ha väldigt låg frekvens eller totalt saknas i korpusen. Utjämning innebär då att man omfördelar sannolikhetsmassan så att högfrekventa ord får lägre sannolikhet än de egentligen borde ha enligt deras relativa frekvens i korpusen, och lågfrekventa ord får högre sannolikhet (1 p). Detta gör att sannolikhetsfördelningen blir mera jämn. Det man också åstadkommer är att man ger lite sannolikhet till ord som inte förkommer i träningsdatan (1 p). Viktigt i sammanhanget är att man i förväg måste definiera en mängd ord som man vill tilldela sannolikheter, en s.k. vokabulär (1 p). Den huvudsakliga anledningen till varför man gör smoothing är att man vill ha robusta sannolikhetsmodeller som kan användas på andra data än dem i träningsmängden (1 p). Vid Add-1-smoothing höjer man frekvensen (inte sannolikheten!) av varje ord med 1 (1 p). För att det ska bli en sannolikhetsfördelning måste man även höja nämnaren, nämligen med antalet totala ord i vokabulären (1 p). 2. I flera typer av system kan recall inte mätas på det vanligaste sättet, dvs. genom att dela antalet fall där systemet och guldstandard överensstämmer med det totala antalet fall i guldstandarden. Ange två applikationer där detta inte fungerar så bra, förklara varför, och beskriv något eller några mått som används i stället. Exempel på applikationer är entitetsextraktion, maskinöversättning, informationssökning och textsammanfattning. För varje exempel får man 1 p för att ange det och ytterligare 1 p för att förklara varför recall inte kan mätas på det vanliga sättet. Sedan får man 2 p för en utförlig förklaring av ett alternativt mått (som t.ex. BLEU); alternativt 1 p per mått för en kortare förklaring. 3. En probabilistisk parser ska räkna ut den mest sannolika syntaktiska analysen för en given mening. Förklara varför denna uppgift är beräkningsmässigt utmanande. Beskriv därefter två metoder för att bemöta denna utmaning. Parsning är beräkningsmässigt utmanande eftersom mängden av möjliga parseträd växer exponentiellt med meningens längd och grammatikens storlek. (1 p) För att illustrera detta kan man t.ex. rita upp alla parseträd för några korta meningar. Ett alternativ är att argumentera att i en grammatik med 𝑟 regler så finns det 𝑂(𝑟𝑛 ) olika parseträd med 𝑛 noder. (1 p) Exempel på metoder 5

6 för att undvika denna komplexitet är dynamisk programmering och heuristisk sökning. En kort beskrivning av en metod ger 1 p; en mera utförlig beskrivning ger 2 p. 4. Det finns för närvarande ett stort intresse inom både akademin och industrin i metoder för att analysera språk i sociala medier. Ange några skäl till detta. Diskutera därefter några av de utmaningar som språkteknologin ställs inför när den ska tillämpas på texter från Twitter och Facebook snarare än t.ex. tidningar och lexikon. Man får 1 p för varje skäl, dock högst 2 p. Exempel på skäl: attitydanalys (attityder mot produkter, opinioner, förutsäga trender); lingvistiska intressen (analysera talspråk och språkutveckling). Man får 1 p för varje utmaning, dock max 4 p. För att få poäng måste man diskutera en utmaning, inte bara ange den. Exempel på utmaningar: annorlunda form och struktur (felstavningar, inkompletta och ogrammatiska meningar, konstiga tecken); högre utsträckning av ironi och subtilitet; flerspråkighet; stor språklig variation (över tiden, bland grupper); relevans av ickespråklig kommunikation (smileys, bilder); stora datamängder som kommer in i realtid. 6

Tentamen Del A. Marco Kuhlmann

Tentamen Del A. Marco Kuhlmann TDDD01 Språkteknologi (2016) Tentamen 2016-03-16 Marco Kuhlmann Tentamen består två delar, A och B. Varje del omfattar ett antal frågor à 3 poäng. Del A omfattar 8 frågor som kan besvaras kortfattat. Det

Läs mer

Lingvistiska grundbegrepp

Lingvistiska grundbegrepp 729G09 Språkvetenskaplig databehandling (2016) Lingvistiska grundbegrepp Marco Kuhlmann Institutionen för datavetenskap Vad är korpuslingvistik? Korpuslingvistik handlar om att undersöka språkvetenskapliga

Läs mer

TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning (2016) Ordpredicering Marco Kuhlmann Institutionen för datavetenskap Ordpredicering Ordpredicering innebär att föreslå eller välja ord i en given kontext.

Läs mer

TDDD02 Språkteknologi för informationssökning (2016) Semantisk analys. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning (2016) Semantisk analys. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning (2016) Semantisk analys Marco Kuhlmann Institutionen för datavetenskap Semantik pragmatik semantik analys generering syntax morfologi Denna föreläsning ordbetydelsebestämning

Läs mer

Tentamen 2016-01-13. Marco Kuhlmann

Tentamen 2016-01-13. Marco Kuhlmann TDDD02 Språkteknologi för informationssökning (2015) Tentamen 2016-01-13 Marco Kuhlmann Denna tentamen består av 10 frågor. Frågorna 8 10 ligger på en högre kunskapsnivå än de övriga och kräver utförliga

Läs mer

ORDKLASSTAGGNING. Marco Kuhlmann Institutionen för datavetenskap

ORDKLASSTAGGNING. Marco Kuhlmann Institutionen för datavetenskap ORDKLASSTAGGNING Marco Kuhlmann Institutionen för datavetenskap Ordpredicering n-gram-modeller (definition, skattning) den brusiga kanalen: P(R F) = P(F R) P(R) redigeringsavstånd, Levenshtein-avstånd

Läs mer

Fil: /home/lah/undervisning/sprakteknologi/ohbilder/oh1_kv.odp. Tjänster

Fil: /home/lah/undervisning/sprakteknologi/ohbilder/oh1_kv.odp. Tjänster Taligenkänning 729G17/729G66 Språkteknologi 1 Vad är språkteknologi? Vad är språkteknologi? Kursens mål och uppläggning Att analysera textdata Korpusar och korpusarbete Textanalys med reguljära uttryck

Läs mer

TDDD02 Språkteknologi för informationssökning / Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning / Ordpredicering. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning / 2015 Ordpredicering Marco Kuhlmann Institutionen för datavetenskap Ordpredicering Ordpredicering innebär att föreslå eller välja ord i en given kontext.

Läs mer

TDDD02 Språkteknologi för informationssökning (2016) Textklassificering. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning (2016) Textklassificering. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning (2016) Textklassificering Marco Kuhlmann Institutionen för datavetenskap Textklassificering Skräppostfiltrering spam ham Författaridentifiering Alexander Hamilton

Läs mer

Partiell parsning Parsning som sökning

Partiell parsning Parsning som sökning Språkteknologi: Parsning Parsning - definition Parsningsbegrepp Chartparsning Motivering Charten Earleys algoritm (top-down chartparsning) Partiell parsning (eng. chunking) med reguljära uttryck / automater

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

Taltaggning. Rapport av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003

Taltaggning. Rapport av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003 Taltaggning av Daniel Hasselrot 781105-0157, d98-dha@nada.kth.se 13 oktober 2003 Sammanfattning Denna rapport är skriven i kursen Språkteknologi och behandlar taggning av årtal i en text. Metoden som används

Läs mer

TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000

TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000 Lars Ahrenberg, sid 1(5) TENTAMEN TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000 Inga hjälpmedel är tillåtna. Maximal poäng är 36. 18 poäng ger säkert godkänt. Del A. Besvara alla frågor i denna del.

Läs mer

FriendlyReader. Språkteknologi för sammanfattningar och ökad läsbarhet. Målgruppsegmentering. Arbetsgång

FriendlyReader. Språkteknologi för sammanfattningar och ökad läsbarhet. Målgruppsegmentering. Arbetsgång FriendlyReader Språkteknologi för sammanfattningar och ökad läsbarhet Mål:! Öka den digitala delaktigheten genom att underlätta för personer med lässvårigheter att tillgodogöra sig textuellt baserad information

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

Probabilistisk logik 2

Probabilistisk logik 2 729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk

Läs mer

Skrivstöd. Joakim Nivre. Introduktion till språkteknologi. Skrivstöd. Inledning. Orsaker till stavfel. Detektering av icke-ord

Skrivstöd. Joakim Nivre. Introduktion till språkteknologi. Skrivstöd. Inledning. Orsaker till stavfel. Detektering av icke-ord Joakim Nivre / 30 Varför bry sig om stavning? Stavfel kan skapa missförstånd Stavfel kan dölja innehåll Standardiserad stavning underlättar många uppgifter Slå upp ord i ordbok Identifiera svårlästa ord

Läs mer

Tekniker för storskalig parsning

Tekniker för storskalig parsning Tekniker för storskalig parsning Introduktion Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning 1(18) Kursöversikt Kursnamn:

Läs mer

Modellering med kontextfri grammatik Kontextfri grammatik - definition En enkel kontextfri grammatik Klasser av formella språk

Modellering med kontextfri grammatik Kontextfri grammatik - definition En enkel kontextfri grammatik Klasser av formella språk Modellering med kontextfri grammatik Kontextfri grammatik - definition Kontextfri grammatik (CFG) definition modellering av frasstruktur andra exempel Dependensgrammatik Trädbanker Varianter av kontextfri

Läs mer

Tekniker för storskalig parsning

Tekniker för storskalig parsning Tekniker för storskalig parsning Grundläggande begrepp och metoder Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning

Läs mer

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel

Läs mer

Kompilatorer och interpretatorer

Kompilatorer och interpretatorer 1 of 6 Örebro universitet Institutionen för teknik Thomas Padron-McCarthy (Thomas.Padron-McCarthy@oru.se) Tentamen i Kompilatorer och interpretatorer för Dataingenjörsprogrammet m fl lördag 7 november

Läs mer

- ett statistiskt fråga-svarsystem

- ett statistiskt fråga-svarsystem - ett statistiskt fråga-svarsystem 2010-09-28 Artificiell intelligens II Linnea Wahlberg linwa713 1 Innehåll Introduktion... 1 Grundprinciper för asked!... 2 Retrieval model... 4 Filter model... 6 Komponenter...

Läs mer

TDDD02 Språkteknologi för informationssökning / Textsammanfattning. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning / Textsammanfattning. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning / 2015 Textsammanfattning Marco Kuhlmann Institutionen för datavetenskap Textsammanfattning Textsammanfattning går ut på att extrahera den mest relevanta informationen

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

729G17 Språkteknologi / Introduktion. Marco Kuhlmann Institutionen för datavetenskap

729G17 Språkteknologi / Introduktion. Marco Kuhlmann Institutionen för datavetenskap 729G17 Språkteknologi / 2016 Introduktion Marco Kuhlmann Institutionen för datavetenskap Vad är språkteknologi? Vad är språkteknologi? Språkteknologi är all teknologi som skapas för att förstå eller generera

Läs mer

Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg

Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg Föreläsning 5: Modellering av frasstruktur 729G09 Språkvetenskaplig databehandling Lars Ahrenberg 2014-05-05 1 Översikt Introduktion generativ grammatik och annan syntaxforskning Att hitta mönster i satser

Läs mer

Tentamen, Distribuerade System/Programvaruarkitektur 2001-08-24

Tentamen, Distribuerade System/Programvaruarkitektur 2001-08-24 Tentamen, Distribuerade System/Programvaruarkitektur 2001-08-24 FÖRSÄTTSBLAD Inlämnas ifyllt tillsammans med tentan. Skriv namn på samtliga blad. Ange nedan vilka uppgifter du besvarat. Uppgift Besvarad

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Datorlingvistisk grammatik

Datorlingvistisk grammatik Datorlingvistisk grammatik Kontextfri grammatik, m.m. http://stp.lingfil.uu.se/~matsd/uv/uv11/dg/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2011 Denna serie Formella grammatiker,

Läs mer

TDDD02 Språkteknologi för informationssökning / 2015. Textklassificering. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning / 2015. Textklassificering. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning / 2015 Textklassificering Marco Kuhlmann Institutionen för datavetenskap Textklassificering UK China Elections Sports congestion London Olympics Beijing recount

Läs mer

Maskinöversättning möjligheter och gränser

Maskinöversättning möjligheter och gränser Maskinöversättning möjligheter och gränser Anna Sågvall Hein 2015-02-17 Tisdagsföreläsning USU 2015-02-17 Anna Sågvall Hein Översikt Vad är maskinöversättning? Kort tillbakablick Varför är det så svårt?

Läs mer

Artificiell Intelligens

Artificiell Intelligens Omtentamen Artificiell Intelligens Datum: 2014-02-20 Tid: 14.00 18.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Linköpings universitet Artificiell Intelligens II 729G11 HT Maskinöversättning. med hjälp av statistik. Erik Karlsson

Linköpings universitet Artificiell Intelligens II 729G11 HT Maskinöversättning. med hjälp av statistik. Erik Karlsson Maskinöversättning med hjälp av statistik Erik Karlsson erika669@student.liu.se Innehåll Inledning... 1 Bakgrund och historia... 2 Historia... 2 Klassiska designer... 2 Direkt översättning... 2 Interlingua...

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

TENTAMEN TDDB53. Programmering i Ada för MI (provkod TEN2) den 7 april 2010 kl Institutionen för datavetenskap, IDA Olle Willén mars 2010

TENTAMEN TDDB53. Programmering i Ada för MI (provkod TEN2) den 7 april 2010 kl Institutionen för datavetenskap, IDA Olle Willén mars 2010 Linköpings universitet Institutionen för datavetenskap, IDA Olle Willén mars 2010 Tentamen TDDB53 TENTAMEN TDDB53 (provkod TEN2) den 7 april 2010 kl 8 12 Jour: Emil Nielsen, tel 070 499 89 88 Hjälpmedel:

Läs mer

Språkteknologi vt09. Diskursmodellering. Diskursmodell: exempel. Koherensrelationer. Koreferens. Att bestämma koherensrelationer

Språkteknologi vt09. Diskursmodellering. Diskursmodell: exempel. Koherensrelationer. Koreferens. Att bestämma koherensrelationer Språkteknologi vt09 Diskursmodellering Diskursmodellering koherensrelationer anaforisk referens Informationsutvinning Mallar Delproblem Namnigenkänning Referensresolution Mallifyllning / Relationsigenkänning

Läs mer

TDDD02 Föreläsning 4 HT Klassificering av ord och dokument Lars Ahrenberg

TDDD02 Föreläsning 4 HT Klassificering av ord och dokument Lars Ahrenberg TDDD02 Föreläsning 4 HT-2013 Klassificering av ord och dokument Lars Ahrenberg Översikt Ø Avslutning om ngram-modeller Dokumentrepresentation Ø Klassificering med Naive Bayes ett typexempel generell metod

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Grundläggande textanalys. Joakim Nivre

Grundläggande textanalys. Joakim Nivre Grundläggande textanalys Joakim Nivre Om kursen Ni har hittills läst Lingvistik Datorteknik Matematik Språkteknologiska tillämpningar Nu ska vi börja med språkteknologi på allvar Hur gör man text hanterbar

Läs mer

TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18

TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18 LiTH, Linköpings tekniska högskola IDA, Institutionen för datavetenskap Jose M. Peña 2010-08-10 Lokal TER1 och TERC. Tillåtna hjälpmedel Lexikon, miniräknare. TENTAMEN TDDD12 Databasteknik TDDD46 Databasteknik

Läs mer

TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13

TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13 Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski

Läs mer

729G09 Språkvetenskaplig databehandling

729G09 Språkvetenskaplig databehandling 729G09 Språkvetenskaplig databehandling Föreläsning 2, 729G09, VT15 Reguljära uttryck Lars Ahrenberg 150409 Plan för föreläsningen Användning av reguljära uttryck Formella språk Reguljära språk Reguljära

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Kravnivåer engelska år 8 Godkänt

Kravnivåer engelska år 8 Godkänt Kravnivåer engelska år 8 Godkänt förstå enkelt talad engelska, från olika delar av världen, som rör för eleven kända ämnen eller intresseområden. på ett begripligt sätt delta i samtal om vardagliga ämnen

Läs mer

TDP Regler

TDP Regler Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt

Läs mer

Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013

Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 4 Grafer En graf är en struktur av prickar förbundna med streck.

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Projektförslag. Datalingvistisk projektkurs VT mars 2007

Projektförslag. Datalingvistisk projektkurs VT mars 2007 Projektförslag Datalingvistisk projektkurs VT 2007 26 mars 2007 Möjliga projekt Utvärdering Att utvärdera ett befintligt program/system utifrån ett datalingvistiskt perspektiv. Exempel: Utvärdera hur ett

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Kungliga Tekniska Högskolan 2006-03-26. Patrik Dallmann 821107-0274

Kungliga Tekniska Högskolan 2006-03-26. Patrik Dallmann 821107-0274 Kungliga Tekniska Högskolan 2006-03-26 Patrik Dallmann 821107-0274 Patrik Dallmann dallmann@kth.se Inledning Syftet med detta arbete är att undersöka metoder för att upptäcka syftningsfel i vanlig text.

Läs mer

Tentamen Metoder för ekonomisk analys

Tentamen Metoder för ekonomisk analys Tentamen Metoder för ekonomisk analys 014-08-7 Instruktioner: Denna tentamen består av två delar. Del 1 skall lösas utan miniräknare. När uppgifterna på del löses får miniräknare användas. Miniräknaren

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Tisdagen den 16 januari 2007 9-14

Tisdagen den 16 januari 2007 9-14 STOCKHOLMS UNIVERSITET TENTAMEN MATEMATISKA INSTITUTIONEN Statistik för naturvetare Avd. Matematisk statistik Tisdagen den 16 januari 2007 Tentamen för kursen Statistik för naturvetare Tisdagen den 16

Läs mer

EasyReader (FriendlyReader)

EasyReader (FriendlyReader) EasyReader (FriendlyReader) Arne Jönsson, Sture Hägglund Mål Ø Öka den digitala delaktigheten genom att underlätta för personer med lässvårigheter att tillgodogöra sig textuellt baserad information på

Läs mer

729G17/729G66 Lexikal semantik och ordbetydelsebestämning. Olika ordbegrepp. Vad är ordbetydelse (1) Olika ordbegrepp

729G17/729G66 Lexikal semantik och ordbetydelsebestämning. Olika ordbegrepp. Vad är ordbetydelse (1) Olika ordbegrepp 729G17/729G66 Lexikal semantik och ordbetydelsebestämning Olika ordbegrepp Ordbetydelser Vad är ett ord? Lemman, lexem och betydelser Semantiska relationer Semantiskt strukturerade lexikon Hitta relationer

Läs mer

Karlstads universitet Institutionen för Informationsteknologi Datavetenskap

Karlstads universitet Institutionen för Informationsteknologi Datavetenskap TENTAMEN FÖR KURS DAV C03, DATAKOMMUNIKATION II 5p Sid 1 av 5 Fredag 06-03-31 kl 08.15 13.15 Ansvarig lärare: Johan Garcia, Stefan Alfredsson, Hans Hedbom Betygsgränser: Tillåtna hjälpmedel: Kalkylator

Läs mer

Jordbävningar en enkel modell

Jordbävningar en enkel modell 9 september 05 FYTA Simuleringsuppgift 3 Jordbävningar en enkel modell Handledare: André Larsson Email: andre.larsson@thep.lu.se Telefon: 046-34 94 Bakgrund Jordbävningar orsakar fruktansvärda tragedier

Läs mer

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen TENTA 9MA31, 9MA37, 93MA31, 93MA37 / STN 9GMA5 / STN 1 1 juni 16, klockan 8.-1. Jour: Jörg-Uwe Löbus Tel: 79-687) Tillåtna hjälpmedel är en räknare, formelsamling

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Xenotag Probabilistisk uppmärkning av xenoglosser baserat på tecken-n-gram

Xenotag Probabilistisk uppmärkning av xenoglosser baserat på tecken-n-gram Xenotag Probabilistisk uppmärkning av xenoglosser baserat på tecken-n-gram Martin WARIN STP, Uppsala Universitet m warin@hotmail.com Abstract Här beskrivs en metod att identifiera ord i en text vilka är

Läs mer

TDDD02 Föreläsning 7 HT-2013

TDDD02 Föreläsning 7 HT-2013 TDDD02 Föreläsning 7 HT-2013 Textsammanfattning Lars Ahrenberg Litt: Våge et al.170-185; Das & Martins, A Survey on Automatic Text Summarization sid 1-4, 11-14, 23-25. Översikt Textstruktur Problemet textsammanfattning

Läs mer

Tentamen ID1004 Objektorienterad programmering October 29, 2013

Tentamen ID1004 Objektorienterad programmering October 29, 2013 Tentamen för ID1004 Objektorienterad programmering (vilande kurs), 29 oktober 2013, 9-13 Denna tentamen examinerar 3.5 högskolepoäng av kursen. Inga hjälpmedel är tillåtna. Tentamen består av tre sektioner.

Läs mer

Maskininlärning. Regler eller ML?

Maskininlärning. Regler eller ML? Maskininlärning Field of study that gives computers the ability to learn without being explicitly programmed (Samuel, 1959) DD2418 Språkteknologi, Johan Boye Regler eller ML? System som bygger på handskrivna

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 13 Mars 2014 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje blad.

Läs mer

LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, HT10 SMT. En fördjupning i statistiska maskinöversättningssystem

LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, HT10 SMT. En fördjupning i statistiska maskinöversättningssystem LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, SMT En fördjupning i statistiska maskinöversättningssystem johka299@student.liu.se 2010-10-01 Innehållsförteckning 1. Introduktion till översättning...

Läs mer

Ord, lexem, ordformer (repetition) Ord och morfem (repetition) Fraser/konstituenter (repetition) Grammatisk analys i språkteknologin

Ord, lexem, ordformer (repetition) Ord och morfem (repetition) Fraser/konstituenter (repetition) Grammatisk analys i språkteknologin Datorlingvistisk grammatik OH-serie 1: introduktion http://stp.lingfil.uu.se/~matsd/uv/uv09/dlg/ LEKTION 1: innehåll Kursformalia Grammatik formell grammatik. Metod och data (lite). Språkteknologisk relevans.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Om ämnet Engelska. Bakgrund och motiv

Om ämnet Engelska. Bakgrund och motiv Om ämnet Engelska Bakgrund och motiv Ämnet engelska har gemensam uppbyggnad och struktur med ämnena moderna språk och svenskt teckenspråk för hörande. Dessa ämnen är strukturerade i ett system av språkfärdighetsnivåer,

Läs mer

Språkets struktur och funktion, 7,5 hp

Språkets struktur och funktion, 7,5 hp Språkets struktur och funktion, 7,5 hp Ellen Breitholtz, ellen@ling.gu.se, Cajsa Ottesjö, cajsao@ling.gu.se ht 2010 Schema, planering Torsdag 4/11: Introduktion, historisk översikt Att läsa: Handout Tisdag

Läs mer

Tentamen Datastrukturer för D2 DAT 035

Tentamen Datastrukturer för D2 DAT 035 Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:

Läs mer

1 INTRODUKTION...3 1.1 SUPERLÄNKAR...3 1.2 SCOTS...3 1.3 TEXTER...3 1.4 ÖVERSÄTTNING...4 2 RESURSER FÖR ÖVERSÄTTNINGSSYSTEMET...5 2.

1 INTRODUKTION...3 1.1 SUPERLÄNKAR...3 1.2 SCOTS...3 1.3 TEXTER...3 1.4 ÖVERSÄTTNING...4 2 RESURSER FÖR ÖVERSÄTTNINGSSYSTEMET...5 2. Maria Holmqvist x02marho@ida.liu.se Linköpings universitet, IDA 24 april 2003 1 INTRODUKTION...3 1.1 SUPERLÄNKAR...3 1.2 SCOTS...3 1.3 TEXTER...3 1.4 ÖVERSÄTTNING...4 2 RESURSER FÖR ÖVERSÄTTNINGSSYSTEMET...5

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Automatisk Sentimentklassificering av Twitter-inlägg

Automatisk Sentimentklassificering av Twitter-inlägg [TYPE THE COMPANY NAME] Automatisk Sentimentklassificering av Twitter-inlägg Språkteknologi DD2418 Binxin Su, Christian Davilém 1/8/2013 [Type the abstract of the document here. The abstract is typically

Läs mer

Arv. Fundamental objekt-orienterad teknik. arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier

Arv. Fundamental objekt-orienterad teknik. arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier Arv Fundamental objekt-orienterad teknik arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier Programmeringsmetodik -Java 165 Grafisk respresentation: Arv

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Skrivstöd. Varför bry sig om stavning? Hur används stavningskontroll? Christian Hardmeier

Skrivstöd. Varför bry sig om stavning? Hur används stavningskontroll? Christian Hardmeier Skrivstöd Christian Hardmeier (efter Joakim Nivre) 205-- Varför bry sig om stavning? Stavfel kan skapa missförstånd Stavfel kan dölja innehåll Stavning fungerar som bildningsmarkör Standardiserad stavning

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Föreläsning 13. Dynamisk programmering

Föreläsning 13. Dynamisk programmering Föreläsning 13 Dynamisk programmering Föreläsning 13 Dynamisk programmering Fibonacci Myntväxling Floyd-Warshall Kappsäck Handelsresandeproblemet Uppgifter Dynamisk programmering Dynamisk programmering

Läs mer

729G09 Språkvetenskaplig databehandling

729G09 Språkvetenskaplig databehandling 729G09 Språkvetenskaplig databehandling Modellering av frasstruktur Lars Ahrenberg 2015-05-04 Plan Formell grammatik språkets oändlighet regler Frasstrukturgrammatik Kontextfri grammatik 2 Generativ grammatik

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 24 Augusti 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Tentamen, EDAA20/EDA501 Programmering

Tentamen, EDAA20/EDA501 Programmering LUNDS TEKNISKA HÖGSKOLA 1(4) Institutionen för datavetenskap Tentamen, EDAA20/EDA501 Programmering 2014 04 29, 8.00 13.00 Anvisningar: Denna tentamen består av tre uppgifter. Preliminärt ger uppgifterna

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann Marco Kuhlmann 1 En graf är en struktur av prickar förbundna med streck. Ett tidsenligt exempel på en sådan struktur är ett social nätverk, där prickarna motsvarar personer och en streck mellan två prickar

Läs mer

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och

Läs mer

Artificial Intelligence

Artificial Intelligence Omtentamen Artificial Intelligence Datum: 2013-01-08 Tid: 09.00 13.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Cecilia Sönströd Redovisas inom tre veckor Inga G 10p, VG 16p, Max 20p Notera: Skriv läsbart!

Läs mer

Kvantitativ samhällsanalys med språkteknologiska metoder.

Kvantitativ samhällsanalys med språkteknologiska metoder. Kvantitativ samhällsanalys med språkteknologiska metoder Hillevi Hägglöf hillevi.hagglof@gmail.com Myndigheten för samhällsskydd och beredskap (MSB) Bakgrund Alla rapporter, utredningar, utvärderingar

Läs mer

Föreläsning 5: Dynamisk programmering

Föreläsning 5: Dynamisk programmering Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall

Läs mer

TDDD02 Föreläsning 6 HT-2013

TDDD02 Föreläsning 6 HT-2013 TDDD02 Föreläsning 6 HT-2013 QA: Frågebesvarande system Lars Ahrenberg Litteratur: Brill m.fl. An Analysis of the AskMSR QA system Översikt Definition och exempel Utvärdering Standardkomponenter i QA-system

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Barnet i förskolan förskoledidaktiska aspekter Provmoment: TE 01 Enskild skriftlig tentamen Ladokkod:11FK20 Tentamen ges för: VT-12.

Barnet i förskolan förskoledidaktiska aspekter Provmoment: TE 01 Enskild skriftlig tentamen Ladokkod:11FK20 Tentamen ges för: VT-12. Barnet i förskolan förskoledidaktiska aspekter Provmoment: TE 01 Enskild skriftlig tentamen Ladokkod:11FK20 Tentamen ges för: VT-12 30 högskolepoäng TentamensKod: Tentamensdatum: 2012-05-28 Tid: 09.00-12.00

Läs mer

Tentamen i Grundläggande programmering STS, åk 1 lördag 2002-05-25

Tentamen i Grundläggande programmering STS, åk 1 lördag 2002-05-25 Tentamen i Grundläggande programmering STS, åk 1 lördag 2002-0-2 Skrivtid: 09.00 14.00 Hjälpmedel: Inga Lärare: Anders Berglund. Elena Fersman besöker tentan vid två tillfällen: cirka kl. 10.30 samt cirka

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

TENTAMEN: Design och konstruktion av grafiska gränssnitt DAT215/TIG091

TENTAMEN: Design och konstruktion av grafiska gränssnitt DAT215/TIG091 TENTAMEN: Design och konstruktion av grafiska gränssnitt DAT215/TIG091 DAG: 5 mars, 2012 TID: 8.30 12.30 SAL: Hörsalsvägen Ansvarig: Olof Torgersson, tel. 772 54 06. Institutionen för tillämpad informationsteknologi.

Läs mer