Exam EI2452/EI3364 Reliability analysis of power systems

Relevanta dokument
Module 6: Integrals and applications

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Adding active and blended learning to an introductory mechanics course

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Tentamen i Matematik 2: M0030M.

HYDRAULIK Rörströmning IV

Module 1: Functions, Limits, Continuity

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

Isometries of the plane

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Provlektion Just Stuff B Textbook Just Stuff B Workbook

Boiler with heatpump / Värmepumpsberedare

12.6 Heat equation, Wave equation

1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?

Pre-Test 1: M0030M - Linear Algebra.

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

Preschool Kindergarten

Consumer attitudes regarding durability and labelling

HYDRAULIK Rörströmning IV

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Styrteknik: Binära tal, talsystem och koder D3:1

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

2 Uppgifter. Uppgifter. Svaren börjar på sidan 35. Uppgift 1. Steg 1. Problem 1 : 2. Problem 1 : 3

Sammanfattning hydraulik

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Support Manual HoistLocatel Electronic Locks

Capabilities for Education, Work and Voice from the Perspective of the Less Employable University Graduates.

P = b) Vad betyder elementet på platsen rad 1 kolumn 3 i matrisen P 319? (2 p)

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

FYTA11-ma1, ht13. Respondents: 11 Answer Count: 9 Answer Frequency: 81,82 %

NORDIC GRID DISTURBANCE STATISTICS 2012

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

Aborter i Sverige 2008 januari juni

Tänder din grill på sextio sekunder. Lights your grill in sixty seconds.

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Övning 5 ETS052 Datorkommuniktion Routing och Networking

FK Electrodynamics I

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

Tentamen MMG610 Diskret Matematik, GU

Isolda Purchase - EDI


Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

Windlass Control Panel v1.0.1

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

WindPRO version feb SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input

Split- vs ventilationsaggregat

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Calculate check digits according to the modulus-11 method

Eternal Employment Financial Feasibility Study

Do you Think there is a problem with the car traffic to or from the inner city weekdays ?

Chapter 2: Random Variables

Webbregistrering pa kurs och termin

Questionnaire for visa applicants Appendix A

PORTSECURITY IN SÖLVESBORG

Uttagning för D21E och H21E

Protokoll Föreningsutskottet

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

ADSP ADSP ADSP ADSP. Advanced Digital Signal Processing (18-792) Spring Fall Semester, Department of Electrical and Computer Engineering

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

KOMMUNIKATIONS- OCH TOLKNINGS- PERSPEKTIV PÅ TILLBUD OCH OLYCKOR I KEMISKA INDUSTRIMILJÖER. Joel Rasmussen, Örebro universitet

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

IE1206 Embedded Electronics

Flervariabel Analys för Civilingenjörsutbildning i datateknik

LARS. Ett e-bokningssystem för skoldatorer.

samhälle Susanna Öhman

MO8004 VT What advice would you like to give to future course participants?

Lisebergs och Örby Slott Villaförening: val av solcellsleverantör

Read Texterna består av enkla dialoger mellan två personer A och B. Pedagogen bör presentera texten så att uttalet finns med under bearbetningen.

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

EVALUATION OF ADVANCED BIOSTATISTICS COURSE, part I

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Förändrade förväntningar

Lösenordsportalen Hosted by UNIT4 For instructions in English, see further down in this document

Självkörande bilar. Alvin Karlsson TE14A 9/3-2015

Hur fattar samhället beslut när forskarna är oeniga?

FYTA11-ma2, ht14. Respondents: 12 Answer Count: 8 Answer Frequency: 66,67 %

Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.

Bridging the gap - state-of-the-art testing research, Explanea, and why you should care

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version

A study of the performance

Writing with context. Att skriva med sammanhang

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Grafisk teknik. Sasan Gooran (HT 2006)

Kursutvärderare: IT-kansliet/Christina Waller. General opinions: 1. What is your general feeling about the course? Antal svar: 17 Medelvärde: 2.

Investeringsbedömning

SF1911: Statistik för bioteknik

onsdag den 21 november 2012 PRONOMEN

Transkript:

Exam EI2452/EI3364 Relablty analyss of power systems Exam date: 21 Aprl 2015 Tme: 13:00-15:00 Examner: Tools: Result: Instructons: Patrk Hlber Calculator 1 week after exam. State made assumptons and defntons. The solutons must be readable and easy to follow. Max: 20 ponts <16 Fal (New exam 7th of May) 16 Pass and 0 grade ponts 17 Pass and 0.5 grade ponts 18 Pass and 1 grade pont Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 1 (7)

Questons 1. (2p) Component A component does on average fal every 25th year and t takes 176h to repar t. Determne the expected avalablty. 2. (3p) Seres Two components n seres consttute a small system. Each component got an avalablty of 0.98. Use an approxmatve method to determne unavalablty. What s the dfference compared to the exact calculaton (n percent)? 3. (3p) Parallel 1 2 3 a) Determne the structural functon for the fgure above. (2p) b) The system got two mnmal paths, how much must the components be mproved n the less relable path n order to get the same performance as the better path? All components got an avalablty of 0.999. (1p) 4. (5p) SAIFI, SAIDI.. Consder the system below, whch conssts of two breaker swtches and two feeders, each wth a load pont. Component data: B1: breaker swtch n average 0.009 actve component falures/year L1: underground cable n average 0.02 falures/year L2: overhead lne 3 km n average 0.10 falures/km, year requre 20 hours restoraton/falure requre 12 hours restoraton/falure requre 8 hours restoraton/falure Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 2 (7)

Load pont data: Lp1 900 customers average annul energy consumton 8 GWh Lp2 250 customers average annul energy consumton 7.8 GWh a) Assumng the breaker swtch B2 to be n perfet condton, calculate SAIFI, CAIDI and AENS. (3p) b) Breaker swtch B2 was perfect n the prevous queston. Now consder that B2 has a stuck condton probablty of 2%. Ths means that out of all the stuatons where B2 need to operate, the breaker stays n a stuck condton and fal to operate for 2% of cases and hence B1 wll have to solate the fault. In such stuatons B2 s repared and restored frst and ths requre 5 hours. B2 has no other falure ssues. Calculate the total unavalablty and total ENS at Lp1 for ths case. (2p) 5. (5p) Markov 1 2 In a substaton there are two transformers of dfferent types workng n parallell. The system s operated dependng on the substaton s capacty and the capacty s assumed to be: 100% capacty f both transformers are workng, 60% capacty f only transformer 1 s workng and 40% capacty f only transformer 2 s workng (0% capacty f none are workng). Common cause events are neglected and reparaton s assumed to be performed ndependantly of each other (that s, f both are faled they are both beng repared and ether can be repared frst). The followng parameters are assumed: Transormer 1 Transformer 2 MTTF 20 years 30 years MTTR 7 days 4 days a) Defne the states for the system. (1p) b) Draw a transton state dagram for the system. Motvate your reasonng shortly. (2p) c) Formulate the transton rate matrx (Q-matrx). (1p) d) Formulate the system of equatons to solve the lmtng state probabltes (but don t solve t). (1p) (Hnt: MTTF = Mean Tme To Falure, MTTR = Mean Tme To Repar) 6. (2p) Dstrbutons For the falure rate functons A and B, fnd the matchng probablty densty functon among the fve canddates to the rght. (Please answer lke A-x and B-y, where x and y are numbers between 1 and 5). All unts are normalzed and standard. Note that the x axs for falure rate B s dfferent than the other graphs. Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 3 (7)

Formulas N UN UN SAIFI, SAIDI, CAIDI, N N N 8760 N UN UN ASAI, ASUI, 8760 N 8760 N ENS AENS, ENS ENS N Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 4 (7)

Solutons 1. A=1-U=1-(1/25)*(176/8760)= 0.9991963 or wth exact method 25/(25+176/8760) = 0.99919699237 Correct answer: 0.9992 2. U~=0.02+0.02=0.04 U=1-0.98*0.98=0.0396 Dfference: (0.04-0.0396)/0.0396= 1% 3. a) 1-(1-x1x2)(1-x3) = x1x2+x3-x1x2x3 b) 3,1,2 or 3,2,1 c){3} got U=0.001, {1,2} got 0.002. An mprovement of 0.001 s needed, the dstrbuton of mprovement s rrelevant, but equal shares reasonable/realstc. A1=0.9995 and A2=0.9995. Assumptons: Usng approxmatve methods. 4. a) B1: 0.009 actve component falures/year; 20 hours/falure L1: 0.02 falures/year; 12 hours/falure L2: 0.30 falures/year (3 km * 0.1 falures/(km and year); 8 hours/falure Lp1 Lp2 λ[f/yr] r[hrs/f] U[hrs/yr] λ[f/yr] r[hrs/f] U[hrs/yr] B1 0.009 20 0.18 0.009 20 0.18 L1 0.02 12 0.24 0.02 12 0.24 L2 - - - 0.30 8 2.4 Sum 0.029 0.42 0.329 2.82 0.029 900 0.329 250 1150 0,0942 0.42 900 2.82 250 9,9954 0.029 900 0.329 250 8 000 000 0.42 8760 2.82 1150 7800 000 8760 2.517 b) Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 5 (7)

Lp1 Lp2 λ[f/yr] r[hrs/f] U[hrs/yr] λ[f/yr] r[hrs/f] U[hrs/yr] B1 0.009 20 0.18 0.009 20 0.18 L1 0.02 12 0.24 0.02 12 0.24 L2 0.006 5 0.03 0.30 (2% of λ L2 ) Sum 0.029 0.45 0.329 1 0.45 8 000 000 8760 410.959 5. a) Snce the transformers are not dentcal we need to have four states: State 1: Both transformers are workng. State 2: Transformer 1 s not workng and transformer 2 s workng. State 3: Transformer 1 s workng and transformer 2 s not workng. State 4: Both transformers are not workng. b) Let and be the falure rates for transformer 1 and 2 respectvely. Let and be the repar rate for transformer 1 and 2 respectvely. Snce common cause events are neglected and all events are ndependent, only transtons where one transformer change workng state are possble. We get the followng transton state dagram: Wth the followng parameter values: 1 1 0,05 / 20 1 1 0,033 / 30 365 1 52 / 7 Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 6 (7)

365 4 1 91 / c) 0 0 0 0 d) Wth the lmtng state probablty vector, the equatons are gven by: 1 Or lkewse: 6. 0 0 0 0 1 A-1 and B-5. Motvaton: Frst of all densty functon 3 s not a realstc densty functon snce t does not converge to zero and clearly the area under the graph s above 1. It can be ruled out. Falure rate A s constant, whch correspond to an exponental dstrbuton. Densty functon 1 and 4 are canddates. At tme zero the densty functon has the same value as the falure rate, thus A corresponds to 1. Also, you could note that for densty functon 4, t seems not totally unlkely that the component fals after tme 10, whch s qute unlkely for a component wth falure rate 0,5 (and MTTF 2). Falure rate B s ncreasng, and falures are more lkely at later tmes. Densty functons 2 and 5 are canddates.densty functon 2 has most of ts probablty around 8 and t seems unlkely wth a falure before tme 3. The falure rate B has value 1 already around tme 1,5 whch means that at that moment the MTTF s 1. Thus the probablty of falures before 3 must be qute lkely and densty functon 2 can be ruled out. Densty functon 5 fts the falure rate snce most of the probablty around s around tme 2. Kunglga Teknska högskolan KTH, Skolan för Elektro- och Systemteknk, Teknkrngen 33, 100 44 Stockholm Tel: 08-790 7772, Fax: 08-205268, Epost: hlber@kth.se 7 (7)