Statistikens grunder HT, dagtid Statistiska institutionen

Relevanta dokument
Kurshemsidan. Statistikens grunder, 15p dagtid. Kursens upplägg. Kursens upplägg.

Matematisk statistik - Slumpens matematik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Sannolikhetsbegreppet

F2 SANNOLIKHETSLÄRA (NCT )

Kap 2: Några grundläggande begrepp

TMS136. Föreläsning 2

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik

TMS136. Föreläsning 1

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,

TAMS79: Föreläsning 1 Grundläggande begrepp

Finansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten

SF1901: Sannolikhetslära och statistik

Matematisk statistik 9hp för: C,D,I, Pi

Grundläggande matematisk statistik

Föreläsning 1, Matematisk statistik Π + E

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

TMS136. Föreläsning 1

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Satsen om total sannolikhet och Bayes sats

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14

SF1901 Sannolikhetsteori och statistik I

Föreläsning 1: Introduktion

Introduktion till sannolikhetslära. Människor talar om sannolikheter :

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

4 Diskret stokastisk variabel

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, KORT OM BESKRIVANDE STATISTIK. Tatjana Pavlenko.

Övning 1 Sannolikhetsteorins grunder

TMS136. Föreläsning 2

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

4.1 Grundläggande sannolikhetslära

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.

Föreläsning 1: Introduktion

Statistik 1 för biologer, logopeder och psykologer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

F10 Kap 8. Statistikens grunder, 15p dagtid. Binomialfördelningen 4. En räkneregel till. Lite repetition HT Sedan

Reliability analysis in engineering applications

Föreläsning 2. Kapitel 3, sid Sannolikhetsteori

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19

Föreläsning 1, Matematisk statistik för M

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}

SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018

Exempel för diskreta och kontinuerliga stokastiska variabler

Föreläsning 2, Matematisk statistik för M

3 Grundläggande sannolikhetsteori

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Grundläggande begrepp

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1

Föreläsning 2, FMSF45 Slumpvariabel

Olika typer av variabler och skalor. 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Kvotskala. Intervallskala. Nominalskala.

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet

Betingad sannolikhet och oberoende händelser

FÖRELÄSNING 3:

Kombinatorik och sannolikhetslära

Föreläsning 1: Introduktion

Statistik 1 för biologer, logopeder och psykologer

TENTAMEN I STATISTIKENS GRUNDER 1

Statistikens grunder. Mattias Nilsson Benfatto, Ph.D

Mängdlära. Kapitel Mängder

1 Mätdata och statistik

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07

Föreläsning G70 Statistik A

Kap 3: Diskreta fördelningar

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler

Sannolikhetslära. 19 februari Vad är sannolikheten att vinna om jag köper en lott?

4.2.1 Binomialfördelning

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

F9 SAMPLINGFÖRDELNINGAR (NCT

1.1 Diskret (Sannolikhets-)fördelning

Matematisk statistik for B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale. Forel.

Lektionsanteckningar 11-12: Normalfördelningen

MA2047 Algebra och diskret matematik

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Grundläggande matematisk statistik

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Introduktion till statistik för statsvetare

Block 1 - Mängder och tal

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Föreläsning G60 Statistiska metoder

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

SF1901 Sannolikhetsteori och statistik I

EXTRA ÖVNINGSUPPGIFTER MED SVAR

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Tentamen vetenskaplig teori och metod, Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1

Föreläsning G70 Statistik A

Transkript:

Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen

Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet att förklara varför något inträffar och möjlighet att styra åt ett gynnsamt håll. Objektivitetskrav: en orsak till en händelse är ett nödvändigt krav för att det ska hända. Problem?

Orsak och verkan, forts. Krav på verkliga orsaker: Assymetri Om A orsakar B kan inte samtidigt B orsaka A (återkopplande system?) Kontrollerbarhet Man ska kunna ändra förutsättningarna och verifiera men även styra (kan t.ex. kön vara en orsak?) Tidsfördröjning Det som sker idag kan inte påverka det som hände igår

Vetenskapens värderingar Hur ska vi förhålla oss till våra metoder och våra resultat? Objektivitet Vi ska få samma resultat alldeles oavsett vilka vi röstar på, vem som har finansierat forskningen osv. Transparens Tydlighet i vad som gjorts, definitioner och antaganden Etik Vi ska inte våldföra oss på sanningen Vi ska inte heller störa omgivningen (mätningar)

Modeller N Kap 3 I en generell mening är en modell något som på något sätt används för att representera något annat. Fysiska objekt som modeller modelljärnväg, arkitektmodell Konceptuella modeller finns bara i att sinnet Konceptuella modeller används för att hjälpa oss förstå ämnet och den verklighet (?) de representerar.

Några viktiga begrepp Population En mängd av väldefinierade objekt som besitter egenskaper Kan vara ändlig eller oändlig Urval, stickprov Den delmängd av populationen som vi observerar Urvalet kan ske deterministiskt (inte så bra) eller slumpmässigt (bättre) Variabler De egenskaper som objekten i populationen besitter och som man avser att observera

Variabler Kvantitativa variabler Antar numeriska värden Kvalitativa variabler Antar icke-numeriska värden Kontinuerliga variabler Kan anta samtliga värden inom ett intervall Kan vara ändlig eller oändlig Diskreta variabler Kan anta endast vissa värden Uppräkneliga, listbara

Skalor Värdena som en variabel kan anta anges på olika skaltyper: Nominalskala Icke-numeriskt, latin nomen = namn Ex. bilmärke, yrke m.m. Ordinalskala Icke-numeriskt men kan ordnas Ex. bra, bättre, bäst, ledningshierarki i ett företag Intervallskala Numeriska värden där avstånden (differenser) är väldefinierade men inte kvoter Ex. Celsiusskala ( dubbelt så varmt?), klockslag Kvotskala 20 kr är två ggr större än 10 kr

Variabeltyp och skaltyp Variabeltyp Skaltyp Diskret Kontinuerlig Nominal X - Ordinal X - Intervall X X Kvot X X Kvalitativ Kvantitativ

Modeller, forts. En modell är en förenklad beskrivning av något verkligt Vi tar bara med sådant som är väsentligt Testa hållbarhet i ett material så spelar kanske inte färgen någon roll Vi kan ersätta de relevanta aspekterna av verkligheten med symboler Vi gör det till matematik Ex. s = v t Sträcka, hastighet och tid är variablerna; s, v och t är symboler som representerar variablerna

Stokastiska modeller I en deterministisk modell finns inget utrymme för undantag, allt är exakt beskrivet i modellen. Ex. Ohms lag: Spänning/Strömstyrka = Resistans Det som kännetecknar en stokastisk modell är att den innehåller en slumpkomponent. Vi vet inte exakt vad det kommer att bli men vi kan uttala oss om hur troligt det är. Ex. X = antal dödsfall av åsnesparkar under ett år: P(X = x) = λ x e -λ /x!

Utfallsrum En uppräkning, listning eller beskrivning av alla tänkbara utfall av ett försök. Ett utfallsrum kan vara ändligt eller oändligt diskret eller kontinuerligt kvantitativt eller kvalitativt Betecknas ibland med symbolen Ω Ex. diskret mängd: {Krona, Klave}, {1,2,3}, {1,2,3, } kontinuerligt intervall (0,100), [0,100], (-, )

Övning Låt försöket vara kast med två tärningar såsom i Ex. 3.4 1. Definiera (X 1,X 2 ) = prickar på tärning 1 resp. tärning 2 Beskriv utfallsrummet för (X 1,X 2 ) Är varje utfall lika sannolik? 2. Definiera Y = summan av tärningarna Beskriv Ω Y = utfallsrummet för Y Är varje utfall lika sannolik? 3. Definiera Z = åldern hos en här slumpvis vald person

Sannolikhet När vi har ett utfallsrum (vi vet vad som kan inträffa) så behöver vi också veta, för varje utfall, hur troligt det är att ett utfall inträffar. Låt e beteckna ett utfall. Vi vet att e finns i Ω och vi skriver e Ω Vi låter P(e) beteckna sannolikheten att utfallet blev e Sannolikheten P(e) är ett tal

Sannolikhet och händelse Låt A beteckna en händelse. A är en delmängd av Ω och vi skriver A Ω. Ex. A = {1,2} {1,2,3,4,5,6} = Ω Sannolikheten för A skrivs P(A) En (så gott som) fullständig stokastisk modell kan nu sammanfattas enligt (se N Kap 3, sid 12): 1. Utfallsrummet Ω är definierat 2. För varje A Ω kan P(A) anges

Lite mängdlära Låt gemener e 1, e 2, osv. beteckna element Låt versaler A, B, Ω beteckna mängder av element Klamrar brukar användas { } Ex. A = {1,2}, B = {4} Om e i tillhör A, dvs. ligger i A, skriver vi e i A Ex. 1 {1,2} men 3 {1,2} Om A är en delmängd av B skriver vi A B Delmängd betecknas Strikt delmängd betecknas Ex. A = {1,2} Ω = {1,2,3,4,5,6}

Lite mängdlära, forts. Antag att Ω = {1,2,3,4,5,6} och att A = {1,2}, B = {2,3,4} och C = {3} Komplementet till en mängd är allt som inte ingår i mängden och betecknas med Ā, A, A c, A *, A Ex. A c = {3,4,5,6} Unionen av mängder betecknas med Ex. A B = {1,2,3,4}, B C = B Snittet av mängder betecknas med (finns i både A och B) Ex. A B = {2}

Lite mängdlära, forts. Tomma mängden är delmängden till Ω som inte innehåller några element alls. Betecknas med. Två mängder är disjunkta (oförenliga) om snittet är tomt Ex. A = {1,2} och C = {3} A C = Vad är komplementet till Ω?

Venndiagram Ett sätt att illustrera mängder och deras relationer Låt det skuggade området beteckna mängden i fokus A Ω : Ω A c Ω : Ω A c A

Övning Beskriv relationen mellan A och B i resp. Venndiagram och ange följande mängder i varje fall: a) A B b) A B c) A c B A B A B d) A c B e) (A B) c f) (A B) c A B

Vad är en sannolikhet? Sannolikheten P(e) är ett tal Det ska i någon intuitiv mening säga hur troligt något är Intuitivt: Om sannolikheten är noll kan det väl inte inträffa? Om sannolikheten är 100 % måste det väl inträffa? Vad en sannolikhet egentligen är kan förklaras på lite olika sätt: Frekventistiskt Klassiskt Subjektiv

Frekventistisk tolkning En intuitiv tolkning av begreppet sannolikhet är hur ofta vi tror att det ska inträffa (N 3.5.2): Vi utför experimentet upprepade gånger och räknar antalet gånger utfallet blev A. Efter n gånger noterar vi n A lyckade utfall. Kvoten n A /n är den relativa frekvensen för utfall A. Kvoten tenderar att stabiliseras när n ökar n A /n P(A) då n

Frekventistisk tolkning, forts. 0,35 antal 2:or antal kast 0,3 0,25 0,2 0,15 0,1 0,05 0 0 50 100 150 200 250 300 350 400 antal kast

Klassisk tolkning Man kan också utgå ifrån (när så är möjligt) en jämförelse av storleken av delmängden A relativt storleken av Ω. Antag att man kan definiera Ω som en mängd av elementarhändelser, alla lika troliga. Räkna antal element som tillhör A. Jämför med antal element totalt. antal(a) / antal(ω) = P(A) Jämför med Ex 3.7 sid 13 i N

Klassisk tolkning Idé med Venndiagram A Ω : Ω A storlek(a) = 24 storlek(ω) = 60 P(A) = 24/60 = 0,4

Subjektiv sannolikhet Sannolikhet kan också tolkas som grad av (personlig) tilltro. Särskilt när de frekventistiska eller klassiska principerna inte fungerar (sannolikheten att Djurgården förlorar på lördag) Kallas subjektiva sannolikheter. Sannolikheten bestäms av hur mycket du är villig att satsa och den vinst du kan kamma hem insats/total vinst = P(A) Övning 3.13 sid 18 i N

En axiomatisk teori Kolmogorovs axiom: En sannolikhet är en funktion P som tilldelar varje möjlig händelse A i ett utfallsrum Ω, ett tal P(A) så att följande villkor är uppfyllda: P(A) 0 (sannolikheter är aldrig negativa) P(Ω) = 1 Om A 1, A 2,..., A k, är parvis disjunkta händelser i Ω, då är P(A 1 A 2... A k ) = P(A 1 ) + P(A 2 ) +... + P(A k ) P(A 1 A 2...) = P(A 1 ) + P(A 2 ) +...

En axiomatisk teori, forts. Utifrån axiomen kan följande härledas, dvs. bevisas vara sanna: P(A c ) = 1 - P(A) P( ) = 0 Om A B så gäller P(A) P(B) P(A) P(Ω) = 1 (sannolikheter är aldrig >1) P(A B) = P(A) + P(B) P(A B)

En axiomatisk teori, forts. Samtliga tre synsätt (frekventistisk, klassisk, subjektiv) på vad en sannolikhet egentligen är, är förenliga med Kolmogorovs axiom. Kom ihåg att vi har en formell definition på vad en sannolikhet är också. Sannolikheten P( ) är ett tal Utfallsrummet Ω är väldefinierat För varje A Ω kan P(A) anges Kolmogorovs axiom definierar resten

Har vi en teori nu? Objekt enstaka och grupper av elementarhändelser (ex. händelser och hela utfallsrummet Ω) sannolikheter; en funktion av händelser; P(A) Relationer hur händelserna förhåller sig till varandra via t.ex. mängdläran hur sannolikheterna förhåller sig till händelserna genom funktionen P(A) och till varandra Tolkningar frekventistiska, klassiska, subjektiva tolkningar

Övning Antag att P(A) = 0,3, P(B) = 0,5 och P(C)=0,7. Antag att A och B är disjunkta. Beräkna 1. P(A c ) = 2. P(A B) = 3. P[(A B) c ] = 4. P(A B) = 5. P(A C) = [kuggfråga] 6. Kan B C? Kan C B? 7. Vad är det minsta värdet som P(A B C) kan vara? 8. Vad är det största värdet som P(A B C) kan vara?